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1 Introduction

Discounted dynamic programming is a standard paradigm for analyzing eco-

nomic outcomes when expectations are rational and information is perfect.

(For dynamics in imperfect information economies see, for example, Chiarella

and Szidarovzky (2001) and references.) An established theory exists, along

with practical methods of numerical computation. However, optimal behavior

when the future is not discounted has also been studied, perhaps most fa-

mously in the classic paper of Ramsey (1928). 1 Another well-known example

is the no-discounting paper by Brock and Mirman (1973), albeit much less so

than its famous discounting cousin (1972).

A number of no-discounting criteria exist for optimality. In the mathemat-

ical literature on stochastic dynamic programming, however, no-discounting

research is now mainly focused on long-run average reward (AR) optimality,

which maximizes the average of the undiscounted sequence of period rewards. 2

For example, AR-optimalization is routinely applied to on-line computer task

scheduling and network routing. 3

It is of great practical interest to identify relationships between discounted

reward (DR) optimal policies and AR-optimal policies. For example, if π% is

a DR-optimal policy for discount factor % ∈ (0, 1), and if π% converges to a

1 According to Ramsey, “discount[ing] later enjoyments in comparison with earlier

ones [is] ethically indefensible, and arises merely from the weakness of the imagina-

tion” (1928, p. 543).
2 If (rt)t≥0 is a bounded sequence of rewards, then the average is usually defined to

be lim inft→∞(1/t)
∑t−1

s=0 rs. For a recent treatmentment of AR optimality see the

excellent paper of Jaśkiewicz and Nowak (2006).
3 In economic growth another popular criterion for optimality is “overtaking,”

which requires that expected period reward eventually dominates that of other

policies. This is closely related to so-called turnpike theory. For a survey of the

literature see McKenzie (1998).
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limit π1 when % ↑ 1, it seems likely that π1 will be—at least in some sense—

long-run optimal. One would like to know under what conditions, if any, π1 is

AR-optimal.

An important contribution to our understanding of the relationship between

DR- and AR-optimality is the study of Dutta (1991). He showed that when the

pointwise limit π1 exists it is AR-optimal, provided that the optimal program

satisfies a certain “value boundedness” condition, which is stated in terms of

the value function. We introduce a new method for verifying this condition,

based on coupling techniques.

Coupling involves making statements about two probability distributions P

and P ′ by setting up random elements X and X ′ on a common probability

space, where X (resp., X ′) has marginal distribution P (resp., P ′). In our case

the random elements are sequences generated by the same optimal program,

but having different initial conditions. Their distributions are used to calculate

value functions. 4

Two applications are given. The first is for economies satisfying the “mono-

tone mixing” conditions of Stokey, Lucas and Prescott (1989) and Hopenhayn

and Prescott (1992). The second verifies the conjecture that π1 defined above

is AR-optimal for a relatively general neoclassical stochastic optimal growth

model.

4 It has been said that coupling proofs are like jokes: Detailed explanation ruins

them. Unfortunately our paper is no exception. In applying coupling techniques, a

number of our ideas draw on the study of ergodicity in Rosenthal (2003).

3



2 Formulation of the Problem

Let A and S be well-behaved topological spaces. 5 Let Γ be a continuous,

nonempty, compact valued correspondence from S to A, representing feasible

choices for each state x ∈ S, and let

K := {(x, a) ∈ S × A : a ∈ Γ(x)}.

Let r : K → R be a bounded reward function which is jointly measurable

on K, with a 7→ r(x, a) continuous on Γ(x) for each fixed x ∈ S. 6 Finally,

let (ξt)
∞
t=0 be an independent and identically distributed collection of random

variables on probability space (Ω, F , P), all taking values in (Z,Z ) and having

distribution ν, and let h : K ×Z → S be a jointly measurable function, which

updates the state according to x′ = h(x, a, ξ). 7 Suppose that a 7→ h(x, a, z)

is continuous on Γ(x) for each x ∈ S and z ∈ Z.

