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Abstract

This paper proposes a simulation-based density estimation technique for time
series that exploits information found in covariate data. The method can be
paired with a large range of parametric models used in time series estimation.
We derive asymptotic properties of the estimator and illustrate attractive finite
sample properties for a range of well-known econometric and financial applica-

tions.

1 Introduction

In this paper we study a parametric density estimation technique for time series that
exploits covariate data. While the technique has broad applicability, our motivation
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stems from applications in econometrics and finance where density estimation is
often used for tasks such as analysis of asset returns, interest rates, GDP growth,
inflation and so on. For example, the Bank of England routinely estimates densi-
ties for inflation and a wide range of asset prices using options data (de Vincent-
Humphreys and Noss, 2012). In settings such as this, the primary attraction of den-
sity estimates is that they typically provide more information than estimates of cen-
tral tendancy or a finite set of moments. Depending on the time series in question,
density estimates can be used to address a large variety of questions, such as the
risk of corporate (or sovereign) default, or the likelihood of recession, or of inflation

leaving a target band over a given interval of time.!

A variety of techniques for estimating densities have been proposed in the liter-
ature. One popular approach is nonparametric kernel density estimation (Rosen-
blatt, 1956). Nonparametric density estimators have an advantage over parametric
methods in terms of robustness and generality, in the sense that asymptotic con-
vergence occurs under very weak assumptions. This makes nonparametric density
estimators ideal for certain applications, particularly those where the risk of model
misspecification is high.

On the other hand, for some of the more common economic and financial time se-
ries, econometricians have spent decades formulating, developing and testing para-
metric time series models (e.g.,, ARMA models, GARCH models and their many
variations, Markov switching models, stochastic volatility models, dynamic factor
models, threshold models, etc.). This research has generated a very substantial body
of knowledge on classes of parametric models and how they can be paired with
certain time series to effectively represent various data generating processes (for a
recent overview, see Martin et al., 2012). In these kinds of settings, it is natural to
seek techniques that can exploit this parametric information to construct density
estimators. Our paper pursues this idea, with the focus on providing a flexible den-
sity estimation scheme that can be used in combination with common time series

IFor related applications and discussion, see, for example, Ait-Sahalia and Hansen (2009), Cal-
abrese and Zenga (2010) or Polanski and Stoja (2011). In addition to situations where the density
itself is of primary interest (e.g., density forecasting), density estimation is also used in a wide range
of statistical techniques where density estimates are an input, such as discriminant or cluster analysis.
Similarly, density estimators are used to address specification testing or model validation problems
(e.g., Ait-Sahalia et al., 2009).



models.

In doing so we confront several problems associated with these kinds of estimation.
First, many modern econometric models have nonlinear or non-Gaussian features
that make the relevant densities intractable. Hence generating density estimates
requires some form of approximation. Second, time series data sets are often (a)
smaller than cross-sectional data sets, and (b) contain less information for a given
data size, since observations are more likely to be correlated. This problem of infor-
mation scarcity is compounded in the case of density estimation, since the “point”

we are trying to estimate is, in general, an infinite-dimensional object.

The technique we study addresses these problems simultaneously. To accommodate
the problem that the densities might be intractable we use a simulation-based ap-
proach, which permits construction of density estimates from model primitives in a
wide range of settings. To address the issue of limited data, we combine two useful
ways to supplement the amount of information available for estimation of a given
density: exploitation of parametric structure and incorporation of information from
covariates.> Our paper pursues these idea within a parametric time series setting.
Our simulation studies give a number of examples as to how inclusion of parametric
structure combined with covariate data can greatly reduce mean squared error.

From a technical perspective, the method we study in this paper can be understood
as a variation on conditional Monte Carlo (see, e.g., Henderson and Glynn, 2001),
which is an elegant and effective technique for reducing variance in a variety of
Monte Carlo procedures. Here the estimation target is a density. In addition, the
primitives for the simulation contain estimated parameters. Accommodating this
randomness together with the randomness introduced by the Monte Carlo step, we
establish a functional central limit result for the error of the estimator. The theo-
rem also shows that the estimated density converges to the target density in mean
integrated squared error.

Following presentation of the theory, we turn to illustrations of the method for a
variety of econometric and financial applications, and to Monte Carlo analysis to

2The meaning of the second point is as follows: Suppose that we wish to estimate the density f
of a random vector Y;. One possibility is to use only observations of Y;. If, however, we possess a
model that imposes structure on the relationship between Y; and a vector of covariates X, we can
use this structure and additional data in order to improve our estimate of f.
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investigate finite sample behavior. The case studies include dynamic factor models,
linear and nonlinear autoregressive models, Markov regime switching models and
stochastic volatility models. In all cases the method exhibits excellent finite sample
properties. We give several interpretations of this performance.

Regarding related literature, alternative parametric density estimators using covari-
ates have been proposed by Saaverdra and Cao (2000) and Schick and Wefelmeyer
(2004, 2007) for linear processes, by Frees (1994) and Gine and Mason (2007) for func-
tions of independent variables, by Kim and Wu (2007) for nonlinear autoregressive
models with constant variance, and by Stove and Tjostheim (2012) for a nonlinear
heterogenous regression model. A related semiparametric approach was proposed
by Zhao (2010). In addition, Escanciano and Jacho-Chévez (2012) exhibit a nonpara-
metric estimator of the density of response variables that is y/n-consistent. Our set
up is less specific than the parametric treatments discussed above. For example, we
make no assumptions regarding linearity, additive shocks, constant variance and so
on, and the density of interest can be vector valued. A Monte Carlo step makes the
method viable despite this generality. On the other hand, relative to the nonpara-
metric and semiparametric methods, our estimator puts more emphasis on finite

sample properties. These points are illustrated in depth below.

The structure of our paper is as follows: Section 2 gives an introduction to the esti-
mation technique. Section 3 provides asymptotic theory. Section 4 looks at a number
of applications and provides some Monte Carlo studies. Section 5 discusses robust-
ness issues. Section 6 gives proofs.

2 Outline of the Method

Our objective is to estimate the density f of random vector Y;. To illustrate the main
idea, suppose that, in addition to the original data Y3,...,Y,, we also observe a
sequence of covariates Xj, ..., X; where {X;} is a stationary and ergodic vector-
valued stochastic process. Suppose further that Y; is related to X; via Y; | X ~
p(-| X¢). Thatis, p(-|x) is the conditional density of Y; given X; = x. Since {X;}
and p are assumed to be stationary, the target process {Y;} is likewise stationary.



