ECON-GA 1025 Macroeconomic Theory I

John Stachurski

Fall Semester 2018

Today's Lecture

- Comments on assessment
- Finish: Numerical methods for tracking distributions
- Start: Job Search

Shifting office hours to Wed 4:00–5:00

Style of exam:

- broad understanding of all course material
- applications of ideas

Exam prep:

- Weekly assignments
- Other Ex. in slides
- Review logic and applications in slides

Wealth Distributions: Estimation by Monte Carlo (Continued)

In the last lecture we studied estimation of the time t distribution Ψ_t using Monte Carlo

Method:

- 1. Compute sample $\{w_t^m\}$, time t wealth of m independent households
- 2. Calculate the empirical distribution

$$F_t^m(x) := \frac{1}{m} \sum_{i=1}^m \mathbb{1}\{w_t^i \le x\}$$

Figure: The empirical distribution F_m^t for different values of t

But we know that Ψ_t can be represented by a density ψ_t

This is structure that we would like to exploit

- helps when we get to high dimensional problems
- helps extract information from the tails

Unfortunately there is no natural estimator of densities that

- works in every setting (like the empirical distribution does)
- is always unbiased and consistent

Why?

- Empirical distributions just reflect the sample
- Density estimates must make statements about probability mass in the neighborhood of each observation

Let's look at our options

Option 1. Nonparametric kernel density estimation, where

$$\hat{f}_t^m(x) = \frac{1}{mh} \sum_{i=1}^m K\left(\frac{x - w_t^i}{h}\right)$$

Here

- K is a density, called the kernel
- h is the **bandwidth** of the estimator

Idea:

- Put a smooth bump on each data point and then sum
- Larger h means smoother estimate

Figure: NPKDE of ψ_t using Scikit Learn (t=100, m=500)

Option 2. The look ahead estimator

$$\ell_t^m(w') := \frac{1}{m} \sum_{i=1}^m \pi(w_{t-1}^i, w')$$

Notes:

- \bullet sample $\{w_{t-1}^i\}$ is from time t-1
- $\pi(w, w') = \int \varphi(w' zs(w))\nu(dz)$

Observe that we are combining data and model

• more information than just the sample

The estimator

$$\ell_t^m(w') := \frac{1}{m} \sum_{i=1}^m \pi(w_{t-1}^i, w')$$

is unbiased:

$$\mathbb{E}[\ell_t^m(w')] = \frac{1}{m} \sum_{i=1}^m \mathbb{E}[\pi(w_{t-1}^i, w')]$$
$$= \int \pi(w, w') \psi_{t-1}(w) \, \mathrm{d}w = \psi_t(w')$$

From the SLLN, we also have

$$\ell^m_t(w') o \mathbb{E}[\pi(w^i_{t-1}, w')] = \psi_t(w')$$
 as $m o \infty$

Figure: The look ahead estimate of ψ_t (t=100, m=500)

Stability of the Wealth Process

Lemma. The dynamical system (\mathcal{D},Π) corresponding to the wealth process

$$w_{t+1} = R_{t+1}s(w_t) + y_{t+1}$$

is globally stable whenever

- (a) y_t has finite first moment, $\varphi \gg 0$ and
- (b) $\mathbb{E}[R_t]s(w) \leqslant \lambda w + L$ for some $\lambda < 1$ and $L < \infty$

If ψ^* is the stationary density and $\int |h(w)| \psi^*(w) \, \mathrm{d} w < \infty$, then, with prob one,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{t=1}^n h(w_t)=\int h(w)\psi^*(w)\,\mathrm{d}w$$

Proof: Follows from our stability result for

$$X_{t+1} = \zeta_{t+1} g(X_t) + \eta_{t+1}$$

Ex. Apply the last result to the case

$$s(w) = \mathbb{1}\{w > \bar{w}\}s_0w \qquad (w \geqslant 0)$$

- Here s_0 and \bar{w} are positive parameters
- What conditions do you need to impose on the parameters in the model in order to get global stability?
- Can you give some interpretation?