Define Π to be the set of all feasible policies, which are measurable functions

π : S → A satisfying π(x) ∈ Γ(x) for all x ∈ S. Each π ∈ Π determines a

Markov process (xt)
∞
t=0 for the state via

xt+1 = h(xt, π(xt), ξt), x0 given. (1)

For each % ∈ (0, 1) and each π ∈ Π let

v%(x0, π) := E
[ ∞∑

t=0

%tr(xt, π(xt))

]
,

5 It is sufficient that they be separable and completely metrizable. All Gδ subsets

of Rn have this property.
6 In this paper, measurability in reference to functions on topological spaces always

refers to Borel measurability.
7 Note there is little loss of generality in assuming that (ξt)∞t=0 is IID. If, for example,

(ξt)∞t=0 is first order Markov, one can always rewrite the transitions in the form

x′ = h(x, a, ζ) where (ζt)∞t=0 is IID, by a suitable transformation of the function h

and the state space S.
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where (xt)
∞
t=0 is given by (1). The optimal investment problem is then to solve

max
π∈Π

v%(x0, π). (2)

A policy is called DR-%-optimal if it solves (2) for all x0 ∈ S. It is well-known

that under the current assumptions at least one DR-%-optimal policy exists.

The value function v% is defined at x0 by supπ∈Π v%(x0, π).

The other optimality criterion we consider is AR-optimality. A policy is called

AR-optimal if it solves

max
π∈Π

lim inf
t→∞

E
[
1

t

t−1∑
s=0

r(xs, π(xs))

]
, (3)

where again π determines the process (xt)
∞
t=0 via (1).

One of the most useful conditions for linking DR- and AR-optimality is value

boundedness:

Definition 2.1 The dynamic programming problem (Γ, r, h, ν) is called value

bounded if there exists an x′ ∈ S, a function m1 : S → R and a constant

m2 < ∞ such that

m1(x) ≤ v%(x)− v%(x
′) ≤ m2, ∀x ∈ S, % ∈ (0, 1).

For a standard class of optimal programs, Dutta (1991) showed that any point-

wise limit of DR-% optimal policies is AR-optimal whenever value boundedness

holds. 8

3 Results

We now develop an inequality which has obvious application in determining

when economies are value bounded. The inequality is given in Theorem 3.1

below.

8 See also the paper of Sennott (1986).
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To begin, let (ξ′t)
∞
t=0 be another sequence of IID random variables on the ini-

tial probability space (Ω, F , P), again taking values in (Z,Z ) and having

distribution ν. Assume that (ξ′t)
∞
t=0 and the original sequence (ξt)

∞
t=0 are in-

dependent. Also, for fixed % ∈ (0, 1), let π% be any DR-%-optimal policy, and

let (xt)
∞
t=0 and (x′t)

∞
t=0 be two sequences satisfying xt+1 = h(xt, π%(xt), ξt) and

x′t+1 = h(x′t, π%(x
′
t), ξ

′
t), and starting from x0 and x′0 respectively. Define the

random variable

τ%(x0, x
′
0) := inf{t ≥ 0 : v%(xt) ≤ v%(x

′
t)}, (4)

with the usual convention that inf ∅ = ∞. Thus, τ% is the first time that v%(xt)

falls below v%(x
′
t). The relevance of this “swapping time” follows from

Theorem 3.1 Let x0, x
′
0 ∈ S, and let % ∈ (0, 1). If r̄ := supx,a r(x, a), then

v%(x0)− v%(x
′
0) ≤ 2r̄ E τ%(x0, x

′
0).

Remark 3.1 If v%(x0) ≤ v%(x
′
0) then τ%(x0, x

′
0) ≡ 0 and the bound holds

trivially. The more interesting case is where v%(x0) > v%(x
′
0). In this case the

intuition is as follows: The function v% ranks points in the state space according

to their value. If an economy starting at the higher value state x0 is expected to

move quickly into an area of the state space with lower value than an economy

which started at x′0 (i.e., if v%(xt) ≤ v%(x
′
t) is expected to occur for small t),

then the relative advantage of starting at the higher value state x0 cannot be

too large.

Remark 3.2 In general, the easiest way to prove that E τ%(x0, x
′
0) is finite is

to show that P{τ%(x0, x
′
0) > t} goes to zero quickly with t, in which case the

tail of the distribution is light and the mean is small.

PROOF. [Proof of Theorem 3.1] Since % is fixed in this proof we omit to use
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it as a subscript. To begin, note that

v(x0) = E
τ−1∑
t=0

%tr(xt, π(xt)) + E
∞∑

t=τ

%tr(xt, π(xt))

= E
τ−1∑
t=0

%tr(xt, π(xt)) + E %τv(xτ ).

The intuitively plausible second step is given a formal justification in the

appendix. A similar argument for v(x′0) gives

v(x′0) = E
τ−1∑
t=0

%tr(x′t, π(x′t)) + E %τv(x′τ ).

