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Today's Lecture

VARs and linear state space processes
Random coefficient models
Nonlinear stochastic models

Numerical methods for tracking distributions
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Distribution Dynamics: The General Density Case

Recall Xty1 = Axt +b+ C§t+1

Assume now

e {¢;} is 1D on R" with density ¢

® Cis n x n and nonsingular
Under these assumptions, each ¢; will be a density
To prove this we use

Fact. If ¢ has density ¢ and C is nonsingular, then y =d + C¢
has density

p(y) = ¢ (C(y—d)) | detc|™?
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The density of x;,1 conditional on x; = x is therefore

(x,y)=¢ (C_l(y — Ax — b)) |detC| ™!

The law of total probability tells us that, for random varables
(x,y) with densities,

p) = [ plylx)p(x) d

Hence the densities {; and ;1 are connected via

Ya(y) = [detCl ! [ g (CM(y = Ax =) gulx) dx
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Suppose we introduce an operator IT from the set of densities D
on R" to itself via

(WD) = [ 7(x)p(x) dx
Then our law of motion for marginals

pra(y) = [detC|™ [ (C7y — Ax— 1)) pu(x) dx

becomes
Y1 = Pell

® a concise description of distribution dynamics
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Comments:

® In {1 = PIT we write the argument to the left following
tradition (see Meyn and Tweedie, 2009)

® The set of densities D is endowed with the topology of weak
convergence

Proposition. If r(A) < 1, then (D,I1) is globally stable

Moreover, if h is any function such that [ |i(x)|p*(x)dx is finite,

then
IP{nlgrgontht /h }:1
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Linear State Space Models

The standard linear state space model is
Xty1 = Axs + b+ CCiyq
Yt = Gxy + H{y
where

® Aisnxmn,bisnx1land Cisn Xxj

e Giskxnand Hiskx ¢

e {¢;} are1iD j x 1 with E¢; = 0 and E&id; = 1
e {;} areD £ x 1 with E¢; = 0 and E{¢{} = I
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In this context
e {x:} is called the state process

e {y;} is called the observation process

Example. The standard linear model of log labor earnings
discussed in is

Y+ = xt+hlr  where xp11 = px¢ + b+ G

e {¢;} and {{;} are 1ID and standard normal in R

® 11,p,b,c are parameters, with |p| <1
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Recalling that

® = g'(po) where g(pt) := Ap+b
o %, = S'(%) where S(X) := A'ZA + CC’

we obtain

Ey; = Guy and vary; = GG + HH'

If r(A) <1, then

Ey; — Gu*, and vary; — GL*G' + HH'

where p*, 2" = fixed points of g, S
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Ergodicity results also hold when r(A) <1

For example,

1 & 1&
— Zyt = — Z(Gxt + Hgt)
ni3 ni3
1& 1&
:G—th+H—Z§’t
ni3 ni3
— Gu*

with prob one as 1 — o
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Forecasts

We wish to forecast geometric sums

Example. If {y;} is a cash flow, what is the expected discounted
value?

The formulas are

]Et Z ﬁ]XH_] I — ’BA]

Ly iﬁjytﬂ = G[I - pA]™
j=0

Ex. Show the formulas are valid whenever r(A) < 1/8
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Nonlinear Stochastic Models

We have looked at

1. nonlinear deterministic models

2. nonlinear stochastic models on discrete state spaces and

3. linear stochastic models

Now we turn to general nonlinear stochastic models on continuous

state spaces

First some motivation...
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Consider a first order Markov process on state space X C R¥
defined by
X1 = F(Xt, Gra1)

where

L4 {gt}t}l = dinEC R]
e [: Xx E — X is Borel measurable

Notes:

® the shock distribution @ is a CDF
® The initial condition is Xy with ¢cDF ¥
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Assume: X is independent of process {¢;}
Implies independence of X; and ;.1 for all t

This holds because X; is a function only of Xy and ¢1,...,¢¢

Xl = P(XOI Cl)
Xo = F(F(Xo,81),62)

X3 = F(F(F(Xo,81),¢2),83)

and so on
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Example. Consider a stochastic Solow—Swan model on (0, o)
where

kii1 = sz f (k) + (1 —8)ki where {z:} = ¢ on (0,00)

A first order Markov process with

e state variable k; taking values in X = (0, c0),
® shock space E = (0,00) and
e law of motion F(k,z) :=szf(k) + (1 —d)k,
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Example. Consider stochastic Solow—Swan model growth model

® ki1 =szepf(ke) + (1 —9)k
® z; = exp(y:) where yr11 = ay; + b+ ¢
e {¢} up and N(0,1)

A first order Markov process with
e state vector X; := (k, y¢) € X := (0,00) X R,
® |aw of motion

F((ky),¢) = <5 exp(ay + Z;J:g)i(ckg) +(1- 5)k>
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Let ¥; represent the CDF of the state vector X; generated by

