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a b s t r a c t

Many recent dynamic programming specifications fail to satisfy traditional contractivity conditions,
which are a cornerstone of the standard optimality theory for infinite horizon problems in discrete
time. We formulate alternative conditions based around monotonicity and ‘‘value’’ convexity. These
conditions lead to an optimality theory that is as strong as the contractive case. Several applications
are provided.
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1. Introduction

Markov decision processes (MDPs) play a central role in opera-
ions research, economics, finance, engineering and computer sci-
nce (Bertsekas, 2018; Kochenderfer, 2015). In recent years there
as been rising interest in extensions to the standard model that
an handle sophisticated preference and information structures,
uch as desire for robustness, risk sensitivity, narrow framing,
ncertainty aversion, ambiguity aversion, and separation of atem-
oral risk aversion and intertemporal substitution (see, e.g., Chen
nd Sun (2012), Di Masi and Stettner (2007), Epstein and Zin
1989), Ju and Miao (2012), Lin et al. (2018), Ruszczyński (2010),
hen et al. (2013), or Bäuerle and Jaśkiewicz (2018)).
Under most of these extensions, aggregation of rewards over

ime becomes nonlinear, and the standard contractivity condition,
n which the traditional theory rests, no longer holds.1 In such
ettings, either optimality theory is lacking or the conclusions
re degraded relative to the contractive case. To alleviate these
hortcomings, we explore an alternative approach and provide
new set of conditions based around monotonicity and either
onvexity or concavity. We show that their implications are as
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1 Chapter 2 of Bertsekas (2018) provides an exposition of the standard theory,
hile Bloise and Vailakis (2018) and Marinacci and Montrucchio (2010) discuss

ailure of contractivity in recursive preference models.
 a
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strong as the contractive case. We also show that these conditions
are satisfied in a range of models that fail to be contractive.2

Our study builds on earlier work analyzing growth models
ith recursive utility, which used monotonicity and concavity
roperties to show that the Bellman operator has a unique and
lobally attracting solution within a given class (Bloise & Vailakis,
018; Marinacci & Montrucchio, 2010). We extend these ideas
y providing a full set of optimality results, including identifi-
ation of the value function with the unique fixed point of the
ellman operator, existence of optimal policies, and the validity
f Bellman’s principle of optimality. This is achieved by exploiting
fixed point theorem for monotone operators due to Du (1990).

. General results

.1. Preliminaries

Let RX be all functions from some metric space X to R, let bX
e the bounded Borel measurable functions in RX and let bcX be
he continuous functions in bX. Let ∥ · ∥ denote the supremum
orm on bX. For f and g in RX, the statement f ⩽ g means
(x) ⩽ g(x) for all x ∈ X, while f ≪ g means that f ⩽ g − ε

for some positive constant ε. Given a, b ∈ F ⊂ bX, the order
interval I := [a, b] is all f in F with a ⩽ f ⩽ b. We call S: I → I
geometrically stable on I if S has a unique fixed point v∗ in I and,
for each v ∈ I , we can find constants λ ∈ (0, 1) and K ∈ R
uch that ∥Snv − v∗

∥ ⩽ λnK for all n ∈ N. S is called monotone
ncreasing if Sv ⩽ Sv′ whenever v, v′

∈ I with v ⩽ v′; and convex
f S(λv + (1 − λ)v′) ⩽ λSv + (1 − λ)Sv′ whenever v, v′

∈ I and

2 It is worth noting that standard additively separable MDPs also satisfy our
onditions. Hence our conditions subsume optimality theory for both standard
nd more sophisticated models.
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⩽ λ ⩽ 1. S is called concave if −S is convex. We will use
theorem of Du (1990) that, specialized to the current setting,
tates the following:

heorem 1 (Du). Let I := [a, b] be an order interval in either bX
r bcX and let S: I → I be monotone increasing. If either (i) S is

convex on I and Sb ≪ b, or (ii) S is concave on I and Sa ≫ a, then
is geometrically stable on I.