By the definition of τ we have E %τv(xτ ) ≤ E %τv(x′τ ), so subtracting one

equality from the other gives

v(x0)− v(x′0) ≤ E
τ−1∑
t=0

%tr(xt, π(xt))− E
τ−1∑
t=0

%tr(x′t, π(x′t))

≤ E
τ−1∑
t=0

%t|r(xt, π(xt))− r(x′t, π(x′t))| ≤ E
τ−1∑
t=0

2r̄.

The last term is just 2r̄Eτ , so the proof is done.

Evidently Theorem 3.1 has applications to the problem of value boundedness.

In particular, the following corollary holds:

Corollary 3.1 If there exists an m : S → R s.t. Eτ%(x, y) ≤ m(y), ∀x ∈ S,

∀% ∈ (0, 1), then the dynamic program defined by (Γ, r, h, ν) is valued bounded.

PROOF. Fix x′ ∈ S. By Theorem 3.1 and the hypothesis we have

v%(x)− v%(x
′) ≤ 2r̄Eτ%(x, x′) ≤ m2, ∀x ∈ S, % ∈ (0, 1),

where m2 := 2r̄m(x′). By the same argument we have

v%(x
′)− v%(x) ≤ 2r̄Eτ%(x

′, x) ≤ −m1(x), ∀x ∈ S, % ∈ (0, 1),

where m1(x) := −2r̄m(x).

∴ m1(x) ≤ v%(x)− v%(x
′) ≤ m2, ∀x ∈ S, % ∈ (0, 1).
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Remark 3.3 We make one further remark on the general theory. Clearly

|v%(x)−v%(x
′)| ≤ 2r̄/(1−%) holds for any x and x′, where as before r̄ := sup r.

Therefore when establishing value boundedness one can always restrict atten-

tion to % ∈ [%̂, 1) for some fixed %̂ ∈ (0, 1).

4 Application: Monotone Mixing

Our first application concerns monotone dynamic programs which satisfying a

well-known monotone mixing condition. The mixing condition was popularized

by Stokey, Lucas and Prescott (1989, Assumption 12.1) and Hopenhayn and

Prescott (1992, Theorem 2), who used it to study ergodicity.

In addition to the assumptions in Section 2, we suppose that

Assumption 4.1 The state space S is an order interval [a, b] of Rn with its

usual pointwise ordering. The map x 7→ h(x, π%(x), z) is monotone increasing

on S for all z ∈ Z and % ∈ (0, 1). The map x 7→ r(x, π%(x)) is also increasing

for each % ∈ (0, 1).

Here for each % ∈ (0, 1), π% is a corresponding optimal policy. Although

Assumption 4.1 concerns optimal policies—which are not primitives of the

model—conditions for monotonicity of optimal policies have been extensively

investigated, so we do not persue the matter here. 9

One can easily verify from Assumption 4.1 that v% is monotone increasing on

S. We use this fact in the proofs without further comment.

The next assumption is the monotone mixing condition:

Assumption 4.2 There exists an ε > 0, a c ∈ S and an N ∈ N such that for

all % ∈ (0, 1) we have

P{xt+N ≥ c |xt = a} ≥ ε and P{xt+N ≤ c |xt = b} ≥ ε.

9 See, for example, Hopenhayn and Prescott (1992), or Mirman, Morand and Reffett

(2005) and references.
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Combined with Assumption 4.1, Assumption 4.2 says that for any x ∈ S,

both P{xt+N ≥ c |xt = x} and P{xt+N ≤ c |xt = x} exceed ε, and ε does not

depend on %. 10

Remark 4.1 In view of Remark 3.3, Assumption 4.2 need only hold for % in

a neighborhood of 1 .

Theorem 4.1 If Assumptions 4.1 and 4.2 both hold, then the dynamic pro-

gram (Γ, r, h, ν) is value bounded.