The stationary density look ahead estimator:

$$\ell_n^*(w') := \frac{1}{n} \sum_{t=1}^n \pi(w_t, w')$$

ullet sample is a single time series $\{w_t\}$ generated by simulation

Consistent for $\psi^*(w')$, since, with probability one as $n \to \infty$,

$$\ell_n^*(w') = \frac{1}{n} \sum_{t=1}^n \pi(w_t, w') \to \int \pi(w, w') \psi^*(w) \, \mathrm{d}w = \psi^*(w')$$

Is it unbiased?

Figure: The stationary density look ahead estimator of the wealth distribution

Figure: Lorenz curve, wealth distribution at default parameters

Figure: Lorenz curves with increasing variance in labor income

Figure: Lorenz curves with increasing rate of return on wealth

Figure: For comparison: wealth distribution in the US (SCF 2016)

See notebooks

- wealth_sk_plots.ipynb
- wealth_ineq_plots.ipynb

New Topic: Job Search

Our first deep dive into dynamic programming

- An integral part of labor and macroeconomics
- Relatively simple (binary choice)

Related to

- Optimal stopping
- Firm entry and exit decisions
- Pricing American options
- etc.

As discussed earlier

Unemployed agent seeks to maximize

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^t y_t$$

- ullet Observes an employment opportunity with wage offer w_t
- ullet Wage offers are IID and drawn from distribution arphi
- Acceptance means lifetime value $w_t/(1-\beta)$
- Rejection yields unemployment compensation $c\geqslant 0$ and a new offer next period

Overview

The value function $v^*(w):=$ the maximal value that can be extracted from any given state w

We will prove that it satisfies the Bellman equation

$$v^*(w) = \max\left\{\frac{w}{1-\beta}, c+\beta\int v^*(w')\varphi(\mathrm{d}w')\right\} \qquad (w\in\mathbb{R}_+)$$

Optimal policy is then obtained via

$$\sigma^*(w) = \mathbb{1}\left\{\frac{w}{1-\beta} \geqslant c + \beta \int v^*(w')\varphi(\mathrm{d}w')\right\}$$

To calculate the optimal policy we need to evaluate $\int v^*(w') \varphi(\mathrm{d}w')$

To compute v^* , we introduce the **Bellman operator**

$$Tv(w) := \max\left\{\frac{w}{1-\beta}, c+\beta\int v(w')\varphi(\mathrm{d}w')\right\}$$

Fixed points of T exactly coincide with solutions to the Bellman equation

$$v(w) = \max\left\{\frac{w}{1-\beta}, c+\beta\int v(w')\varphi(\mathrm{d}w')\right\}$$

Simplifying assumption:

ullet There exists an $M\in\mathbb{R}_+$ such that $\int_0^M arphi(\mathrm{d} w)=1$

Later we will show this assumption can be weakened

But for now it's convenient...

Case 1: Continuous Wage Draws

Assumption. The offer distribution φ is a density supported on [0,M]

Any w in [0,M] is possible so v^{st} needs to be defined on [0,M]

Leads us to seek a fixed point of T in $\mathscr{C}:=$ all continuous functions on [0,M] paired with

$$d_{\infty}(f,g) := \|f - g\|_{\infty}, \qquad \|g\|_{\infty} := \sup_{w \in [0,M]} |g(w)|$$

• $(\mathscr{C}, d_{\infty})$ is a complete metric space

Question: Why restrict ourselves to continuous functions?

