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Today's Lecture

® Job search and monotonicity
® Search with learning

® Search with correlated wage offers
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Prequel |: Review of FOSD

Let F and G be CDFs on R

Reminder: F is first order stochastically dominated by
distribution G (write F <gp G) if

/u(x)P(dx) < /u(x)G(dx) for all u € ibcR,

Equivalent to F <gp G:

® G < F pointwise on R

® There exists random variables X and Y with

XZF vYZG, P{X<Y}=1
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{x=xid
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Prequel Il: Monotone Likelihood Ratios

Positive densities (f, g) on interval I C R are said to have a

monotone likelihood ratio if

/
x,x €land x <x¥ = f(x)gf(x)

Example. The exponential density is

p(x,A) = Ae ™M (x e Ry, A >0)

Taking A1 < Ay, we have

plx, A1) A
p(x,A2) Az

exp((A2 — A1)x)

5/55



Ex. Let (f,g) be given by

f =Beta(4,2) and g = Beta(2,4)

Show that (f,g) has the monotone likelihood ratio property

® Hint: the Gamma function is increasing on [2,4]
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Fact. If (f,g) has a monotone likelihood ratio on I, then
g =Zsp f

Proof sketch:
Let F and G be the corresponding CDFS

Course notes show MLR implies F(y) < G(y) for all y € I

This is equivalent to G =<gp F
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Job Search Continued: Second Order
Stochastic Dominance

How does the of the wage process impact on the
reservation wage?

Intuitively, greater volatility means

® option value of waiting is larger

® encourages patience — higher reservation wage

But how can we isolate the effect of volatility?

® introduce the notion of a
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Given distribution ¢, we say that ¢ is a mean-preserving spread
of ¢ if 3 random variables (Y, Z) such that

YZy, Y+ZZ¢ and E[Z|Y]=0

® adds noise without changing the mean

Related definition: 1 second order stochastically dominates ¢
if, with % as the concave functions in ibcR .,

/u(x)(p(dx) < /u(x)t/)(dx) forallu e %

Fact. 1 second order stochastically dominates ¢ if and only if ¢ is
a mean-preserving spread of ¢
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Proof that ¢ is a mean-preserving spread of ) = 1 second
order stochastically dominates ¢

Let @ be a mean-preserving spread of ¥

Then 3 random pair (Y, Z) such that

YZy, Y+ZZ¢ and E[Z|Y]=0

Fixing arbitrary u € % and applying Jensen's inequality,

Eu(Y+2Z)=EE[uY+2)|Y] <Bu(B[Y+Z|Y]) = Eu(Y)

/u(x)go(dx) =EBu(Y+Z) <Eu(Y) = /u(x)lp(dx)
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How does the unemployed agent react to a
?

*

Prop. If ¢ is a mean-preserving spread of ¢, then w;}, < w,

Proof: It suffices to show that hy < hj, (why?)

Claim: g(h) = c+ B [ max {%, h} P(dw'’) increases pointwise
with the mean-preserving spread

Equivalently, for all ik > 0

/max{ ﬁ,h}w(dw) /'max{lzﬁﬁ,h}go(dw’)
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By definition, there exists a (w’, Z) such that E[Z|w'] =0,
w’glpandw’—i—zz(p

By this fact and the law of iterated expectations,

Jensen's inequality now produces

a2 1) ottty > oo {EE 215 )
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Using E[w' |w/] = @' and E[Z | @] = 0 leads to
/max { Jfﬁ’ h} o(dw') > T max {W h}
_ ]Emax{lw_/ﬁ, h}
_ /max{la_/ﬁ, h} (dw')

Since h was arbitrary, the function g shifts up pointwise

Since g is isotone and a contraction, this completes the proof
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Second Order Stochastic Dominance and Welfare

How does volatility affect ?

Do mean-preserving spreads have a monotone impact on lifetime
value?

More precisely, with

® @ as a mean-preserving spread of ¢

® v, and vy as the corresponding value functions

do we have vy < vq)?