The intuition is straightforward. Pick initial conditions x and x′. By Corol-

lary 3.1, it is sufficient to show that Eτ%(x, x′) is bounded above by a finite

constant which is independent of x and %. By Assumption 4.1 the value func-

tion is increasing for all %. Thus, if xt ≤ x′t then τ%(x, x′) ≤ t. Every N steps,

(xt)
∞
t=0 has an at least ε probability of entering [a, c], as does (x′t)

∞
t=0 for the

set [c, b]. By independence, both events occur simultaneously with probabilty

ε2. If they do, then xt ≤ x′t. Thus, every N steps, there is an ε2 chance that

v%(xt) ≤ v%(x
′
t), which suggests the bound

P{τ%(x, x′) > kN} ≤ (1− ε2)k, ∀k ≥ 0. (5)

This rate of decrease is sufficient for Eτ% to be finite. In particular, since

P{τ%(x, x′) > t} is decreasing in t we get

Eτ% =
∞∑

t=1

tP{τ% = t} ≤
∞∑

t=1

tP{τ% ≥ t}

=
∞∑

t=1

tP{τ% > t− 1}

≤ N
∞∑

k=1

kNP{τ% > (k − 1)N},

which is dominated by N2∑
k k(1− ε2)(k−1) < ∞ as a result of (5).

10 Conditional expectations of the form P{xt+N ∈ B |xt = x} are interpreted as the

cannonical conditional expectation associated with x 7→ h(x, π%(x), z) and ν, and as

such are uniquely defined. See the discussion of Markov kernels later in this section.
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It remains to give a formal justification for (5). Some new notation will be

helpful. Recall that a Markov kernel on topological space T is a map N : T ×

B(T ) → [0, 1], where B(T ) is the Borel sets on T , and N has the following

properties: x 7→ N(x, B) is Borel measurable for all B ∈ B(T ), and B 7→

N(x, B) is a Borel probability measure for all x ∈ T . One defines iterates of

N by setting Nt(x, B) :=
∫
N(x, dy)Nt−1(y, B). Intuitively, Nt(x, B) is the

probability of the state moving from x now into set B t periods hence.

A sequence of T -valued random variables (yt)
∞
t=0 on (Ω, F , P) adapted to fil-

tration (F )∞t=0 is called a Markov process with Markov kernel N if P{yt+1 ∈

B |Ft} = N(yt, B), for all B ∈ B(T ) and all t ≥ 0. In this case one can

establish that P{yt+j ∈ B |Ft} = Nj(yt, B) for any j ∈ N, and in fact the

same is true if we replace t with a stopping time.

For both our processes (xt)
∞
t=0 and (x′t)

∞
t=0 the relevent kernels are given by

M%(x, B) = P{h(x, π%(x), ξt) ∈ B}. The kernels are the same because ξt and

ξ′t both have identical distribution ν. The joint process (xt, x
′
t)
∞
t=0 is Markov

on S × S, and in what follows (Ft)
∞
t=0 is always the natural filtration for this

process. If M̂% is the Markov kernel for (xt, x
′
t)
∞
t=0, then independence of (xt)

∞
t=0

and (x′t)
∞
t=0 implies that

M̂%(x, x′, B ×B′) = M%(x, B)×M%(x
′, B′).

Returning to the proof of Theorem 4.1, note that if Qi := {x′iN < xiN}, then

{τ%(x, x′) > k ·N} ⊂ ∩k
i=1Qi. It is sufficient, therefore, to establish that

P ∩j+1
i=1 Qi ≤ (1− ε2)P ∩j

i=1 Qi, ∀j ∈ N.

So pick any j ∈ N. We have

P ∩j+1
i=1 Qi = P(P(∩j+1

i=1Qi |FjN)) = P(∩j
i=1QiP(Qj+1 |FjN)).

We need only show that P(Qj+1 |FjN) ≤ (1 − ε2), or, equivalently, that
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P(Qc
j+1 |FjN) ≥ ε2. But

Qc
j+1 ⊃ {x(j+1)N ≤ c} ∩ {x′(j+1)N ≥ c}

and by the Markov property we have

P({x(j+1)N ≤ c} ∩ {x′(j+1)N ≥ c} |FjN) = M̂N
% (xjN , x′jN , [a, c]× [c, b]),

which is

MN
% (xjN , [a, c])×MN

% (x′jN , [c, b]) ≥ MN
% (b, [a, c])×MN

% (a, [c, b]),

which in turn is greater than or equal to ε2 by Assumption 4.2.

5 Application: Optimal Growth

Recall the neoclassical infinite horizon economy of Brock and Mirman (1972).

At time t income yt is observed, a savings decision kt is made, the current

shock ξt is then revealed to the agent, and production takes place, realizing at

the start of t + 1 random output yt+1 = f(kt, ξt), which is net of depreciation.

The process then repeats.

Preferences are specified by period utility function u and discount factor % ∈

(0, 1). Define Π to be the set of all feasible savings policies, which are Borel

functions π from the set of positive reals to itself satisfying π(y) ≤ y for all y.