Letting ¢ be the common stationary (i.e., unconditional) density of X;, an elemen-
tary conditioning argument tells us that the densities f and ¢ are related to one
another by

f) = [plylxgax (yev) (1)
Example 2.1. Suppose that Y; denotes returns on a given asset, and let {Y;} obey
the GARCH(1,1) model Y; = y + oye; where {¢;} is ID and N(0,1), and 07, =
xo + oqatz + tsztz. Assume all parameters are strictly positive and a7 + ap < 1. Let
X; = atz, so that

Xi1 = a0+ 01 X; 4+t (4 + VXier)? 2)
Let ¢ be the stationary density of this Markov process. In this setting (1) becomes

)= [~ e - g as ®

Returning to the general case, suppose for the moment that the conditional density

p is known. Given observations { X; }_ , there is a standard procedure for estimating
f called conditional density estimation that simply replaces the right-hand side of
(1) with its empirical counterpart

n

Py) == % > plylXe) “)

t=1

Since {X;} is assumed to be ergodic with common marginal ¢, the law of large
numbers and (1) yield

n

A9) = 5 Loy %) = [ oy 9z = v

as n — co. A more complete asymptotic theory is provided in Braun et. al (2012).3

In a statistical setting, the conditional density p is unknown. If we are prepared to

impose parametric assumptions, then we can write

Yi | Xi ~ p(- | Xt, B) (5)

3The assumption that p is known is appropriate in a computational setting, where all densities are

known in principle but f might be intractable and hence require estimation (in the sense of approxi-
mation via Monte Carlo). This is the perspective taken in Gelfand and Smith (1990), Henderson and
Glynn (2001), Braun et. al (2012) and many other papers. The asymptotic theory is well established.
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where f is a vector of unknown parameters. In this case, an obvious extension to
(4) is to replace the unknown vector 8 with an estimate j3,, obtained from the data
{Y:, Xy i—1- This leads to the semiparametric estimator

n

. 1 5
S(y) =) Py | Xe Ba) (6)
t=1
The estimator is semiparametric in the sense that if we let ¢, be the empirical distri-
bution of the sample Xj, ..., X, then § can be expressed as

$(y) = [ p(y] %, Bu)u(dx) @)

Thus, § combines the parametric conditional density estimate p(- |-, ;) with the
nonparametric empirical distribution ¢, to obtain an estimate of f. The random
density § is known to be consistent and asymptotically normal for f under certain
regularity conditions (Zhao, 2010, theorem 1).

While this semiparametric estimator § is natural, there are a number of settings
where it cannot be applied, or where its finite sample performance is suboptimal.
As a first example, consider a setting where we have a parametric model for the
dynamics of {X;} that provides an accurate fit to this data. In such a setting, these
estimated dynamics allow us to produce a good estimate for the stationary density
¢ of {X;}. The semiparametric estimator § fails to exploit this knowledge, replacing
it with the (nonparametric) empirical distribution ¢,,.

Another example along the same lines is a setting such as Y; = p'X; + oe;, where
Xt = (Yi—1,...,Yi—p). Here the covariates are just lagged values of the current
state. If we estimate (,0), then we can in fact deduce the stationary density ¢ of
X} coinciding with this estimate. It would be inconsistent to discard this stationary
density and use the empirical distribution ¢, instead.

In addition to the above, there are settings where the semiparametric estimator can-
not be used at all. For example, many time series models incorporate latent variables
(e.g., latent state space, latent factor and hidden Markov models, regime switching
models, GARCH models and stochastic volatility models). In all these models, the
process {X;} is not fully observable, and hence the semiparametric estimate $ in (6)
can not be computed.



As we now show, all of these issues can be addressed in a setting where we are
prepared to add more parametric structure—in particular, parametric information
about the process {X;}. In what follows, this parametric information is assumed to
take the form

Xey1 | Xe ~q(-| Xt,7) (8)

where 7 is another vector of unknown parameters. (Although we are restricting the
model to a first order process, this costs no generality, since any p order process can
be reduced to a first order process by reorganizing state variables.)

Given this information, to estimate f, the procedure we consider is:

1. Estimate the parameters in (5) and (8) with Bn and 4§, respectively.

2. Simulate {X;}}" ; via
Xi1 ~q(-| X{, 9n) with Xy =x )

3. Return the function f defined by

1 m
= m ; ]/\Xt,ﬁn (10)

In what follows, we refer to the estimator f in (10) as the parametric conditional Monte
Carlo (PCMC) density estimator. Comparing § defined in (6) with the PCMC density
estimator £, the difference is that while & uses the observed data {X;} directly on
the right hand side of (6), the PCMC density estimator uses simulated data instead.
More precisely, instead of using {X;} directly, we use {X;} to estimate the model
(8), and then use that model to generate simulated data {X; }.

Example 2.1 (continued) Consider again the GARCH model presented in exam-
ple 2.1. Let 8 := (fi,&o, &1, &) be a consistent estimator of the unknown parame-
ters. By plugging these estimates into (2) we simulate X7, ..., X},. Recalling (3), the
PCMC density estimator is then

=Ly _(}/—ﬁ)z}
“ \/WeXp{ 2X; (1)
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2.1 Discussion

One attractive feature of the PCMC density estimator is that in a single simula-
tion step it bypasses two integration problems that in general fail to have analyt-
ical solutions. Without simulation, we would need to (a) take the estimated tran-
sition density q(x" | x,9,) and calculate from it the corresponding stationary distri-
bution ¢(-,4x) as the solution to an integral equation, and then (b) calculate f as
[ry]x, Bu)¢(x,44)dx. Apart from some special cases, neither of these integration
problems can be solved in closed form.

