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ABSTRACT. In recent years, a range of measures of “partial” stochastic dominance
have been introduced. These measures attempt to determine the extent to which
one distribution is dominated by another. We assess these measures from intuitive,
axiomatic, computational and statistical perspectives. Our investigation leads us
to recommend a measure related to optimal transport as a natural default.
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1. INTRODUCTION

(First order) stochastic dominance is one of the most fundamental concepts in social
welfare and decision making under uncertainty (see, e.g., [5, 11]). At the same time,
stochastic dominance is fragile. For example, two normal distributions can only be
ordered by stochastic dominance if their variances are exactly identical, even if one
mean is orders of magnitude larger than the other. Such fragility is problematic for
quantitative work.

In response, researchers have introduced many different notions of “partial” stochastic
dominance. One is “restricted stochastic dominance,” which compares the order
of cumulative distribution functions (CDFs) only up to some specified point in the
domain [1, 2, 3]. Another is “almost stochastic dominance,” which was developed in
the finance literature [6, 8]. A third kind of measure was proposed in [4], analyzing
degree of stochastic dominance in the context of income mobility analysis. Still more
measures are considered in [11].
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Despite the obvious practical relevance of a measure of partial stochastic dominance,
none of the above have a clear axiomatic foundation. At the same time, some measures
become complex outside of the one-dimensional case. These observations suggest that
now is a good time to consider measures of partial stochastic dominance collectively.
While doing so, we make the case for what we believe is the most natural measure of
partial stochastic dominance. The measure can be understood as the solution to an
optimal transport problem.

2. A MEASURE OF DOMINANCE

Let S be Polish with Borel sets B and closed partial order < (i.e., a partial order on
S such that {(x,y) € S x S :x <y} is closed in the product topology). A function
h: S — R is called increasing if x < y implies h(x) < h(y), and decreasing if —h is
increasing. Let H be the set of increasing Borel measurable h on S with osc(h) <1
(that is, suph — infh < 1). Let M be all finite measures on (S,B) and P be all
w € M with p(S) =1. A measure p € M is said to be stochastically dominated by
v € M and we write u =<y v if u(S) = v(S) and [hdu < [hdv for all h € H. For
probability measures p, v € P, an alternative characterization is

1 <, if and only if P{X<Y)=1,

(1) w2y ifandonlyif - max {X 2v}

where TI(ju,v) is the set of all couplings of u and v [12]. (Given (u,v) € P X P, a
pair of S-valued random variables (X,Y") defined on some probability space (2, F, P)
is called a coupling of (u,v) if w(B) = P{X € B} and v(B) = P{Y € B} for all
B € B.) The short summary of our paper is: in light of (1), why not use

2 T(p,v) = max P{X Y

@) ()= _max  P{X =Y}

as the default measure of partial stochastic dominance? We answer this question in
stages. Existence of the maximum for each (u, ) pair is verified below.

Note that we can rewrite 7 as 1 —min y yyern(uu) E ¢(X,Y), where c(z,y) = 1{z £ y}.
The infimum is a standard optimal transport problem. In particular, ¢ is nonnegative,
bounded and lower-semicontinuous (since = is a closed partial order), so, by Theo-
rem 4.1 of [13], a solution exists. In particular, the “max” in (2) is justified. From
now on, we call a pair (X,Y’) that attains the maximum in (2) an optimal coupling.

It now follows from Kantorovich duality that min xy)er(u)E ¢(X,Y’) can be re-
placed by a supremum over supporting “prices.” In particular,

(3) T(p,v) =1- I;lgg{/gdv - /gdu}-
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where D is all g: S — R with ¢(y) — g(x) < 1{x £ y}. This is (iii) of Theorem 5.10
of [13]. (See “Particular case 5.16” on p. 60.) The existence of a maximizer is
guaranteed by the same theorem. Clearly D is just the set of decreasing functions on
S with osc(h) < 1. Hence we can rewrite (3) as

(@) ) =1 —?E%c{/hdu—/hdv}.

These expressions have additional representations that can be useful in some settings.
For example, if © = F and v = G are CDFs, then one can show 7 has the simple
representation

(5) T(F,G)=1-— sgp{G(:r;) — F(z)}.

The representation in (4) is very similar to measures of partial stochastic dominance
studied in [11]. They use essentially the same measure but replace H with the set of
all increasing functions satisfying a Lipschitz bound with respect to the underlying
metric. Such a measure is more attuned to topology but lacks the some of the
advantages of (4) described below.

3. ALTERNATIVE MEASURES

Here and below, a measure of degree of stochastic dominance is any function
(6) d: P xP —10,1] suchthat p Zqv = o(p,v)=1.