Each π ∈ Π determines a Markov process for income (yt)
∞
t=0 via (1), which in

this case is

yt+1 = f(π(yt), ξt) (6)

where y0 is given. The optimal investment problem is to solve (2), which is

now

max
π∈Π

E
∞∑

t=0

%tu(yt − π(yt)),

with (yt)
∞
t=0 given by (6).
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Assumption 5.1 The utility function u is strictly increasing, differentiable,

bounded and strictly concave, with limc→0 u′(c) = ∞.

Assumption 5.2 The sequence (ξt)
∞
t=0 is IID on probability space (Ω, F , P),

with cumulative distribution function G on R. We suppose that there exists a

ξ ∈ R with 0 < G(x) < 1 for all x > ξ.

Assumption 5.3 The production function f : [0,∞) × R → [0,∞) satisfies

the following assumptions. The map k 7→ f(k, z) is bounded, strictly increas-

ing, strictly concave and continuously differentiable on (0,∞), with f(0, z) = 0

and limk→0 f ′(k, z) = ∞, for each z ∈ R. The map z 7→ f(k, z) is measurable

and limz→∞ f(k, z) = ∞ for all k ∈ (0,∞).

Most of the assumptions in 5.1–5.3 are standard. Requiring that the limit

limz→∞ f(k, z) = ∞ for all k ∈ (0,∞) incorporates the most common case

where the shock is multiplicative. Under this assumption the state space must

be all of the positive reals.

In economics it is common to take the utility function as unbounded above

(although rigorous justification of the dynamic programming arguments is not

always provided). Note that if u has this property, then value boundedness

never holds. The reason is that v%(y) ≥ u(y), so for fixed y′ the difference

v%(y)− v%(y
′) ≥ u(y)− v%(y

′)

cannot be bounded above by any constant.

We have also required that k 7→ f(k, z) is bounded. Whether or not this

assumption can be relaxed is a more subtle issue. We leave it as an important

open question.

We also need the following technical condition to manipulate the Euler equa-

tion. It holds in many situations we wish to consider (for example, when ξt is

multiplicative and lognormally distributed).
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Assumption 5.4 Together, f and G satisfy
∫

f ′(k, z)−1G(dz) < ∞ for all

k ∈ (0,∞).

It is well-known that under our assumptions there is a unique DR-%-optimal

policy π% ∈ Π for each % ∈ (0, 1). Moreover, the DR-%-optimal policy π% is

pointwise increasing in % (Danthine and Donaldson, 1981, Theorem 5.1). In

other words, agents who discount the future more slowly invest more in all

states. Given this monotonicity, we can always define π1 := lim%↑1 π%. It is

natural to conjecture that π1 is AR-optimal. 11 In this connection, Dutta’s

result (1991, Theorem 3) shows that for this to be the case it is sufficient that

the program satisfies value boundedness.

The main result of this section is

Proposition 5.1 Under Assumptions 5.1–5.4, the stochastic neoclassical growth

model is value bounded.

For the proof we wish to apply Corollary 3.1. Fix %̂ ∈ (0, 1), and let % ∈ [%̂, 1).

Let S be the space (0,∞), and let x and x′ be any two initial conditions.

Let π% be the unique DR-%-optimal policy associated with %. Consider two

economies with identical structure (u, f, G), both of which discount future

utility according to % and follow policy π%. The first has initial condition y0 =

x, and is perturbed by the sequence of shocks (ξt)
∞
t=0, with (yt)

∞
t=0 defined by

(6). The second has initial condition y′0 = x′, and is perturbed by independent

sequence (ξ′t)
∞
t=0, with (y′t)

∞
t=0 defined by (6).

The value function v% is known to be increasing (c.f., e.g., Mirman and Zilcha,

1975). As a result, if x ≤ x′ then τ%(x, x′) ≡ 0. Suppose instead that x′ < x.

11 The interpretation of AR-optimality for the optimal growth model is clearest

when (yt)∞t=0 is ergodic. In that case the sequence E u(ys−π ◦ys) and then the aver-

age
[

1
t

∑t−1
s=0 E u(ys − π ◦ ys)

]
converge to the integral

∫
u(y − π(y))F ∗

π (dy), where

F ∗
π is the ergodic distribution corresponding to π. Then AR-optimality becomes

equivalent to maximizing expected utility of consumption at the stochastic steady

state—a generalization of the Phelps–Solow golden rule.
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Although for our model there is a positive probability that y′t exceeds yt in

every period, that probability will be arbitrarily small if y′t−1 is much smaller

than yt−1. However, we will show that (y′t)
∞
t=0 must return to a set (c,∞)

infinitely often, where c > 0, and once in that set there is an ε > 0 prob-

ability that y′t exceeds yt in the following period. As a result, we show that

P{τ%(x, x′) > t} → 0 at a geometric rate depending only on x′, and this is

sufficient for Corollary 3.1. The details follow.