Why might this be true?
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Prop. If ¢ is a mean-preserving spread of ¢, then vy < v, on Ry

Proof: For a fixed distribution v, the value function v, satisfies

vy (w) = max {1_105, hv}

where the continuation value

hy :=c+ ﬁ/vv(w’)v(dw’)

is the fixed point of

gu(h) = c+ﬁ/max{£/5, h}v(dw’)

If hq, < hq,, then the result is immediate
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Let @ be a mean-preserving spread of 1
Since g, is isotone and globally stable on R, it suffices to show

that
go(h) < gplh) VheR:

So fix h € Ry

It is enough to show that
w' , w' ,
<
/max{l_ﬁ,h}gb(dw) \/max{l_ﬁ,h}(p(dw)

We already proved this...
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Learning the Offer Distribution

Unrealistic assumptions in the previous job search model

® \Wage offer distribution never changes

® Unemployed workers know the distribution

More realistic

® The offer distribution shifts around

® Unemployed workers need to learn and re-learn it

Let's study the learning component

e Offer distribution is constant but initially unknown
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There are two possible offer distributions, F and G

® with densities f and g on R

At the start of time, nature selects g to be either f or g

® entire sequence {w; }1>o will be drawn from g

The choice g is not observed by the worker, who puts prior
probability 7mp € (0,1) on f

Thus, the worker's initial guess of g is

qo(w) := mof (w) + (1 = 770)g (w)
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Beliefs update according to

The agent observes w;, 1, updates 71; to

f(wigr)
Wi 1) 70 + g (W) (1 — 71

1 = f(

In more intuitive notation, this is

Plwi [q= fiP{q = f}
]P{th}

P{g = flwi1} =

We used the law of total probability for the denominator:

P{wi 1} = Z P{wi1]g =}P{g =1}
pe{f.gl
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Dropping time subcripts, let

qr = 7f + (1= 1)g

® estimate of the offer distribution based on current belief 7T

In addition, let

mf (w)
f(w) + (1 - m)g(w)

k(w, ) :=

e the updated value 71’ of 71 having observed draw w
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Let v*(w, 7r) := maximal lifetime value attainable from state
(w, 1r) conditional on currently being unemployed

Bellman equation:

oo, ) = max { 1 ¢ [ 0!, ) o) o}

Note that 7T is a state variable

® affects the worker's perception of probabilities for future
rewards

® known as the current belief state

The optimal policy: select the option that maximizes the RHS
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Solution Methods

We can use value function iteration to calculate v*

1. Introduce a Bellman operator T corresponding to the Bellman
equation

2. Choose initial guess vy

3. lterate with T

But there is a more efficient approach — allows us to eliminate
one state variable
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Let w*(7r) be the reservation wage at belief state 7

® wage at which worker is indifferent between accepting,
rejecting

® and therefore satisfies

w* (1)

1-p

= c—i—[ﬁ/v*(w’,x(w’,rc))qn(w') dw’

Note that w* is a function of argument

So let's try to compute w* directly
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Combine

v*(w, 71) = max {

1 Z—Uﬁ’ c+p [0 (@, k@, m) g () dw’}

and
w*(m)

1-8

= c—l—,B/v*(w’,K(w/, 7)) qro(w') duw’

to get

w W*(ﬂ)}

v*(w, 1) = max {

1-8"1-8
Ex. Show that these last two equations lead to

w* () = (1— ﬁ)c+ﬁ/max {w', w*[k(w', 7)]} g (w') dw’
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To repeat, the reservation wage satisfies
w* () = (1 — ﬁ)c+/§/max {w',w*[k(w', 7)]} gz (w") dw’
Thus, it is a solution to the functional equation in w given by
w(rm) =(1-pB)c+ ﬁ/max {w, wlk(w', 7)]} gz (w") dw’
This leads us to introduce the operator

(Qw)(rt) = (1 — B)e + ﬁ/max (0, wik(w, m)]} g2 (w') dw'

Fixed points of Q coincide with solutions to the functional equation
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Let € := bc(0,1), paired with the supremum distance de

® a complete metric space?
Assume: f, g are everywhere positive on [0, M] and zero elsewhere
Prop. Under this assumption, the operator

(Qw)(m) = (1= e+ [ max {/, wlk(w', w)]} 4 (w') du'

is a contraction of modulus 8 on &

The proof makes use of our max / abs inequality

laVx—aVy| < |x—y| (a,x,y € R)
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Proof: First we need to show that Q is a self-mapping on %

Step 1 (boundedness): Pick any w € ¢ and consider
(Qw)() = (1= B)e + p [ max {/, wlk(w', w)]} 4 (w') du'

Observe that, by

® the triangle inequality and
® the fact that g is a density,

[(Qu)(m)] < (1= B)e+ pmax{M, [[w]|e}

RHS does not depend on 71 so Qw is bounded
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Step 2 (continuity): Is Qw continuous when w € €7