.2. A dynamic decision problem

Let X and A be metric spaces, called the state and action space
respectively. Let Γ be a correspondence from X to A, called the
feasible correspondence, with Γ (x) represents actions available to
the controller in state x. We call G := {(x, a) ∈ X × A : a ∈

Γ (x)} the feasible state–action pairs. A state–action aggregator H
maps feasible state–action pairs (x, a) and functions v in bX into
real values H(x, a, v) representing lifetime rewards, contingent on
current action a, current state x and the use of v to evaluate future
states. Traditional additively separable MDPs are implemented by
setting

H(x, a, v) = r(x, a) + β

∫
v(x′)P(x, a, dx′) (1)

for some discount factor β , reward function r and transition
function P .3 More sophisticated applications are discussed in
Section 3.

Fix w1, w2 in bcX with w1 ⩽ w2 and set V := [w1, w2] in
bX. Let C be the continuous functions in V. We assume that (A1)
the feasible correspondence Γ is nonempty, compact valued and
continuous, (A2) the map (x, a) ↦→ H(x, a, v) is Borel measurable
on G whenever v ∈ V and continuous on G whenever v ∈ C,
and, for all (x, a) in G, (A3) the state–action aggregator satisfies
H(x, a, v) ⩽ H(x, a, v′) whenever v ⩽ v′ and (A4) the functions
w1 and w2 satisfy w1(x) ⩽ H(x, a, w1) and H(x, a, w2) ⩽ w2(x).

If X and A are discrete we adopt the discrete topology, so (A1)–
(A2) are always satisfied when Γ (x) is finite for each x. (A3) is the
monotonicity condition of Bertsekas (2018), which is standard,
while (A4) allows w1 and w2 to act as lower and upper bounds
for lifetime value.

We call H value-convex if, for all (x, a) ∈ G, λ ∈ [0, 1] and
v,w in V, we have H(x, a, λv + (1 − λ)w) ⩽ λH(x, a, v) + (1 −

λ)H(x, a, w). We call H value-concave if −H is value-convex. The
next two assumptions are used when maximizing and minimizing
respectively:

Assumption 2.1 (Convex Program). H is value-convex and there
exists an ε > 0 such that H(x, a, w2) ⩽ w2(x)−ε for all (x, a) ∈ G.

Assumption 2.2 (Concave Program). H is value-concave and there
exists an ε > 0 such that H(x, a, w1) ⩾ w1(x)+ε for all (x, a) ∈ G.

2.3. Policies

Let Σ be all maps from X to A such that each σ ∈ Σ is Borel
measurable and satisfies σ (x) ∈ Γ (x) for all x ∈ X. We call Σ the
feasible policies. For each σ ∈ Σ , we define the σ -value operator
Tσ on V by

Tσv(x) := H(x, σ (x), v) (x ∈ X, v ∈ V). (2)

It follows from assumptions (A2) and (A4) that each Tσ is a well
defined self-map on V. A fixed point vσ ∈ V of Tσ is called a
σ -value function.

3 See Bertsekas (2018) for details. Additive separability refers to the fact that
urrent rewards and continuation values are combined by addition.
 o

2

Proposition 2. If either Assumptions 2.1 or 2.2 holds, then Tσ is
geometrically stable on V for each σ in Σ .

Proof. Fix σ ∈ Σ . The map Tσ is monotone increasing function
from V to itself by (A3) and (A4). If Assumption 2.1 holds, then
Tσ is a convex operator on V, as follows immediately from the
definitions of Tσ and value-convexity of H . From Assumption 2.1
we also have Tσw2 ≪ w2, so Du’s Theorem applies and the claim
is confirmed. If Assumption 2.2 holds, then similar arguments
show that Tσ is concave and satisfies Tw1 ≫ w1. Again, Du’s
Theorem applies.