The first step concerns construction of the set (c,∞) with the properties dis-

cussed above. We do this using a “Lyapunov” technique.

Lemma 5.1 There are positive constants λ, β and a decreasing, real valued

function w on (0,∞), all independent of %, x and x′, such that (i) w ≥ 1, (ii)

w(y) →∞ as y → 0, (iii) λ < 1, and

E[w ◦ y′t+1 |Ft] ≤ λ · w ◦ y′t + β P-a.s. (7)

Before beginning the proof, note that from (6) it is intuitively clear (and follows

formally from the Markov property) that if w is any bounded or nonnegative

real function then our time t prediction of the value w ◦ yt+1 satisfies

E[w ◦ yt+1 |Ft] =
∫

w[f(π%(yt), z)]G(dz) P-a.s. (8)

A similar relation holds for y′t and y′t+1.

Also, we have an Euler equation to work with:

Theorem 5.1 (Mirman and Zilcha (1975)) For each % ∈ (0, 1), the value

function v% is concave and differentiable, and the optimal policy π% is interior.

Let y ∈ S and % ∈ (0, 1). For c%(y) := y − π%(y) we have

u′(c%(y)) = %
∫

u′(c%(f(π%(y), z)))f ′(π(y), z)G(dz). (9)

Both π% and c% are increasing functions of y.
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PROOF. [Proof of Lemma 5.1] We use an argument which draws on Nishimura

and Stachurski (2005, Proposition 4.2). Our first candidate for w is the map

w(y) =
√

u′ ◦ c%̂(y). By the Cauchy-Schwartz inequality we have

∫ √
u′ ◦ c%̂(f(π%̂(y), z))f ′(π%̂(y), z)

√
1

f ′(π%̂(y), z)
G(dz)

≤
√∫

u′ ◦ c%̂(f(π%̂(y), z))f ′(π%̂(y), z)G(dz)×
∫ 1

f ′(π%̂(y), z)
G(dz).

Using the definition of w and the Euler equation gives

∫
w(f(π%̂(y), z))G(dz) ≤ w(y)

√∫ 1

%̂f ′(π%̂(y), z)
G(dz).

Using our assumptions and the Dominated Convergence Theorem, one can

show that given λ ∈ (0, 1), there exists a δ > 0 such that

y < δ =⇒
√∫ 1

%̂f ′(π%̂(y), z)
G(dz) ≤ λ.

Therefore,

y < δ =⇒
∫

w(f(π%̂(y), z))G(dz) ≤ λw(y).

Since % ≥ %̂ implies π%(y) ≥ π%̂(y) for all y, we can in fact say that

y < δ =⇒
∫

w(f(π%(y), z))G(dz) ≤ λw(y), ∀% ≥ %̂.

In addition,

y ≥ δ =⇒
∫

w(f(π%(y), z))G(dz) ≤
∫

w(f(π%̂(y), z))G(dz)

≤
∫

w(f(π%̂(δ), z))G(dz) =: β < ∞.

Putting it together we get

∫
w(f(π%(y), z))G(dz) ≤ λw(y) + β, ∀y ∈ S, ∀% ≥ %̂. (10)

This in turn implies that ∀% ≥ %̂ we have

∫
w(f(π%(y

′
t), z))G(dz) ≤ λw(y′t) + β. (11)
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Using the relation (8) we finish with

E[ w ◦ y′t+1 |Ft] ≤ λw ◦ y′t + β P-a.s. (12)

as was to be shown. Note that w, β and λ are all independent of %.

The only claim of Lemma 5.1 which is still in doubt is that w ≥ 1. For

w(y) :=
√

u′ ◦ c%̂ this is not necessarily true. However, we can replace w with

ŵ := w + 1 if necessary, because when the bound (7) holds for w, λ and β

then it also holds for ŵ, λ̂ := λ and β̂ := β + 1− λ. To see this, observe that

E[ ŵ ◦ y′t+1 |Ft] = E[ w ◦ y′t+1 |Ft] + 1

≤ λw ◦ y′t + β + 1

= λ(w ◦ y′t + 1) + β + 1− λ =: λ̂ ŵ ◦ y′t + β̂.