1ID

Xi1 = F(Xt,841),  {Gi}z1 ~ @

By independence of X; and (41,

IP{XH_l < y} = ]E:H-{F(Xt/ Ct-i—l) < 7/}

_ / / 1{F(x,2) < y}d(dz)¥;(dx)

(The joint CDF of (X}, {4+1) is just the product of the marginals)
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The last equation can be written as

¥ea(y) = [ [ 1{F@2) < y)e(dz)¥i(dy)

Alternatively,

FraW) = [ME ¥ yex)

where
M(xy) = [ 1{F(x,2) < y)o(dz)

—: the stochastic kernel for our model
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We can write

¥ia(y) = [Nxy)¥s)  yeX)

as
¥ = Y10

Where IT is the operator on CDF space defined by

() = [NExy¥d)  EeX)

If P(X) is the set of all distributions on X, then

® (P(X),II) forms a dynamical system
e a stationary distribution is a fixed point of IT in P(X)
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Example. The marginal distributions {¥;} of capital under the
Solow—Swan model obey

Fra(K) = [Tk K)¥(dK) (k> 0)

with

T(k, k') = P{si1f(k) + (1= 6)k <K'}

()

A distribution ¥* is stationary if

(k) = /cp (W) ¥ (dk) (k> 0)
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The Density Case

The sequence {¥;} has density representations {;} in some cases
Key condition: TI(x, ) can be represented by a density 7(x, )

Formally, exists for each x € X a 7t(x,-) such that

II(x,y) :/ mt(x, u)du

usy
® 77 is called a density stochastic kernel

= distributions {¥;} all have densities {¢;} and they satisfy

Yrea(y) = [ 7o y)pn(x) dx
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Example. Consider the 11D Solow—Swan CDF kernel

If @ is differentiable, ®' = ¢, then, differentiating w.r.t. ',

K10k 1
”(k'k)‘“”< SR )sf(k)

The marginal densities {;} satisfy

naa) = [0 (™) st o
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Random Coefficient Models

Kesten processes or random coefficient models are recursive
sequences of the form

Xpp1 = App1 X + 141
where

® {x:}t>0 is an n x 1 state vector process
e {A;} is 11D, takes values in M(n X n)

e {n:} is 1ID, takes values in R"

Stochastic kernel, is, in CDF format,

II(x,y) = P{A1x 4+ 1141 <y} (y e R")
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Assume:
E[|At]] <oo and By < oo

Let 1
Ln::E]ElnHAl---AnH (n € N)

Theorem. If L,, < 0 for some n, then
® the following random sum exists with prob one:

x* =10+ A+ A1Arip + A1ArAz iz A+ - -

o ¥ :Z x* is stationary and (P(IR"),I1) is globally stable
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Intuition for stationarity of ¥* = x*

. 2 2
We need to show that if x; = x*, then x;,1 = x*

Equivalent: if (A,7) drawn independently, then

Ax*+172170+A1171+A1A2172+~~

True because
Ax* +n=n+A(o+ A+ AjAyp+---)

=1+ A+ AA M +AA1Aypp + - - -

9
=1no+Arm+A1Aypp + A1 Ay Az + - -
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Example. Consider the vector autoregression model

Xtp1 = Axp + 101 when 17441 := b+ Clryq

The exponent L, translates to

1 _1 n| __ nyx
SEIn A Al = o In A" = In {]| A" |

By Gelfand’s formula,

|A"[|7 — r(A) (1 — oo)

Hence r(A) < 1 implies L,, < 0 for large n
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Example. Consider the GARCH(1, 1) volatility process
0te1 = o + 0f (11871 + B)
where
e {&} is D with E¢? =1
® all parameters are positive
Ex. Show stability holds when EIn(a18% ; + ) < 0

A sufficient condition often used in the literature is a1 + B < 1

Ex. Show this condition is sufficient
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Intermezzo: Heavy Tailed Distributions

Heavy tails matter for observed economic outcomes

® tail risk impacts asset prices

® Heavy tails in the wealth and income distributions shape our
society / politics / welfare

Encountered frequently in social science

® city size distributions

firm size distributions

® asset returns in high frequency data

number of citations received by a given scientific paper
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Power Laws
A random variable X is said to have a power law in the right tail if

Ja,c>0s.t li_r>n ¥P{X>x}=c
X—00

Intuition:

e P{X > x} is proportional to x~* for large x
® right tail decay is much slower than the Gaussian case

Example. The Pareto CDF takes the form

F(x) = 1—(%/x)" ?fx}af
0 if x <X
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With linear models, it's thin tails in == thin tails out
That is, if

® Xpy1 = Axt + i1

e {;} '~ ¢ and ¢ has thin tails

® * is the stationary distribution of {x;}

then ™ has thin tails

With random coefficient models, the story is different
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Example. Consider the positive, scalar version

® Xpp1 = AppaXe + e
e {A;} and {#;} both positive and scalar

Theorem. (Kesten) If

® (some technical restrictions)