Two other attractive features of f are as follows: First, the initial value x in (9) can be
chosen arbitrarily. This is significant because, as discussed immediately above, the
stationary density ¢(-,4,) is typically intractable, and we have no way to sample
from it directly. In section 3 we prove that our convergence results do not depend
on the choice of x. Second, latent variables in {X;} cause no difficulties in using the
PCMC density estimator. As soon as we estimate the transition density g(x’ | x, §,)
we can produce the simulated data {X;}. In this simulated data, latent variables
become observable.*

On the other hand, when comparing § and f in (6) and (10) respectively, the fact that
the latter uses simulated data from an estimated model instead of observed data
clearly involves some cost. When interpreting this difference, however, it is helpful
to bear in mind that in a sense both techniques do use the observed data. What
differs is the way in which these data are used. While the semiparametric estimator
S uses {X;} to construct an empirical distribution (¢, on the right hand side of (7)),
the PCMC uses this data to estimate a parametric model. To the extent that the para-
metric assumptions are correct, this approach can translate into better finite sample
properties. These ideas are addressed in section 4 via a range of simulation studies.
At the same time, to quantify the estimation effect, we also include information on

%A simulation based method for density estimation in the context of parametric time series mod-
els with latent states is also considered in Zhao (2011). Zhao's estimator requires a significantly more
complex formula, involving the ratio of empirical estimates of a joint and a marginal density. How-
ever, this additional complexity arises because he aims to estimate a family of conditional densities
providing all the dynamics of the hidden state vector, which can then be tested via a simultaneous
confidence envelope constructed using nonparametric methods. In contrast, the PCMC estimates a
single density, and we provide a detailed asymptotic theory for that estimate.
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Figure 1: Estimated return densities, small cap vs large cap

the errors associated with both f and a version of f called f, that simulates from the
exact model.

Figure 1 gives an example implementation of the PCMC density estimator. In this
application, we estimate two densities: the density of monthly returns on the S&P
500, a stock market index of 500 large companies listed on the NYSE or NASDAQ,
and returns on the S&P 600, which is an index of smaller firms. Both densities are
estimated using price data from January 2005 to December 2012. The model applied
here is the GARCH model of example 2.1. Volatility is latent in this model, but, as
discussed above, this presents no difficulty for our procedure.

In interpreting the results, recall that small cap stocks usually have higher average
returns than large cap stocks—for example, they are one of the three factors in the
Fama-French three factor model. Higher returns are typically associated with higher
volatility, since the former is demanded as compensation for the latter by investors.
Our estimates conform to this theory. (The mean of the density for the S&P 500 is
0.0006, while that for the S&P 600 is 2.8 times larger.)



2.2 Other Estimators

We have already mentioned several alternatives to the PCMC density estimator.
There are several other parametric estimators of f that could be considered here.
One is to simply specify a parametric class {f(-,0) }gco for f, estimate 0 using {Y;}
and plug in the result § to produce f := f(-, ). (For example, specify f = N(u,0)
and plug in the sample mean ji and the sample standard deviation ¢.) We refer to
this estimator as the ordinary parametric estimator (OPE). In finite samples this es-
timator is typically inferior to the PCMC density estimator because if fails to exploit
the information available in covariates. Section 4 gives an extensive discussion of
this point.

A parametric density estimator that does exploit covariate data can be obtained by
(i) specifying a parametric form ¢(x, y) for the common density of X;, (ii) estimating
B in (5) and v in the density ¢(x, ) as B, and 4, and (iii) returning

2(y) = [ p(y % B)g(x,7) (12

This estimator is impractical, since it involves integration problems that are not gen-
erally tractable. It also has another less obvious deficiency: In contrast to the PCMC
density estimator f, parametric specification is placed directly on the density ¢ of
Xi, rather than on the dynamic model (8). As a result, Z typically fails to exploit the
order information in {X;}. This can be costly, particularly when {X;} is highly per-
sistent. Sections 4.1 and 4.2 elaborate, comparing £ and f in simulation experiments
across a variety of common models.

3 Asymptotic Theory

In this section we clarify assumptions and provide convergence results for the PCMC
density estimator introduced in section 2.
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3.1 Preliminaries

In this section it will be convenient to let § € © be a vector containing all unknown
parameters. Thus p(- | x, B) in (5) now becomes p(- | x,0), while g(- | x, ) in (8) be-
comes q(- | x,0). The set © is taken to be a subset of RX. Let 6y represent the true
value of the parameter Vector 6. It follows that the true density of Y; is given by
f(y,60) :== [ p(y|x,600)p(x,60)dx. To simplify notation, in the sequel we let

d d
Ai(x,y,0) == ¢(x,0) 55 p(y[x,0) + p(y | x, 0) 55 ¢(x,0)

whenever the derivatives exist. In particular, d(x,y,6) is the K-vector obtained by
differentiating p(y | x, 0)¢(x, 6) with respect to 6, holding x and y constant.

Below we present an approximate L, central limit theorem for the deviation between
the PCMC density estimator f and the true density f(-,6y). We take the set Y in
which Y; takes values to be a Borel subset of R, and the symbol L, () represents
the set of (equivalence classes of) real-valued Borel measurable functions on Y that
are square-integrable with respect to Lebesgue measure. As usual, we set (g, /) :=
J8W)h(y)dy, and [ig]| := /{8, &)-
A random element W taking values in Ly () is called centered Gaussian if (h, W) is
zero-mean Gaussian for all # € Ly(Y). Equivalently, W is centered Gaussian if its
characteristic function (h) = Eexp{i(h, W) } has the form ¢(h) = exp{—(h,Ch)/2}
for some self-adjoint linear self-map C on L,(Y). C is called the covariance opera-
tor of W. The operator C satisfies (g, Ch) := E(g, W) (h, W) for all g,h € Ly(Y).
Covariance operators are themselves often defined by covariance functions. To say
that « is the covariance function for covariance operator C is to say that C is defined
by

(8 Ch) = / / ©(y, ¥ )W)y )dydy’ (13)
for all g,h € Ly(Y). Further details on Hilbert space valued random variables can
be found in Bosq (2000).

To prove the main result of this section, we require some differentiability and ergod-
icity assumptions. Our differentiability assumption is as follows:

Assumption 3.1. There exists an open neighborhood U of the true parameter vector
fp and a measurable function g: X x Y — R such that

11



1. g satisfies [ {fg(x,y)dx}zdy < oo,

2.0 — p(y|x,0)and 0 — ¢(x,0) are continuously differentiable over U for all
fixed (x,y) € X XY, and

3. d(x,y,0) satisfies sup,; [|d(x,y,0)||r < g(x,y) forall (x,y) € X x Y.

In assumption 3.1, the symbol || - || is the Euclidean norm on RX. The subscript E
is used to differentiate the Euclidean norm from the L, norm || - ||.