All claims in the Lemma have now been verified.

The following corollary is an easy consequence of Lemma 5.1. From it we can

infer that (y′t)
∞
t=0 must return relatively quickly to (c,∞).

Corollary 5.1 There is a constant c > 0 and an α ∈ (0, 1), both independent

of %, x and x′, such that

E[w ◦ y′t+1 |Ft] · 1{y′t ≤ c} ≤ α · w ◦ y′t · 1{y′t ≤ c}. (13)

PROOF. By (ii) there is a c > 0 such that w(c) > β(1 − λ)−1. Since w is

decreasing, w(x) ≥ w(c) for all x ∈ (0, c]. Define

α := λ +
β

w(c)
,

so that λ < α < 1. By Lemma 5.1, then,

E[w ◦ y′t+1 |Ft] · 1{y′t ≤ c} ≤ (λ · w ◦ y′t + β) · 1{y′t ≤ c}.
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∴
E[w ◦ y′t+1 |Ft] · 1{y′t ≤ c}

w ◦ y′t
≤
(
λ +

β

w ◦ y′t

)
1{y′t ≤ c}

≤ α1{y′t ≤ c}.

Let Nt :=
∑t

i=0 1{y′i > c}, so that Nt is the number of times y′i > c in the

period 0, . . . , t. Fix j ≤ t. Omitting the subscript %, we have

P{τ > t} = P{τ > t} ∩ {Nt > j}+ P{τ > t} ∩ {Nt ≤ j}. (14)

The two terms on the right hand side need to be bounded.

It is convenient to begin with the second term in (14). For this purpose, let

B := α−1
∫

w[f(π%̂(c), z)]G(dz), which can be shown to be finite using (7).

Next, let Mt := α−tB−Nt−1 w ◦ y′t, where N−1 := 0, so M0 = w ◦ y′0 ≡ w(x′).

Lemma 5.2 The sequence (Mt)
∞
t=0 is a supermartingale with respect to the

filtration (Ft)
∞
t=0.

PROOF. Clearly Mt is Ft-measurable. It will be integrable provided that

we can verify the key supermartingale property E[Mt+1 |Ft] ≤ Mt. To this

end, let F := 1{y′t > c} and F c := 1− F = 1{y′t ≤ c}, so that

E[Mt+1 |Ft] = E[Mt+1 |Ft] · F + E[Mt+1 |Ft] · F c.

Consider the first term. On F we have Nt = Nt−1 + 1, so

E[Mt+1 |Ft] · F = α−(t+1)B−Nt−1B−1E[w ◦ y′t+1 |Ft] · F

= α−(t+1)B−Nt−1B−1
∫

w(f(π% ◦ y′t, z))G(dz) · F

≤ α−(t+1)B−Nt−1B−1
∫

w(f(π%̂(c), z))G(dz) · F

≤ α−tB−Nt−1F.

Using this bound and w ≥ 1 gives E[Mt+1 |Ft] · F ≤ Mt · F . Also, on the set
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F c we have Nt = Nt−1, and Corollary 5.1 applies. Hence,

E[Mt+1 |Ft] · F c = α−tB−Nt−1α−1E[w ◦ y′t+1 |Ft] · F c

≤ α−tB−Nt−1w ◦ y′t · F c.

∴ E[Mt+1 |Ft] · F c ≤ Mt · F c.

∴ E[Mt+1 |Ft] ≤ Mt.

In view of the supermartingale property we have EMt ≤ E M0 = w(x′), whence

P{τ > t} ∩ {Nt ≤ j} ≤ P{Nt−1 ≤ j}

= P{B−Nt−1 ≥ B−j} (∵ B ≥ 1)

≤ Bj E B−Nt−1 (∵ Chebychev’s ineq.)

≤ αtBj E Mt (∵ w ≥ 1)

≤ αtBj w(x′).

Now we return to the first term in (14), which has the following simple bound.

Lemma 5.3 There is an ε > 0 independent of %, x and x′ such that

P{τ > t} ∩ {Nt > j} ≤ (1− ε)j.

The intuition is that whenever y′t > c the income ranking reverses with inde-

pendent probability at least ε. Before starting on the proof, let σj be the time

of the j-th visit of (y′t)
∞
t=0 to (c,∞). We can define these random variables

recursively by σ1 := inf{t ≥ 0 : y′t > c}, and

σj+1 := inf{t ≥ σj + 1 : y′t > c}.