Suffices to show that m, — 7€ (0,1) =
/max {w', wlk(w', )]} qr, (") du’
— /max {w', wlk(w', 7))} g(w') dw’
For fixed w’, both x(w’, 7r) and g (w’) are continuous in 7T

Moreover, H, (w') := max {w’, w[x(w', 71,)]} qn,(w') satisfies

sup [Hu(w')] < max {M, [|wl[|e} (f(w') + g(w"))

Now apply the DCT
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Step 3 (contractivity): Fixing w, ¢ € € and 7 € (0,1), we have

[(Qu)(7) = (Qg) (1) < B

/

/ |max {w', w[k(w', )]} —max {w', p[k(w', 7)] }| g (w") dw
Combining this with our max / abs inequality,
(Qu) () — (Q9) ()| < B [ |wlx(a', )] — glx(e!, m)]| gx(w') d

< Bllw— ¢l

Taking the sup over 7T gives us
1Qw — Qplleo < Bllw — ¢lleo
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Putting our results together:

® (Qis a contraction of modulus
® on the complete metric space (%, dw)

® Hence a unique solution w* to the reservation wage functional
equation exists in ¢

e QFw — w* uniformly as k — oo, for any w € €

Let's compute w* when

f =Beta(4,2) and g = Beta(2,4)

The other parameters are ¢ = either 0.1 or 0.2 and g = 0.95
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—_— %

Figure: The two unknown densities f and g
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See the notebook odu.ipynb

«0» «F»r «
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odu.ipynb

Note that w*

(a) shifts upwards when ¢ increases and

(b) is monotonically increasing in 7t

Ex. Prove that (a) always holds
Result (b) is also intuitive:

® The density f is likely to lead to better draws
® as our belief shifts toward f, we anticipate higher wage offers

® hence our reservation wage should increase

Can we prove this result? If so, what conditions are required on f
and g7
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Proposition. If (f,g) has a monotone likelihood ratio, then w* is
increasing in 7T

Proof: Let f and g have the stated property

Let i€ be all increasing functions in €

Ex. Show this is a closed subset of %

Hence it suffices to show that Qw is in {4 whenever w € i¥
So pick any w € i¥

We know that Qw is in ¥

Thus, only need to show that Qw is increasing
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To repeat, we need to show that
(Qw)(7) = (1— B)c + ﬁ/max (0, wik(w, 7))} gx(w) dw’

is increasing in 7T when w is increasing
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For Qw to be increasing, it suffices that, with

/ — nj(a/)
hw!,7) = @ [nf(w/) (- mg)

the function
T /max{w’,h(w’, )} gz(w') dw'
is increasing

This will be true if we can establish that

1. 7T+ g is isotone with respect to <sp

2. his increasing in both 7t and w’ and
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The fact that 71 — g, is isotone with respect to <gp follows from
the next exercise

Ex. Let

® f and g be two densities on R with ¢ <sp f

® v, be the convex combination defined by

Vo :=af +(1—a)g 0<a<])
Show that a < B implies vy =sp Vg

Conclude that 71 — g is isotone with respect to <gp
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Remains to show that

/ = w ﬂf(a/)
60, =0 | Sy )

is increasing in both 77 and w’ and

To see this, write i as

/ B 1
hW”°‘“L+wfnwﬂmwwﬂWﬂ

Increasing in both args because w is increasing, g(w')/ f(w') is

decreasing in w’
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Correlated Wage Draws

Suppose now that

® the wage distribution is known

® wages = +

In particular,
wr = exp(z;) +exp(p + 0Cy)

where

11D

® {Ci}i=1 ~ N(0,1) and

11D

® Ziy1 = Pzt + d + se; 1 with {Q}t;l ~ N(O,l)
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Regarding the state process

11D

ziy1 = pz +d +seq1,  {e}bi=1 ~ N(0,1)

® Assume that —1 < p <1

® Hence globally stable

The unique stationary density on R is

d s?
lp'_N(l—p’l—fﬂ)
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Otherwise the model is unchanged

The value function satisfies the Bellman equation

w

1-p

o(w,z) = max { ,¢+ BEv(w, z’)}

Here IE, is expectation conditional on z
For example, given ¢ and z € R,

E.g(w',z') =

/g lexp(pz +d + se) +exp(u + 00), pz + d + se] ¢(de, dl)
where ¢ := N(0,1) on R?
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Solution methods:

1. Introduce a Bellman operator corresponding to the Bellman
eq.

2. Reduce dimensionality by refactoring
Second, method, first step: let

h(z) := continuation value associated with state z

=c+ BEo(vw,2)

Here

® v can be thought of as a candidate value function

® continuation val depends on z because we use it to forecast
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Given h(z), the Bellman equation can be written as

v(w,z) :max{l_ﬁ h(z )}

Combining this with the definition of ki, we see that

/

h()—c+ﬁEZmax{1Zﬁﬁh(2/)} (z€eR)

With a solution k*, we can act optimally via the policy

w

o (w,z) =1 {1_5

> h*(z)}

® < stop when w > w*(z) := h*(z)(1 - B)
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How to solve the functional equation?