The set in which X; takes values will be denoted by X, a Borel subset of R/. Regard-
ing the process for {X;} defined in (8), we make the following assumptions:

Assumption 3.2. For each § € O, the transition density x’ — g(x’ | x,0) is ergodic,
with unique stationary density ¢(-,6). Moreover, there exist a measurable function
V: X + [1,00) and nonnegative constants 2 < 1 and R < oo satisfying

/h |x9dx—/h ¢(x',0)dx’

as well as a function p € Ly(Y) such that p(y|x,8) < p(y)V(x)/? forall y € Y,
xeX,0c€@andteN.

< a'RV(x)

sup
ln|<v

The main content of assumption 3.2 is that the process {X;} is always V-uniformly
ergodic. This is a standard notion of ergodicity, and it generates enough mixing to
yield asymptotic normality results under appropriate moment conditions. (The last
part of assumption 3.2 is just a moment condition.) It applies to many common time
series models under standard stationarity conditions. Details can be found in Meyn
and Tweedie (2009, chapter 16).

3.2 Results

We now study the deviation between the true density f = f(-,6p) and the PCMC
density estimator f,(-,8,) defined in section 2. Since altering the values of densities
at individual points does not change the distribution they represent, we focus on
global error, treated as an element of L, (Y). The latter is a natural choice, since the

12



expectation of the squared norm of the error is then mean integrated squared error
(MISE).

To state our main result, suppose now that the sequence of estimators {6, } is asymp-
totically normal, with /7 (8, — 6) 4N (0,%) for some symmetric positive definite
¥ = (o). The simulation size m for f(-,0,) is taken to be T(1n) where T: N — N is
a given increasing function. In this setting we have the following result:

Theorem 3.1. If assumptions 3.1-3.2 are valid and T(n)/n — oo, then

Vir{Fem (. 00) = f(, 80} S W (11— o) (14)
where W is a centered Gaussian in L (Y') with covariance function
k(1Y) = Vaf(y,00) " ZVof (¥, 60) (15)

Here V£ (y, 6p) represents the vector of partial derivatives df (v, 6y) /96k. Thus, the
asymptotic variance of the density estimator reflects the variance in the parameter
estimate 0, transferred via the slope of the density estimate with respect to the pa-
rameters in the neighborhood of the true parameter. A proof of theorem 3.1 can be
found in section 6.

In interpreting theorem 3.1 it is useful to note that x(y,y’) is in fact the pointwise
asymptotic covariance of the function on the left hand side of (14) evaluated at y
and y'. In particular, x(y, y) is the pointwise asymptotic variance at y, in the sense
that, forally € Y,

Vil Feon (0, 60) — F(1,60)} % N(O,x(y,y)) (1 — ) (16)

A consistent estimator for (v, ) is &(y,v) := Vof(y,0,) T £ Vaf(y,0,) where L is a
consistent estimator of 2.

One way to understand (16) is to consider an ideal setting where all integrals have
analytical solutions. In this case we can take the same estimator §, and plug it
directly into f(y,6). A simple application of the delta method tells us that the
asymptotic variance of this estimator f(y,8,) is Vof(y,00) " Z Vo f(y/,60), which is
the same value x(y, y) obtained by the PCMC estimator. Thus the PCMC estimator
obtains the same asymptotic variance as the ideal setting, provided that the simula-
tion sample size grows sufficiently quickly with n.

13



Example 3.1. As a simple illustration where integrals are tractable, suppose we ob-
serve a sequence {Y;}} , from the AR(1) model

Yi=0Y, 1+&  {&} ~ N(0,1) (17)
To estimate the stationary density f of Y; via the PCMC density estimator we take
X¢ :=Y;_1,s0 that Y; = 6X; + ¢;, and hence p(y | x,0) = N(6x,1). Let 0,, be the least
squares estimate of 0. Given this estimate we can construct the simulated sequence
{X}} by iterating on X, ; = 0,X; + &;. Taking that data and averaging over the
conditional density as in (10) produces the PCMC density estimator. Regarding its
asymptotic variance, note that both X; and Y; share the same stationary density,
which in this case is f(-,0) = N(0,1/(1 — 6?)). Also, the asymptotic variance of the
OLS estimator 8, in this setting is 1/EX?, which is 1 — 62. Applying (15) and (16),
the asymptotic variance of ff(n) (y,0,) is therefore f}(y,60)%(1 — 63).

Figure 2 compares the pointwise asymptotic variance of the PCMC density estima-
tor with that of the semiparametric estimator (6) when the model is the AR(1) pro-
cess from example 3.1. The comparison is across different values of 8 while holding
the point y fixed (¥ = 0 in this case). The asymptotic variance of of the PCMC den-
sity estimator is lower at all points. The reason is that the simulation can almost
eliminate the variance associated with averaging the conditional density over ob-
servations of the covariate X. This dominates the estimation effect associated with
averaging over simulated rather than actual data.’

Example 3.2. We can also estimate f(y,6) for the same AR(1) model via the es-
timator Z(y) in (12). Since the parametric form in (17) is known here, it can be in-
ferred that the stationary density ¢ (-, 0) of X; is the zero-mean Gaussian distribution
N(0,1/(1 — 6%)). We can estimate the unknown variance from {X;} with the sam-
ple variance s2. We can then back out an estimate 8, of 0 by solving 1/ (1 — 6?) = s2
for 6 and then plugging this into ¢(y, #). Next we compute the integral on the right
hand side of (12) to produce an estimate f(y,0,). Regarding the asymptotic vari-

ance, some elementary analysis shows that the asymptotic variance of 8, is (1 — 63)

>The comparison is by simulation to facilitate computation of the asymptotic variance of the semi-
parametric estimator. The simulation is over 1,000 replications with n = 5,000 and simulation size
for the PCMC estimator set to 100,000.
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Figure 2: Asymptotic variances in the AR(1) model

where ¢ := 1+ (1 —63)/(26%). Applying the delta method gives the asymptotic
variance of f(y,0,) as f}(y,00)*(1 — 6){. Since { > 1, the pointwise asymptotic
variance is larger than that of the PCMC (see example 3.1). The intuition for this
was discussed in section 2.2.