All of these stopping times are finite P-a.s., because {σj = ∞} ⊂ ∩∞t=0{Nt <

j}, and P{Nt < j} ≤ αtBj+1w(x′), as was previously shown.

PROOF. [Proof of Lemma 5.3] Let Qi := {y′σi+1 < yσi+1}. In other words,

Qi is the event that no swap occured in the period after the i-th visit of (y′t)
∞
t=0
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to (c,∞). For Qi so defined, we have

P{τ > t} ∩ {Nt > j} ≤ P ∩j
i=1 Qi. (15)

To see this, observe that when Nt > j we have σj < t. If τ > t is also true, we

know that neither this visit to (c,∞) nor any of the previous ones resulted a

reversal of incomes. In other words, the statement ∩j
i=1Qi is true.

It therefore suffices to bound P ∩j
i=1 Qi. To this end, let

W := {(z, z′) ∈ R2 : f(π%̂(c), z
′) ≥ lim

x→∞
f(x, z)}.

It is not difficult to see that Qi ⊂ {(ξσi
, ξ′σi

) /∈ W}, because if (ξσi
, ξ′σi

) ∈ W ,

then y′σi+1 = f(π%(y
′
σi

), ξ′σi
) ≥ f(π%̂(y

′
σi

), ξ′σi
) ≥ f(π%̂(c), ξ

′
σi

) ≥ limx→∞ f(x, ξt) ≥

f(π%(yσi
), ξσi

) = yσi+1. It is also clear that ε := P{(ξt, ξ
′
t) ∈ W} is a strictly

positive number independent of %. 12

Now suppose we can show for this ε that P(∩k+1
i=1 Qi) ≤ (1− ε)P(∩k

i=1Qi) holds

for any k. In view of (15) this will complete the proof, as iterating backwards

gives P ∩j
i=1 Qi ≤ (1− ε)j.

So pick any k ∈ N. We have

P ∩k+1
i=1 Qi = P(P(∩k+1

i=1 Qi |Fσk+1)) = P(∩k
i=1QiP(Qk+1 |Fσk+1)).

We need only show that P(Qk+1 |Fσk+1) ≤ (1 − ε), or, equivalently, that

P(Qc
k+1 |Fσk+1) ≥ ε. But Qc

k+1 ⊃ {(ξσk+1
, ξ′σk+1

) ∈ W}, which is independent

of Fσk+1 and has probability ε. The proof is done.

Let’s now complete the proof of Proposition 5.1. Choose n ∈ N such that

12 To verify strict positivity, choose N ∈ N s.t. ν{z ∈ R : b(z) ≤ N} > 0, where

b(z) := limx→∞ f(x, z). Since (ξt, ξ
′
t) ∈ W is implied by f(π%̂(c), ξ′t) ≥ N and

b(ξt) ≤ N , and since these last two events are independent and have strictly positive

probability, it follows that ε > 0.
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δ := αnB < 1, and set j = t/n, so that αtBj = δt/n.

Eτ%(x, x′) ≤
∞∑

t=0

tP{τ%(x, x′) ≥ t}

=
∞∑

t=0

(t + 1)P{τ%(x, x′) > t}

≤
∞∑

t=1

(t + 1)[(1− ε)t/n + δt/nw(x′)].

∴ Eτ%(x, x′) ≤ S + T · w(x′),

where constants S and T are independent of % and x. The conditions of Corol-

lary 3.1 are therefore met.

Appendix

Here we justify E∑∞
t=τ %tr(xt, π(xt)) = E %τv(xτ ) from the proof of Theo-

rem 3.1. We assume the reader is familiar with stopping times, the strong

Markov property and composition of Markov kernels. We set Mtg(x) to be∫
g(y)Mt(x, dy). For all of the underlying theory and other notation see, for

example, Durrett (1996).

We can and do assume that τ%(x0, x
′
0) is finite P-almost surely (otherwise the

bound in Theorem 3.1 is trivial). We then have

E
∞∑

t=τ

%tr(xt, π(xt)) = E
[
E
[ ∞∑

t=τ

%tr(xt, π(xt)) |Fτ

]]

= E
[ ∞∑

t=τ

%tE[r(xt, π(xt)) |Fτ ]

]

= E
[
%τ

∞∑
t=0

%tMtr(xτ , π(xτ ))

]
= E%τv(xτ ).
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