/

h(z) = c + BE, max{lﬁﬁ h(z’)} (zeR)

We introduce the operator h — Qh defined by

/

Qh(z )—c—I—ﬁEzmax{la_)ﬁ h(z’)}

® Any solution to the functional equation is a fixed point of Q
and vice versa

But does such a fixed point exist? Is it unique?
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Our last few contraction arguments have used distance de

® requires Q maps bounded functions to bounded functions

Fails here because, even if h is bounded,

e}

Qh(z) :C+ﬂEZmaX{lzﬁlB

= ¢+ BE max { exp(pz +d + Setirl_) ; exp (¢ + U€t+1)/h<zl)}

> BE exp(pz +d+seri1)

is unbounded in z
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This means that
® The solution we seek is unbounded

® \We need to use a different metric space

The metric space must

® admit unbounded functions

® be complete, SO we can use a contraction argument
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Let L1(¢) := all Borel measurable functions g from R to itself
satisfying

[ 18 lp(x) dx < eo

® ¢ is the stationary density of {z;}

® Equivalent: g(z;) has finite first moment when z; Z P

The distance between f, g in L1() is given by

hi(fg) = [ 1F(x) = g(x)lp(x) dx

e the space (L1(y),dq) is complete
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Lemma. Q is a self-mapping on L1 ()

Proof: Fix h € Li(¢)
We need to show that Qh € Ly (¢)

Suffices to show that

lies in Li(1)

In other words, we need to show that

Blx(z)] = [ [e@)]p(z)dz < o0

49/55



For nonnegative numbers a,b, we have a Vb < a+ b, and hence,
for any z € R,

1
1-p

K(2) < E: [exp(z') +exp(p+00) + [h(2)]]

Let z; be a draw from 1, the preceding inequality yields

Ex(zr) € 125 BB fexp(zr) +exp(n+ Zisr) + [h(zre)]

= 1:BE lexp(zi+1) +exp(p + 0Cit1) + [h(ze41)]]

o I exp(zi41) + B exp(p + 0Gp1) + B |h(ze11))|
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Hence the proof will be done if

B exp(zi+1) + E exp(p + 0C41) + E |h(z441)] < o0
Here z;11 = pz¢ +d + se;1q
® E exp(zt+1) < o0 because ?

® E exp(y+ 0{i+1) < o because ?

® [E|h(z441)| < oo because ?
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Prop. Q is a contraction of modulus 8 on Li(1)

Proof: By the inequality |a V x —a V y| < |x — y| we have

max {ilﬁ,g(z/)} — max { 1758,11(2/)}’

< BE: [g(2) — h(Z))|

1Qg(z) — Qh(z)| < BE:

Let z; be drawn from ¥

By the last inequality, for any t,

1Qg(z¢) — Qh(zt)| < BEy, |(z44+1) — h(ze41)]
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Taking expectations gives
EQg(zt) — Qh(z:)| < BEEz, |g(2t41) — h(zr41)]

= BE |g(zt11) — h(z411)]

Since z; Z P, we have z; g Z 1, so the last inequality becomes
[108() — Qh(z) 9(z) dz < B [ I3(2) — h(z)| 9(z) dz

or

1Qg — Qhll < Bllg — 1l
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Ex. Let ¢; < ¢p be two levels of unemployment compensation
satisfying

Show that h; < h; pointwise on R, where £y is the continuation
value corresponding to c;

Ex. Give a condition under which the reservation wage

w'(z) == (1= pB)h"(2)

is increasing in z
Show that your condition is sufficient

Interpret your result, provide economic intuition
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Ex. Suppose the agent seeks to maximize lifetime value
oo
t
E) . Bu(y:)
t=0

where y; is earnings at time t and u is a utility function

Letting u(c) = Inc, write down the modified Bellman equation
and the Q operator

How does the reservation wage change?
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