4 Simulations

Next we apply the PCMC density estimator to a number of common models and
examine its finite sample performance using Monte Carlo. In all cases, performance
is measured in terms of mean integrated squared error (MISE).®

The MISE of an estimator § of the true density f = f(-,6p) is E[|¢ — f||%. If f has no closed form
solution, then we compute it by conditional Monte Carlo. In all the following simulations, the MISE
is approximated by averaging 1,000 realizations of || — f]|2.
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4.1 Dynamic Factor Models

We begin with a simple application intended to illustrate conceptual issues. Con-
sider the linear dynamic factor model Y; = [STXt + ¢ with

Xip1 =IT'Xs + 141, (18)

Here Y; € R, X; € R3, T = diag(v1,72,73) and all shocks are independent and
N(0,1). Following the asset pricing analysis of He et al. (2010), our baseline pa-
rameter setting is f1 = 6.26, o = 1.32, B3 = —1.09, 71 = 0.18, 72 = —0.14, and
73 = 0.21. Using simulation, we compute the MISE of various estimators of the
density f of Y;. In this case, the true density is equal to

BB LB

f=N(0,0%) for o*:= +
-9 1-9 1-73

In order to investigate how the performance of the estimator changes with the de-
gree of persistence in the data, we also consider variations from the baseline. In
particular, the baseline values of v = (71, 72, 73) are multiplied by a scale parame-
ter &, where a varies from 1 to 4. In all simulations, we take the data size n = 200.

To compute the PCMC density estimator f from any one of these data sets {Y}, X;},
we first estimate B and 7 by least squares, producing estimates 3, and 4,. Next,
{X;}%, is produced by simulating from the estimated version of (18), starting at
X5 = 0 and setting m = 10,000. We then apply the definition (10) to obtain

m
fo) = & o] -y - AixiR)

For comparison, we also compute the MISE of four alternative estimators: The semi-
parametric estimator § defined in (7), Z defined in (12), the ordinary parametric esti-
mator (OPE) and the nonparametric kernel density estimator (NPKDE), all of which
are discussed earlier. The OPE uses the dynamic factor model to infer that (19) holds,
and estimates f as N(0,62) where 0 is the sample standard deviation of {Y;}. The
NPKDE uses a standard Gaussian kernel and Silverman’s rule for the bandwidth.
To investigate the estimation effect, we also compute the PCMC density estimator
with the true values of B and v, and label it as fo. See the discussion in section 2.1.
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The results of the simulation are shown in table 1. The far left-hand column is val-
ues of the scaling parameter «, so that higher values of a indicate more persistence
in {X;}. The remaining columns show MISE values for the six density estimators
mentioned above. All are expressed as relative to the PCMC density estimator f
(i-e., as multiples of this value).”

Regarding the outcome, observe that the rank of these estimators in terms of MISE is
invariant with respect to data persistence (i.e., the value of ). Of the estimators that
can actually be implemented (i.e., excluding fp), the PCMC density estimator has
lowest MISE, followed by Z, §, OPE and NPKDE in that order. Our interpretation is
as follows: The reduction in MISE from the NPKDE to the OPE represents the benefit
of imposing parametric structure on the data set {Y;}. The reduction in MISE from
the OPE to $ represents the benefit of exploiting covariate data—in particular, the
relationship (1) and the extra data { X; }. The reduction in MISE from § to Z represents
the gains from estimating ¢ parametrically. The reduction in MISE from £ to the
PCMC estimate f represents the additional gain from exploiting the information
contained in the order of the sample { X; }—see section 2.2 for intuition.

The relatively low MISE for the PCMC density estimator becomes more pronounced
as the degree of persistence in the data rises. This is not surprising, given the fact
that the PCMC density estimator exploits order information in the sample {X;}, and
this information becomes more important with higher persistence. At the same time
we note that persistence also pushes up the discrepancy between fy and f. In other
words, there is an estimation effect that increases with persistence. This is because
more persistence at a given sample size reduces the information content of the data,
and makes the underlying parameters harder to estimate.

Further illustration is given in figure 3. The figure shows the true stationary distri-
bution f(-,6p) in bold, one observation of § for the same sample size and parame-
ters, and one observation of f with the estimated 95% pointwise confidence bands
for f(-,0p) under the same sample size and parameters. (See the discussion in sec-
tion 3.2.)

7 Actual values for f ranged from 4.606 x 104 to 5.182 x 10~4.
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A

& fo f 2 §  OPE NPKDE
1.000 || 0.9998 1.000 1.965 2256 2531 3.014
1.150 || 0.9995 1.000 1.824 2216 2470 3.572
1.300 || 0.9993 1.000 2031 2252 2414 3.614
1450 || 0.9991 1.000 2.180 2.324 2502  3.856
1.600 | 0.9966 1.000 2.328 2333 2514 3.831
1.750 || 0.9903 1.000 2353 2.339 2519 3.929
1.900 || 0.9890 1.000 2412 2438 2506  4.079
2.050 || 0.9884 1.000 2.448 2455 2517  4.135
2.200 || 0.9874 1.000 2.467 2498 2510  4.079
2.350 || 0.9840 1.000 2.501 2.537 2619  4.243
2500 || 0.9545 1.000 2.540 2.549 2.798  4.404
2,650 || 0.9385 1.000 2.671 2.696 2.840 4717
2.800 || 0.9162 1.000 2759 2785 2932  4.801
2950 | 0.8774 1.000 2.777 2.854 2940  4.892
3.100 || 0.8660 1.000 2.835 2.899 2958  4.897
3.250 || 0.8011 1.000 2.984 2994 3.012 5470
3.400 || 07942 1.000 2998 3.082 3.116 5421
3.550 || 0.7496 1.000 3.159 3.473 3.596  5.744
3.700 || 0.6994 1.000 3.384 3.528 3.572  6.168
3.850 || 0.6629 1.000 3.467 3.595 3.635  6.296
4.000 || 0.6107 1.000 3.563 3.578 3.591  6.424

Table 1: Relative MISE values for the dynamic factor model
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Figure 3: Realizations of § and PCMC in dynamic factor model

4.2 Linear AR(1)

In this section we study another simple example in order to further illustrate con-
ceptual issues: the scalar Gaussian AR(1) model from (17). The construction of the
PCMC density estimator for this model was discussed in example 3.1. In figure 2 we
looked at asymptotic variance at a point. Here we look at finite sample MISE (error
over the whole domain).