It follows from Proposition 2 that, for each σ ∈ Σ , the set
V contains exactly one σ -value function vσ . The value vσ (x) can
be interpreted as the lifetime value of following policy σ over an
infinite horizon.4

2.4. Maximization

With Assumption 2.1 in force, a policy σ ∗
∈ Σ is called optimal

if vσ∗ (x) ⩾ vσ (x) for all σ ∈ Σ and all x ∈ X. The value function is
defined at x ∈ X by v∗(x) = supσ∈Σ vσ (x). Clearly w1 ⩽ v∗ ⩽ w2.
A function v ∈ V is said to satisfy the Bellman equation if

(x) = max
a∈Γ (x)

H(x, a, v) for all x ∈ X. (3)

iven v ∈ C, a policy σ in Σ is called v-greedy if σ (x) ∈

argmaxa∈Γ (x) H(x, a, v) for all x ∈ X. The Bellman operator T is
a map sending v in C into

Tv(x) = max
a∈Γ (x)

H(x, a, v). (4)

xistence of the maximum is guaranteed by (A1)–(A2).

.5. Minimization

In the minimization setting, a policy σ ∗
∈ Σ is called optimal

f vσ∗ (x) ⩽ vσ (x) for all σ ∈ Σ and x ∈ X. The value function
ssociated with this planning problem is the function v∗ defined
t x ∈ X by v∗(x) = infσ∈Σ vσ (x). A function v ∈ V is said to
atisfy the Bellman equation if (3) holds with max replaced by min.
he Bellman operator is defined by (4), after replacing max with
in, while the definition of a v-greedy policy is as above, after
wapping argmax for argmin.

.6. Main result

We can now state our main result. In stating it, we will say
hat Bellman’s principle of optimality holds if the set of optimal
olicies in Σ coincides with the v∗-greedy policies.

heorem 3. If Assumption 2.1 holds (maximization case) or As-
umption 2.2 holds (minimization case), then

(a) The Bellman operator is geometrically stable on C.
(b) The Bellman equation has exactly one solution in C and that

solution is v∗.
(c) Bellman’s principle of optimality holds and at least one opti-

mal policy exists.

4 See, for example, Bertsekas (2018). While we focus here on stationary
arkov policies, in the sense that each policy σ depends only on the current
tate and is invariant over time, it can be shown that, under the full set of
ssumptions introduced below, the resulting values weakly dominate the values
btained by optimizing with respect to the class of all nonstationary policies.
he arguments are almost identical to those presented in the discussion of
onstationary policies in Section 2.1 of Bertsekas (2018) and the details are
mitted.
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roof. We begin with the maximization case, holding
Assumption 2.1 true. Regarding (a), our aim is to apply Du’s
Theorem. T is a self-map on C by (A1)–(A2) and Berge’s theorem
of the maximum. It remains to show that T is monotone increas-
ing and convex on C with Tw2 ≪ w2. The monotonicity of T
n C is immediate from (A3), which yields maxa∈Γ (x) H(x, a, v) ⩽

maxa∈Γ (x) H(x, a, v′) for all x ∈ X whenever v ⩽ v′. To show
onvexity of T , fix v, v′

∈ C and λ ∈ [0, 1]. For any given
x, a) ∈ G, we have, by value-convexity,

(x, a, λv + (1 − λ)v′) ⩽ λH(x, a, v) + (1 − λ)H(x, a, v′)
⩽ λTv(x) + (1 − λ)Tv′(x).

Since (x, a) ∈ G was arbitrary, the above inequality implies
maxa∈Γ (x) H(x, a, λv+ (1−λ)v′) ⩽ λTv(x)+ (1−λ)Tv′(x) for each
x ∈ X, which in turn means that T [λv + (1 − λ)v′

] ⩽ λTv + (1 −

)Tv′. We also have Tw2 ≪ w2, since, by
ssumption 2.1, there is an ε > 0 such that, for each x ∈ X,

we have Tw2(x) = maxa∈Γ (x) H(x, a, w2) ⩽ w2(x)− ε. The proof of
(a) is now complete.