Proposition. In this setting, T is a contraction of modulus β on $\mathscr C$

In particular,

- 1. T has a unique fixed point in $\mathscr C$
- 2. that fixed point is equal to the value function v^{st} and
- 3. if $v \in \mathscr{C}$, then $||T^n v v^*||_{\infty} \leq O(\beta^n)$

For now let's take (2) as given — we'll prove it soon

• Remainder will be verified if we show T is a contraction of modulus β on $(\mathscr{C}, d_{\infty})$

We use the elementary bound

$$|\alpha \lor x - \alpha \lor y| \le |x - y| \qquad (\alpha, x, y \in \mathbb{R})$$

Fixing f,g in $\mathscr C$ and $w\in [0,M]$,

$$|Tf(w) - Tg(w)| \le \left| \beta \int f(w') \varphi(w') \, \mathrm{d}w' - \beta \int g(w') \varphi(w') \, \mathrm{d}w' \right|$$

$$= \beta \left| \int [f(w') - g(w')] \varphi(w') \, \mathrm{d}w' \right|$$

$$\le \beta \int |f(w') - g(w')| \varphi(w') \, \mathrm{d}w' \le ||f - g||_{\infty}$$

Taking the supremum over all $w \in [0, M]$ leads to

$$||Tf - Tg||_{\infty} \le \beta ||f - g||_{\infty}$$

Ex. Show that T maps the set of increasing continuous convex functions on the interval [0,M] to itself

Ex. Show that v^* is increasing and convex on [0,M]

Case 2: Discrete Wage Draws

Let's swap the density assumption for a discrete distribution

Assumption. The offer distribution φ is supported on finite set W with probabilities $\varphi(w)$, $w \in W$

• Now v^* need only be defined on these points

Hence we define T on \mathbb{R}^W by

$$Tv(w) = \max \left\{ \frac{w}{1-\beta}, c + \beta \sum_{w' \in W} v(w') \varphi(w') \right\} \qquad (w \in W)$$

• $(\mathbb{R}^W, d_{\infty})$ is a complete metric space

Proposition. T is a contraction of modulus β on \mathbb{R}^W

In particular,

- 1. T has a unique fixed point in \mathbb{R}^W ,
- 2. that fixed point is equal to the value function v^{st} and
- 3. if $v \in \mathbb{R}^W$, then $||T^n v v^*||_{\infty} \leqslant O(\beta^n)$

Ex. Prove that T is a contraction of modulus β on (\mathbb{R}^W, d_∞)

To compute the optimal policy we can use **value function iteration**

- 1. Start with arbitrary $v \in \mathbb{R}^W$
- 2. iterate with T until $v_k := T^k v$ is a good approximation to v^*

Then compute

$$\sigma_k(w) := \mathbb{1}\left\{rac{w}{1-eta} \geqslant c + eta \sum_{w'} v_k(w') arphi(w')
ight\}$$

Approximately optimal when v_k is close to v^*

Error bounds available...

Rearranging the Bellman Equation

Actually, for this particular problem, there's an easier solution method

- involves a "rearrangement" of the Bellman equation
- shifts us to a lower dimensional problem

Recall: a function v satisfies the Bellman equation if

$$v(w) := \max\left\{\frac{w}{1-\beta}, c+\beta\int v(w')\varphi(\mathrm{d}w')\right\}$$

Taking v as given, consider

$$h:=c+\beta\int v(w')\varphi(\mathrm{d}w')$$

Using h to eliminate v from the Bellman equation yields

$$h = c + \beta \int \max \left\{ \frac{w'}{1 - \beta}, h \right\} \varphi(dw')$$

Ex. Verify this

We now seek an $h \in \mathbb{R}_+$ satisfying

$$h = c + \beta \int \max \left\{ \frac{w'}{1 - \beta'}, h \right\} \varphi(dw')$$

Solution h^* is the continuation value

Optimal policy can be written as

$$\sigma^*(w) = \mathbb{1}\left\{\frac{w}{1-\beta} \geqslant h^*\right\} \qquad (w \in \mathbb{R}_+)$$

Alternatively,

$$\sigma^*(w) = \mathbb{1}\left\{w \geqslant w^*\right\} \quad \text{where } w^* := (1 - \beta)h^*$$

The term w^* is called the **reservation wage**

To solve for h^* we introduce the mapping

$$g(h) = c + \beta \int \max \left\{ \frac{w'}{1 - \beta'}, h \right\} \varphi(dw') \qquad (h \in \mathbb{R}_+)$$