To study the MISE of the PCMC density estimator of f in finite samples, we compare
its MISE with that of the semiparametric estimator $, the direct parametric alterna-
tive Z, the ordinary parametric alternative (OPE) and the NPKDE when n = 200.
(In this case, the OPE estimates f by observing that f(y) = N(0,1/(1 — 6?)) and
estimating 6 by maximum likelihood.) The method for implementing the NPKDE is
identical to that used in section 4.1. The correlation coefficient 6 is the only parame-
ter, and it is set to 0.1, 0.3, 0.5, 0.7, 0.9, 0.95 and 0.995 in seven separate experiments.
We also compare fy with the PCMC density estimator to see how model estimation
error influences the estimator under the AR(1) process.
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~

0 fo f 2 ¢  OPE NPKDE
0.1 | 09985 1.000 1.003 1.304 1721 2226
0.3 | 09804 1.000 1.021 1.748 2845  3.882
0.5 | 09517 1.000 1.027 2437 2914  4.450
07 |[ 09322 1.000 1.040 2932 3217  7.062
09 | 09219 1.000 1.400 3.750 4.528  14.127
095 || 0.8873 1.000 2.382 3971 4773  36.360
0.995 | 0.8521 1.000 2416 4.106 19.217 175.979

Table 2: Relative MISE values for the AR(1) model

Table 2 presents results. All MISE values are expressed as multiples of the MISE for
the PCMC density estimator. Of the estimators that can be implemented in practice
(i.e., all but fo), the MISE for the PCMC density estimator is lowest for all values of
. Notice also that the differences becomes more pronounced as 6 increases. This
result reiterates the point made in the previous section: The PCMC density estima-
tor’s use of a parametric model for the DGP {X;} provides the ancillary benefit of
exploiting the information contained in the order of the sample. When 6 = 0.1,
the data is almost 11D, and preserving the order information in an estimate of ¢ has
relatively little value. The benefit becomes larger when the persistence in the DGP
increases.® Again, the estimation effect appears fairly weak when the AR(1) model
is well estimated.

4.3 Threshold Autoregression

As our next application, we replace the linear AR(1) model with the nonlinear TAR
model

Yo =0V +V1-028,  {&} ™ N(O,1)

8 Actually the preceding intuition best explains the improvement that f makes over 2, both of

which are parametric. Another factor at work is that more persistent data is in essence less informa-
tive than relatively independent observations. Hence the effective data size shrinks as we increase
6. This helps to explain why the nonparametric estimator—which has relatively weak finite sample
properties—becomes less competitive.
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The stationary density of Y; has the skew-normal form f(y) = 2¢(y)¥(sy), where
s:=0/ \/m, and ¥ and Y are the standard normal density and cumulative dis-
tribution respectively (see Andel et al., 1984). The parameter 6 can be estimated
consistently by maximum likelihood. Following the simulations in Zhao (2010), we
set = 0.6 and n = 200. The MISE for the PCMC was found to be 5.836 x 10~%. The
MISE for § was 1.945 times larger, while that for the NPKDE was 8.823 times larger.

4.4 Markov Regime Switching

Next we consider a Markov regime switching model, in order to illustrate how the
PCMC estimator is implemented in a latent variable model. The model we consider

here is
1ID

Yi =pux, +ox, &, {&} ~ N(O,1)

where {X;} is an unobservable two-state Markov chain with ergodic transition ma-
trix IT. The stationary density of Y; has the form f = N(u1,0%) x 711 + N(p2,03) X
715, where (711, 717) is the stationary distribution of I'T. The model is estimated using
maximum likelihood. The PCMC density estimator can then be implemented to ob-
tain an estimate of f. In this case, the conditional density p in (10) is p(y | X}, 8,) =
N(fix;, (AT)Z(? ). The values {X}} are simulated from a maximum likelihood estimate
I'T of the matrix I1.

We investigate the finite sample performance of the PCMC estimator by comparing
the MISE with that of the NPKDE when n = 500. (The semiparametric estimator is
not available for comparison here because the state X; is latent.) The parameters are
set according to Smith and Layton’s (2007) business cycle analysis, with y; = 0.34,
yuy = —0.13, 00 = 0.38, 0 = 0.82, and

- 0.97 0.03
0.08 0.92

The MISE of the PCMC estimator was found to be 9.418 x 1073, while that of the
NPKDE was 0.015. Thus, the MISE of the NPKDE was roughly 1.6 times larger.
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4.5 Stochastic Volatility in Mean

As another application of the PCMC density estimator in a latent variable setting,
we consider the stochastic volatility in mean model

Yt = C0'2 exp(ht) + (Texp(ht/Z)(;‘t (20)

hy = khy_1 + oyne (21)

Typically, Y; denotes return on a given asset, and the latent variable h; denotes un-
derlying volatility. The pair (¢, 7;) is standard normal in R? and 11D. Parameters in
the model can be estimated by simulated MLE (see, e.g., Koopman and Uspensky,
2002). We take h; as the covariate X; in the definition of the PCMC density estimator,
which then has the form

1 .
:a; p(y | ki, 0n

where, in view of (20), p(y | k,8,) := N(¢,02exp(h),02exp(h)), and {h}} is gener-
ated by iterating on the estimated version of (21).

As with the Markov switching model, we investigate the finite sample performance
of the PCMC estimator by comparing its MISE with that of the NPKDE when n =
500. We adopt the estimated parameter values in Koopman and Uspensky (2002),
with x = 0.97, 0, = 0.135, 0?2 = 0.549, and ¢ = 1. For these parameters, we calcu-
lated the MISE of the PCMC estimator to be 1.524 x 10~#, while that of the NPKDE
was 3.048 x 10~%. Thus, the MISE of the NPKDE was roughly 2.3 times larger. Typ-
ical realizations of the estimators and the estimated 95% confidence bands are pre-
sented in figure 4.