For the proof of (b) in the maximization case, let v∗ be the
value function and let v̄ be the unique fixed point of T in C. To see
that v̄ = v∗, first observe that v̄ ∈ C and hence a v̄-greedy policy
σ exists. For this policy we have, by definition, Tσ v̄(x) = T v̄(x)
at each x, from which it follows that v̄ = T v̄ = Tσ v̄. Since
Tσ is geometrically stable on V, we know that its unique fixed
point is vσ , so v̄ = vσ . But then v̄ ⩽ v∗, by the definition of v∗.
o see that the reverse inequality holds, pick any σ ∈ Σ . We

have Tσ v̄ ⩽ T v̄ = v̄. Iterating on this inequality and using the
monotonicity of Tσ gives T k

σ v̄ ⩽ v̄ for all k. Taking the limit with
respect to k and using the stability of Tσ again gives vσ ⩽ v̄. Hence
v∗ ⩽ v̄, and we can now conclude that v̄ = v∗.

Since v̄ ∈ C, we have v∗
∈ C. It follows that v∗ is the

unique solution to the Bellman maximization equation in C.
Part (b) of Theorem 3 is now established. Regarding part (c), by
the definition of greedy policies and the value function v∗, we
have that σ is v∗-greedyv∗ if and only if H(x, σ (x), v∗) = v∗(x)
for all x ∈ X. By Proposition 2, the second statement is equivalent
to v∗

= vσ . Hence, by this chain of logic and the definition of
optimality, σ is v∗-greedy ⇐⇒ v∗

= vσ ⇐⇒ σ is optimal.
Moreover, the fact that v∗ is in C assures us that at least one v∗-
greedy policy exists. Each such policy is optimal, so the set of
optimal policies is nonempty.

The above reasoning completes the proof of the maximization
case. The minimization results can be proved from the maximiza-
tion results and the fact that −f is convex whenever f is concave.
This is why the minimization case requires concavity rather than
onvexity in Assumption 2.2.) Full details can be found in the
nline supplement (Ren & Stachurski, 2020).

. Applications

Theorem 3 can be applied to a range of discrete time dynamic
rograms that fail to satisfy the standard contractivity conditions.
xamples include dynamic programs with Epstein–Zin prefer-
nces, ambiguity aversion, and narrow framing. Two examples
re now given.

.1. Epstein–Zin preferences

Epstein–Zin preferences provide the ability to separately con-
rol preferences over atemporal risk aversion and intertemporal
ubstitution. The have been applied to a diverse set of problems,
ncluding asset pricing, fiscal and monetary policy, resource man-
gement and epidemiology (see, e.g., Bansal and Yaron (2004),
pstein and Zin (1989), or Augeraud-Véron et al. (2020)). Opti-
ality results are challenging, since, under empirically plausible
arameterizations, these preferences fail to satisfy contractivity.
 (

3

Under Epstein–Zin preferences, the Bellman equation takes
the form

v(x) = max
a∈Γ (x)

{r(x, a)κ + β[Rv(x, a)]κ}1/κ (5)

here R is the certainty equivalent operator defined by

v(x, a) :=

[∫
v(x′)ηP(x, a, dx′)

]1/η

. (6)

The expression in (6) matches the continuation value on the right
hand side of (1) when η = 1. Under these preferences, κ governs
elasticity of intertemporal substitution and γ governs atemporal
risk aversion. We focus on the most empirically relevant case,
which is η < 0 < κ < 1.5

It is convenient to apply the transformation v̂ := vη to the
Bellman equation (5). Since η < 0, this leads to the minimization
problem v̂(x) = mina∈Γ (x) H(x, a, v̂) where