Clearly 7 is a measure of degree of stochastic dominance in the sense of (6). Another
is the quantile ratio measure proposed in [4]. Let S = [a,b] and let < be the usual
order < on R. Letting F' and G be CDFs on [a, b], define

n

m

) (F.0)= " whore mi= 3 1(G() < Fla)

Here {x;} is a grid of n specified values in [a,b], typically corresponding to some
quantile points. Thus ¢(F,G) measures the fraction of times that G(x;) < F(x;)
is observed over specified test points. Clearly ¢ satisfies ¢(F,G) = 1 when G < F
pointwise (i.e., F' <54 G), which corresponds to (6).

Another version of partial stochastic dominance is restricted stochastic dominance
(see, e.g. [1, 3]). Let F' and G be one dimensional CDFs on an interval [a,b]. Given
¢ € la,b], distribution F' is said to be dominated by G in the restricted sense if
G(z) < F(z) for all # < ¢. We can turn this into a measure by considering the
largest such ¢, defined by

(8) c(F,G) :=sup{c € [a,b] : G(z) < F(z), Va < c}.
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After normalizing we get
(F,G)—a
b—a

Evidently r is a measure of degree of stochastic dominance in the sense of (6).

(9) r(F,G) :=

Another measurement for partial stochastic dominance is almost stochastic dominance
[7, 6]. Once again the context is S = [a, b] with the usual order <. For cDFs F' and
G on [a, b], the measure can be expressed as

_ J(F(z) = G(z)) dx
1o W= TR — G s
where v, := max{v,0} for any v € R. Intuitively, if F' is almost dominated by G,
then G < F on most of its domain, and (F(z) — G(z))+ = |F(z) — G(z)| for most
x. Hence o(F,G) is close to 1. In order to ensure that the measure is defined for all
pairs F, G, we adopt the convention that «(F,G) = 1 when F' = G.

4. AXIOMS

Next we propose two axioms for degree of stochastic dominance 0(u, ). The first says
that d(u, ) should not be large unless the distributions are nearly ordered. To state
it, we write pu < v to indicate pointwise ordering on B and define, for each u,v € P,

() =AW, V) e MMy <p, v <w, pf Zaa V')

Think of ®(u,v) as the set of “ordered component pairs” corresponding to (u,v).
If pis “almost” dominated by v, then we can choose relatively large components.
(Recall that, to admit the ordering i/ <44 v/, we insist that total mass is equal, so

W' (S) = v/'(S) must hold.)

Axiom 4.1. For each (u,v) € P x P and € > 0, there exists a (¢/, ') in ®(p, ) such
that 0(u,v) < 1/(S) + e.

Figure 1 helps to illustrate the axiom, with p and v represented by densities. In the
top subfigure, p is in no sense dominated by v, so we wish to enforce §(u,v) = 0.
Axiom 4.1 does enforce this, since, for this pair (u, ), we cannot extract an ordered
component pair (¢, ') with positive mass. Hence p/(S) = v/(9) is always zero.

In the lower subfigure, there is some overlap in probability mass, so we should permit
d(p,v) > 0. Inspection shows this to be true. For example, we could take both /'
and v/ to be the function enclosing the shaded region (the pointwise infimum p A v of
the density representations of p and v), so that, as measures again, p/(S) = v/(S) =
the area of the shaded region. Since this is positive, d(u, v) can be positive.

Axiom 4.1 adds the converse implication to (6), so ¢ identifies ordered pairs:



H'(S) =v'(S) -V

FIGURE 1. Densities and ordered component pairs

Proposition 4.1. If § is a measure of degree of stochastic dominance that satisfies
Aziom 4.1, then §(u,v) =1 if and only if p <sq v.

Proof. Suppose that § satisfies Axiom 4.1 and that 6(u, v) = 1. Then p/(S) = V/(5) =
1 for some (', v") in ®(u,v). From this we immediately have ¢/ = p and v/ = v, and
hence p <44 v, which is all we need to show. O

The second axiom plays the opposite role. It implies that d(u,v) is close to 1 when
w1 is “nearly” dominated by v.

Axiom 4.2. Given fi,, iy, Vo, s € P and A € [0, 1], the ordering p, <sq v, implies
(p,v) > Xor = Ay + (1 — Ny and v := Ay, + (1 — AN,

Axiom 4.2 uses the natural convexity of P to implement “continuity near 1”7 while
avoiding being tied to a particular topology.

The axioms we have listed are strong enough to give uniqueness:

Theorem 4.1. The only measure of degree of stochastic dominance satisfying Ax-
toms 4.1-4.2 15 T.