5 Robustness

Regarding the PCMC density estimator, one concern is that its advantages stem
from parametric specification of the DGP of {X;}, and this specification may be
inaccurate. In this section we take two models and investigate the performance of
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Figure 4: NPKDE and PCMC in the stochastic volatility in mean model

the PCMC estimator when the DGP is slightly misspecified. The first is a scalar
model of the form

Y; = ﬁXf + gt and Xt+1 = ')’Xi— + 917f + i1 (22)

where B = 1,0 = 0.1 and (&, 7;) is 1ID and standard normal in R?. We vary the
value of ¢ from 0.4 to 0.8 in order to investigating the sensitivity of the estimator
performance to the degree of persistence of the data. The DGP for {X;} is misspeci-
tied as the AR(1) process

Xep1 =YXt + 1141 (23)
Table 3 reports the MISE of the PCMC density estimator calculated in the usual way;,
the misspecified PCMC density estimator (when the true process is (22) but the DGP
of {X;} is misspecified as (23)), the estimator § and the NPKDE (all relative to the
correctly specified PCMC). While the misspecification affects the performance of the
PCMC estimator, in this case the effect is relatively small.
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v PCMC misspecified PCMC § NPKDE

0.4 1.000 1.112 3426  5.868
0.5 1.000 1.280 4943  6.851
0.6 1.000 1.501 5706  7.234
0.7 1.000 1.701 6.706  9.520
0.8 1.000 1.235 5325 8712

Table 3: MISE comparison, scalar factor model

6 Proofs

We introduce some simplifying notation. First, let F(0) represent the function f(-,8) re-
garded as an element of Ly(X). Thus, 6 — F() is a mapping from © into L,(X) satisfying

FO) = [ p(-|x0)p(x,0)dx (6 €0) (24)

Also, regarding the transition density g(-|x, 8) in (8), recall that a Markov process from such
a transition density can always be represented in the form

X0, =H(X!41,0) and X§=xecX (25)

where 7 := {#;}¢>1 is IID with marginal v over shock space D and H is a suitably chosen
function (see Bhattacharya and Majumdar (2007, p. 284)). We let vs, := v X v X - -- be the
joint law for the shocks, defined on the sequence space D*.

We begin with a simple lemma regarding the function

futy) = L) 20

Lemma 6.1. Under assumption 3.1 we have f(y) = [ di(x,y,60)dx forallk = 1,...,K and
yevy.

Proof. Fixkin1,...,Kand y € Y. The lemma amounts to the claim that

d d
| 5571 % 00)p(x 80)dx = 5o [ p(y ] 00)p(x, b0)ax

This statement is valid if there exists an integrable function & on X such that, for all 6 on a
neighborhood N of 6y,

0
di(x,y,0)] = ]aek;o(yrx,em(x,e)\ < h(x) @)
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almost everywhere. Take N = U and h(x) := g(x,y) where U and g are as defined in
assumption 3.1. By the conditions of assumption 3.1, the function & is integrable, and
|ld(x,y,0)||g < h(x) for all & € N. This implies the inequality in (27), and lemma 6.1 is
proved. O

Lemma 6.2. If assumption 3.1 holds, then F is Hadamard differentiable at 6y, with Hadamard deriva-
tive Fy given by
Fi,(0) = [{d(x,-,00),0)dx € Lo(X) (60 € R¥) (28)

Proof. Here (-, -) is the inner product in RX. To verify that Fy, is the Hadamard derivative of
F at 6y, we must show that F defined in (28) is a bounded linear operator from RX to L(X)
such that

HF(GO + tu60,) — F(6o)
tn

forany 0 € ©,t, | Oand 6, — 6 € O (cf, e.g., van der Vaart, 1998, p. 296). Evidently
Féo is linear. To see that Féo is a bounded operator, observe that, by the Cauchy-Schwartz

L 0) H 50 (29)

inequality and assumption 3.1,

[ ), o)

< [ 16d(x,9,60),0)1dx < [6llz [ l14(x,y,60) s < 6]z [ g(x,y)dx

2 1/2
IE4,0)1 < 0]z {/ { [ st} dy}

The finiteness of the integral expression is guaranteed by assumption 3.1. Boundedness of
the operator follows.

We now turn to the verification of (29). Fix t, | 0 and 0,, — 0 € ©. Let
C(x,y,0):=py|x,0)p(x,0) (yeY,xeX, 0ec0)

and
g(x/ y/ 90 + tnen) - g(x/ y/ 90)

Anlx,y) = tn — {d(x,,60),6) (30)

Since

/An(x,y)dx = / {C(X,y,Go +t"(::) — §(x,y,60)] dx — /(d(x,y,@o),f))dx

_ S 800y, 00+ tub)dx — [ E(x,y,60)dx
ty

/ (d(x, y,00),0)dx

25



we have
_ F(60 + tn04) — F(60)

tn

:/{/An(x,y)dx}Zdy

/An(x,-)dx —Féo((?)

and hence )

— Fy, (6)

F(QQ + tngn) — F(Qo)
tn
Thus (29) will be established if we can show that

/ {/An(x,y)dx}zdy —0 (n — o) (31)

As a first step, note that A, — 0 pointwise on X x Y. This first result is almost immediate
from the definition of A, in (30), since, for given x and y, the vector d(x, y, 0y) is the vector of
partial derivatives of the function 6 — (x,y,6). As 0 — p(y|x,0) and 6 — ¢(x,0) are as-
sumed to be continuously differentiable on U, the map 6 — ((x,y,0) is differentiable at 6y,
and the Frechet derivative at 6 is the mapping 6 — (d(x,y,6),0). In RX the Frechet deriva-
tive and the Hadamard derivative coincide, and hence |A,(x,y)| — 0 by the definition of
Hadamard differentiability.

In order to pass the limit through the integrals in (31), we next show that a scalar multi-
ple of the function g defined in assumption 3.1 dominates A, pointwise on X x Y for all
sufficiently large n. To see that this is the case, fix (x,y) € X X Y and N € N such that
0o + tu6, € U for all n > N. Without loss of generality we can choose the neighborhood U
to be convex. With convex U, the mean value theorem in RX implies existence of a vector
8, € U on the line segment between 6, and t,,0,, with

C(x,y,60+ tnbn) — C(x,y,00) = (d(x,y,6;), t,0n)

Dividing both sides by ¢, and using the definition of A, in (30), we obtain

[An(x,y)| = [(d(x,y,0,),0n) — (d(x,y,00),6)]
< [{d(x,y,6,),60)| + [{d(x,y,60),6)]
< [ld(x,y,0)[EN0x £ + [|d(x, y, 00)[[£l[6] £
Applying assumption 3.1, we obtain |A,(x,v)| < g(x,v)(||6.||z + ||6]/). Since 6, is conver-

gent it is also bounded in 1, and hence there exists a constant L with |A,(x,y)| < Lg(x,y)
foralln > N.

Returning to the proof of (31), define

2

i) ={ | |An<x,y>|dx}2 and h(y) = { [ Lglxy)r}
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As a first step to proving (31), we claim that &, — 0 almost everywhere on Y. To see this,
observe that assumption 3.1 gives [ h(y)dy < oo, and hence 7 is finite almost everywhere.
For any y such that h(y) is finite, we have [ Lg(x,y)dx < co. In addition, for this same y, we
have |A,(x,y)| < Lg(x,y) and A,(x,y) — 0 for all x € X. It follows from the dominated
convergence theorem that [ A,(x,y)dx — 0, and therefore h,(y) — 0. This verifies the
claim that #,, — 0 almost everywhere on Y.