H(x, a, v) =

{
r(x, a)κ + β

[∫
v̂(x′)P(x, a, dx′)

]1/θ
}θ

with θ := η/κ < 0. We assume that m := inf r(x, a)κ > 0
and M := sup r(x, a)κ < ∞. The feasible correspondence is
assumed to satisfy (A1). Under mild conditions on the primitives
(A2) also holds. (A3) is clearly satisfied. After setting set w1 :=

[(M + δ)/(1− β)]θ and w2 := [m/(1− β)]θ , where δ is a positive
constant, straightforward manipulations show that (A4) holds.
For example, we have

H(x, a, w1) ⩾
{
M + β

M + δ

1 − β

}θ
> w1

for any (x, a) ∈ G. In fact this last bound shows that w1 also
atisfies the strict inequality in Assumption 2.2, so it only remains
o check the value-concavity of H . But this follows directly from
he concavity of the function ψ defined for b, t ⩾ 0 by ψ(t) :=

b + βt1/θ )θ , as implied by θ < 0. Hence the conditions of
heorem 3 hold and its conclusions are all valid.

.2. Ambiguity aversion

Some recent studies consider ambiguity with respect to the
aws of the system on the part of the controller and allow for
mbiguity aversion. One foundational study is Klibanoff et al.
2009) and applications to asset pricing and financial decisions
an be found in Berger and Eeckhoudt (2020) and Ju and Miao
2012).6

A generic version of the problem studied in Ju and Miao (2012)
equires minimization with respect to the aggregator

(s, z, a, v) = {r(s, a, z)κ + β[Nv(z, a)]κ}1/κ (7)

here

v(z, a) :=

∫ [∫
v(a, z ′)ξπθ (z, dz ′)

] 1
ξ

µ(z, dθ ). (8)

Here s and z are state variables, taking values in compact metric
spaces, while κ and ξ are composite parameters. (They are a com-
posite of three parameters, which separately control elasticity of
intertemporal substitution, atemporal risk aversion and ambigu-
ity aversion.) The transition probability function πθ is indexed on

5 See, for example, Schorfheide et al. (2018). Other parameterizations are
reated in Ren and Stachurski (2020).
6 Ambiguity aversion has also found applications in psychology, neuroscience,

limate change, management science and other fields. See, e.g., Bayraktar and
hang (2015) and Trautmann et al. (2011), or Olijslagers and van Wijnbergen
2019).
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vector of parameters θ ∈ Θ that represent model uncertainty,
hile µ(z, ·) represents beliefs over these parameters conditional
n the current exogenous state z. The parameter space Θ is a
orel subset of Rk.
Consider the case where ξ ∈ (0, 1) and κ < 0.7 Since we

re minimizing, Assumption 2.2 needs to be verified in order to
pply Theorem 3. It can be shown that if we fix δ > 0 and set
1 := [(M + δ)/(1 − β)]1/κ and w2 := [m/(1 − β)]1/κ , where
:= inf r(s, a, z)κ > 0 and M := sup r(s, a, z)κ < ∞, then there

xists an ε > 0 such that H(s, z, a, w1) ⩾ w1 + ε for all feasible
tate–action pairs ((s, z), a). In addition, H(s, z, a, w2) ⩽ w2(s, z)
for all ((s, z), a).

The validity of value concavity, which is the remaining part
of Assumption 2.2, depends on the parameters κ and ξ . In the
upplement (Ren & Stachurski, 2020) we show that value con-
avity holds at the parameters setting chosen in the empirical
omponent of Ju and Miao (2012). The argument is similar to that
rovided in Section 3.1.

. Conclusion

We constructed an optimality theory for discrete time dy-
amic programs with features such as risk sensitivity, narrow
raming, and ambiguity aversion, showing that monotonicity and
onvexity properties can substitute for the standard contractiv-
ty condition assumed in traditional MDPs. Extensions to the
ontinuous time case are left for future research.
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