Proof. First we claim that 7 satisfies Axiom 4.1. To see this, let (X,Y") be an optimal
coupling for (u,v), attaining the maximum in (2). Set p/(B) = P{X € B, X <Y}
and V' (B) = P{Y € B, X < Y}. This pair satisfies (1/,v') € ®(u,v) and p/(S) =
T(p,v). To see that 7 satisfies Axiom 4.2, fix u,v € P and let the decompositions
in Axiom 4.2 be given, with A € [0,1] and p, <. 4. Let (X;,Y;) be an optimal
coupling of (p;, v;) for i = a,b. Let X = (X, + (1 — ¢) X}, where ¢ is independent and
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binary with P{¢/ =1} = \. Let Y = ¢Y, + (1 — {)Y},. Then (X,Y) € II(u, ). Hence
T(,v) > P{X Y} > AP{X, XY,} =\, and Axiom 4.2 holds.

Now let 0 be an arbitrary measure of degree of stochastic dominance satisfying Ax-
ioms 4.1-4.2. Fix (pu,v) in P x P and let (X,Y) be an optimal coupling of (u,v).
Define A := P{X < Y} and the probabilities
P{XeB XY
po(p) = XEL XYY

w(B) = DEELXENT )

We have p, =4 Vg, since, when I € B is increasing,

ol = P{X € I;\X <Y} < P{Y € I;\X <Y}
For p we have u(B) = P{X € B}, which can be decomposed as P{X € B, X <
Y}+P{X €B, X AY} = uu(B) + (1 = \)up(B). Since 0 satisfies Axiom 4.2, we
have §(p,v) > A =P{X Y} =7(u,v).

_P{YeB, XY}
— 5 :
_P{YeB, X £Y}
N 1—)\ '

va(B)

= v,(I).

For the reverse inequality, recall from the arguments above that we can obtain an
ordered component pair (i, ') satisfying v/(S) = 1/(S) = 7(u,v). Since § satisfies
Axiom 4.1, we have d(pu,v) < 7(u,v) + € for all € > 0. Hence 6(u,v) < 7(p,v). O

5. MEASURES VS AXIOMS

Let us reconsider measures of stochastic dominance other than 7. By Theorem 4.1,
they fail at least one of the axioms. For example, regarding Axiom 4.2, note that ¢
fails whenever the grid {z;} has at least three points. To see this let F, F” and G"
be any CDFs on [a, b] such that F/ < G” on (a,b). Let A € (0,1) and let

F=AF+(1=\NF", G=MF'+(1-)NG".

Since F' <44 F’', Axiom 4.2 implies that ¢(F,G) > A. On the other hand, G(x;) >
F(z;) on any interior point ;. Hence m in (7) is at most 2, and ¢(F,G) < 2/n. Since
A can be arbitrarily close to 1 this contradicts Axiom 4.2.

For this same pair F,G, the fact that G > F on (a,b) implies that ¢*(F,G) = 0
for ¢* defined in (8), and hence r(F,G) = 0 for the restricted stochastic dominance
measure defined in (9). Likewise, for the same pair, o(F,G) = 0, where « is the
almost stochastic dominance measure. Hence r and « also fail to satisfy Axiom 4.2.

Regarding Axiom 4.1, the measures ¢, r and « all fail. To see this, let S = [0, 1] and,
given some positive number €, let 4 put mass € on 0 and 1 — € on 1, and let v put
all mass on 1 — €. Let I’ be the C¢DF of i and let X be a draw from p. Let G and
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Y be the CDF of and a draw from v respectively. Since Y is certainly 1 — e we have
X <Y if and only if X = 0, and hence P{X < Y} = ¢ for all couplings. On the
other hand, F(z) > G(z) iff 0 <z < 1 —¢, and hence r(F,G) =1 —e€. If e < 1/2
then 1 — € > ¢, and hence r fails Axiom 4.1. The measures ¢ and « also give values
larger than € when ¢ is small, although the details are omitted.

6. FINAL COMMENTS

We end with some avenues for future research. One is that an estimation theory for 7
should be straightforward to construct. For example, if we replace the cDFs F' and G
in (5) with empirical counterparts F,, and G,,, then 7(F;,, G,) is a simple transform of
the statistic used in the one-sided two-sample Kolmogorov-Smirnov test. This allows
for construction of confidence intervals and hypotheses tests related to the value of 7.

Another topic of interest is computation. In higher dimensional settings, computation
is difficult for all measures of partial stochastic dominance, but 7 at least has an
interpretation as the solution to an optimal transport problem. Computing solutions
of optimal transport problems is an active research area [10].

Third, there is some connection between the measure 7, which takes values in the
interval [0, 1] and represents the continuum between no dominance and complete first
order dominance, and the measure proposed in [9], which represents the continuum
between first order and second order stochastic dominance. Clarifying this connection
and investigating the preceding two topics are left for future work.
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