The final step is to show that [ h,(y)dy — 0. To see that this is so, observe that, in ad-
dition to h, — 0 almost everywhere, we have 0 < h, < h for all n, and h is integrable
by assumption 3.1. Another application of the dominated convergence theorem now gives
J hu(y)dy — 0. The convergence [ h,(y)dy — 0 is equivalent to (31), completing the proof
of lemma 6.2. O

Lemma 6.3. Under the conditions of theorem 3.1 we have /n{f(-,8,) — f(-,60)} N N(0,C)
where N (0, C) is the centered Gaussian defined in equations (13) and (15).

Proof of lemma 6.3. Let ] be a random variable on RX with ] ~ N(0,X), so that v/7(8, — )
converges in distribution to J. Let F be as defined in (24). The claim is then

Vi{E(8,) — F(80)} % N(0,C) (32)

in L,(Y). Lemma 6.2 showed that F is Hadamard differentiable at 6y, when viewed as a
mapping from © to L,(Y). Applying a functional delta theorem (e.g., van der Vaart, 1998,
theorem 20.8) we obtain /n{F(8,) — F(6y)} N Fg,(J) in Lo(Y), where F; is as defined in
(28). Thus, it remains only to show that Fy (J) ~ N(0,C). Recalling the definition of f; in
(26) and using lemma 6.1, we have

K K
Féo(]) - /<d(x/ '190)/I>dx = Z /dk(x,',GO)dXIk - Zflé ]k
k=1 k=1
Each f; is an element of L,(Y) because

W) < [ Gy, 00)ledx < [ gl y)dx

and the right-hand side is square-integrable by assumption 3.1. It follows that Fj (J) =
Y &1 f{ Jx is an L (Y) valued random variable.

To show that Fy (]) is Gaussian, we need to prove that the L, inner product (Fy (]), h) is
Gaussian in R for each 1 € L,(Y). This follows immediately from the fact that | is multi-
variate Gaussian, since linear combinations of multivariate Gaussian random variables are
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univariate Gaussian by definition, and
K
(Foo (1), 1) = Y (fe ) Ji (33)
k=1

To show that the L»(Y) expectation of Fy (]) is the zero element, we need to show that the
(scalar) expectation of (33) is zero for all i € L,(Y). This is true because EJ; = 0 for all m.

Finally, we need to verify that the covariance operator of Fy () is equal to C. In other words,
we must show that

E(g, Fy, (1)) (Fg, (), 1) = (g, Ch) (34)
Regarding the right hand side of (34), by (13) and (15),

(g,Ch) = / / (v, y)g(w)h(y')dydy = / / Vof(y,00) " ZVof(y',600)g(y)h(y)dydy'

Using our notation for f/ above we can reduce this to

(g,Ch) = ZZ% fi.8) (fih)  (hg € La(Y)) (35)
i=1j=
On the other hand, regarding the left hand side of (34), we have

K K
E ) {fi.8)] ] l§<ﬂzh>]j]

1

E(Fg, (1), 8) (Fg, (), 1) =

K K
Z Z fl / f] 7 ]l ]]
i=1j=1
Passing the expectation through the sum yields (35). In other words, (34) is valid. O

Lemma 6.4. If the conditions of theorem 3.1 hold, then

|72 ey (1 80) = £, 82| = 0p (1)

Proof. The claim in lemma 6.4 is that the term is bounded in probability over n. A sulffi-
cient condition for boundedness in probability is that the square of this term is bounded in
expectation, which is to say that

nelN

(n) ) 2
sup I {T(”)”Z Y ply| X%, 6,) —f(-,én)} dy < oo
t=1
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or, simplifying notation further,

nelN

() : ?
sup E {T(n)l/2 Y Pyl Xo",én)} dy < co (36)
=1

where
pylx,0):=p(y|x0)— f(y0)

As a first step to proving (36), let 0 € © be given. We claim that

2
IMeN st E/{ 2y by | X2,0) }dng VmeN (37)
t=1

Applying Fubini’s theorem and mutiplying and dividing by the square of the function p in
assumption 3.2, we have

2
E/{m1/22ﬁ<yle,9>} dy:/E{ ’”zﬂpyw’ } p(y)*dy
t=1

By Fatou’s lemma we have

m = 0 2
limsup [ B {m”ZZW} o(y)*dy

m—o0 =1 p

2
m 09
limsupE{ m~1/2 Z y\X, }P(]/)zd]/

m—00

From assumption 3.2 we have {p(y | x,0)/p(y)}*> < V(x), and hence, applying the asymp-
totic normality result in theorem 17.0.1 of Meyn and Tweedie (2009),

2

m 0
limsup E {m_l/z ) W} =2
m—00
where 72 is a finite quantity. In consequence,

" 2
hmsupIE/{ 2y By | X},0) } dyS’YZ/P(y)zdy
m—00 =1

The right hand side is finite, since p € Ly(Y) by assumption 3.2. The claim in (37) now
follows.
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To go from (37) to (36), fix n € N and condition on 0, to get

() )
E/ {T(n)‘”2 )3 ﬁ(lee",(’n)} dy
t=1

Applying (37) now gives the desired result. ]

T(n) 7
/{T(n)”2 ﬁ(y\XG",f)n)} dy

=1

~

Proof of theorem 3.1. Adding and subtracting f(-,8,), we can write

Vil fen () = (000} = Vi { fry (0 6) = (-, 00)} + v/ {f (-, 60) — f(-,60)}

If U, U, and V, are L, random elements with U, % U in L, and Uy — Vil = op(1) in
R, then V, i> U (cf., e.g., Dudley, 2002, lemma 11.9.4). In view this fact and the result in
lemma 6.3, it suffices to show that

\/ﬁ fr(n)('/én) —f(-,Gn)

To see that this holds, observe that

= 0p(1)

Vn

fr(n)('/ én) _f('réﬂ)

1/2
:[ n ] HT(”)l/sz(n)('lén)_f("én)

T(n)

By lemma 6.4 the term on the far right is Op(1). By assumption we have t(n)/n — oo and
hence n/7(n) — 0. The claim follows. O
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