Any solution to $h=c+\beta\int\max\left\{\frac{w'}{1-\beta},\,h\right\}\phi(\mathrm{d}w')$ is a fixed point of g and vice versa

Assumption. The distribution φ has finite first moment

Ex. Confirm that

- ullet g is a well defined map from \mathbb{R}_+ to itself
- g is a contraction map on \mathbb{R}_+ under the usual Euclidean distance

Conclude that g has a unique fixed point in \mathbb{R}_+

For computation it is somewhat easier to work with the case where wages are bounded

Ex. Suppose that $\mathbb{P}\{w_t \leqslant M\} = 1$ for some positive constant M

• Confirm that g maps [0, K] to itself, where

$$K := \frac{\max\{M, c\}}{1 - \beta}$$

• Conclude that g has a fixed point in [0,K], which is the unique fixed point of g in \mathbb{R}_+

See notebook ${\tt iid_job_search.ipynb}$

Parametric Monotonicity

Recall this result:

Fact. If (M, g_1) and (M, g_2) are dynamical systems such that

- 1. g_2 is isotone and dominates g_1 on M
- 2. (M, g_2) is globally stable with unique fixed point u_2 ,

then $u_1 \leq u_2$ for every fixed point u_1 of g_1

Now consider

$$g(h) = c + \beta \int \max \left\{ \frac{w'}{1 - \beta'}, h \right\} \varphi(dw')$$

This map is

- 1. globally stable
- 2. an isotone self-map on \mathbb{R}_+

Hence any parameter that shifts up the function g pointwise on \mathbb{R}_+ also shifts up h^\ast

Ex. Show that

- 1. the continuation value h^{\ast} is increasing in unemployment compensation c
- 2. the reservation wage w^* is increasing in c

Interpret

Shifting the Offer Distribution

How do shifts in this distribution affect the reservation wage?

Intuition: "more favorable" wage distribution would tend to increase the reservation wage

the agent can expect better offers

What does "more favorable" mean for offer distributions?

One possible answer: (first order) stochastic dominance

First Order Stochastic Dominance

Definition. Distribution φ is **stochastically dominated** by distribution ψ (write $\varphi \leq_{SD} \psi$) if

$$\int u(x)\varphi(\mathrm{d}x)\leqslant \int u(x)\psi(\mathrm{d}x) \text{ for all } u\in ibc\mathbb{R}_+$$

With $ibm\mathbb{R}_+$ as the increasing bounded Borel measurable functions, this is equivalent:

$$\int u(x)\varphi(\mathrm{d}x)\leqslant \int u(x)\psi(\mathrm{d}x) \text{ for all } u\in ibm\mathbb{R}_+$$

Interpretation: Anyone with increasing utility likes ψ better

Let φ and ψ be two wage distributions on \mathbb{R}_+ with finite first moment

Let

- w_{arphi}^{*} and w_{ψ}^{*} be the associated reservation wages
- h_{φ}^{*} and h_{ψ}^{*} be the associated continuation values

Assume both are supported on [0, M]

Lemma. If $\phi \preceq_{\mathrm{SD}} \psi$, then $w_{\phi}^* \leqslant w_{\psi}^*$

Proof: Let ψ and φ have the stated properties

It suffices to show that $h_{\varphi}^* \leqslant h_{\psi}^*$

We aim to show that

$$g(h) = c + \beta \int \max \left\{ \frac{w'}{1 - \beta'}, h \right\} \varphi(\mathrm{d}w')$$

increases at any h if we shift up the offer distribution in \preceq_{SD}

Sufficient: given $\varphi \preceq_{\mathrm{SD}} \psi$ and $h \geqslant 0$,

$$\int \max\left\{\frac{w'}{1-\beta},\,h\right\} \varphi(\mathrm{d}w') \leqslant \int \max\left\{\frac{w'}{1-\beta},\,h\right\} \psi(\mathrm{d}w')$$

This follows directly from the definition of stochastic dominance (why?)