® There exists a positive constant a such that
EA*=1, Ej*<o, and E[A*InT A] <o
then there exists a random variable x* on R such that
Z Ax* + and lim x*P{x* > x} =¢
t Mt+1 X—00

x*

for some ¢, > 0
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Sketch of proof (due to Gabaix): The influence of {#;} in
Xt+1 = A¢41X¢ + i1 is insignificant when x; is large

So

1. setny; =0
2. let A; have density g for all ¢

3. consider the stationary density * of x;41 = Asr1x¢

Fact. If A has density g on (0,00) and x > 0, then the density of
Y = Axis
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Hence density of v := x;11 = A¢11X; given x; = x is

ENOE

X/ X

So
) = [reyp@dr= [g(L) v dr

Ex. Show that ¢*(x) = kx~*"! is a solution for some constant k,
provided that [ g(f)t*dt =1

... which is true by assumption (recall EA* = 1)
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A Nonlinear Scalar Model

Several models we study are scalar and have the form
Xip1 = Gr418(Xt) + i1
where

1. g is a Borel measurable function from R to itself,
2. {¢:} is 1D on Ry with density v

3. {m:} is 1D on R with density ¢

4. {n:} and {{;} are independent

What is the density stochastic kernel?
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What is the density of Y := {;119(x) + #1417

Fact. If U has density ¢y and Y = f(U) where f is continuously
differentiable and strictly increasing, then the density of Y is

-1
vl = outr ) [ )

Hence density of Y = (g(x) + 17 given { =z is y — ¢(y — zg(x))
(Here we take ¢(u) = 0 whenever u < 0)

By the law of total probability

m(x,y) = [ ply - 2g(x)v(dz)
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Hence the marginal densities {y;} of

Xiy1 = 018(Xt) + i1

obey
Pri1 = Pl

where

W) = [ [ oy —25(x)v(d)p(x) dx

® A self-mapping on D, the set of densities on R+

® When is (D,I1) is globally stable?
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Regarding the process X; 11 = (r+18(Xt) + 1141, we have:
Proposition. If
1. the density @ of 7 has finite first moment with ¢ > 0 and
2. there exist positive constants L and A such that A < 1 and
Efg(x) < Ax+L (x>0)

*

then (D, I1) is globally stable, with unique stationary density ¢
If 11 is Borel measurable and [ |h(x)[¢*(x) dx < oo, then

n

Y h(X)) — /h(x)t/;*(x) dx

t=1

S| =

with probability one as n — oo
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The positive density restriction on ¢ is stronger than we need

Its role to generate

® like irreducibility for finite state systems

® stops us getting “stuck” at “local attractors”

Example. Suppose

e =1landy =0
® ¢ has multiple fixed points

Then stability fails
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Figure: Dynamics with a degenerate shock and multiple fixed points
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Even if

® ( and 7 are permitted to have densities

® these densities have small supports

then local attractors will have permanent influence
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Figure: Time series with small shocks
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Condition (ii) prevents {X;} from diverging to +co

When it holds we have
E[Xi11 | Xt] = E[Cr418(Xt) + 7141 | X4
— E[lg(X) + Ely] < AX, +K

where K := L + E[y]

Taking expectations of both sides gives
pir1 < A+ K

where ji; is the mean of X; for each t

Since A < 1, the mean of X; is bounded by K/(1—A)
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Wealth Dynamics

Let's examine a particular nonlinear stochastic model representing
wealth dynamics

Wip1 = Rey15(wy) + Y

Simplifying assumptions

® All shocks independent across household

® Savings rule ad hoc (optimal rule to be treated soon)

How does the wealth distribution evolve?

Can our simple model replicate the data?
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Figure: Lorenz curve, wealth distribution in the US (SCF 2016)
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So let's look at our model of wealth dynamics

To repeat,
w1 = Rep1s(wr) + Yi

® ;11 is IID with common density ¢
® Rty is 1ID with common distribution v

Baseline savings rule:
s(w) = L{w > @}sow

where @ and s are positive parameters
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Figure: Holding {R;} at the constant IER; means smaller spikes
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Our wealth process is a version of the earlier model

Xir1 = Ce18(Xt) + 11141

In particular, the stochastic density kernel is

m(w,w') := /(p(w/ —zs(w))v(z) dz
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The wealth distribution process {{;} obeys

Pri1 = Prll

where

(Y@ = [ 7w, )p(w) dw
= [ [ o = zs(w))u(dz)p(w) dw

How does it evolve?

® analytical expressions for 1y not generally available

® but we can track it by simulation
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Algorithm 1: Draws from the marginal distribution

1 foriin 1 tom do

2 draw w from the initial condition ¢y ;

3 for jin1totdo

4 draw R’ and i’ from their distributions ;
5 set w=R's(w)+y ;

6 end

7 set wi = w ;

8 end

9 return (w},...,w")
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Given {w}"}, we can to compute the empirical distribution

El"(x) =

i=1
An unbiased estimator of the cDF Y¥; of w;

B1{w| < x}] = lmP{wt < x} =¥ (x)

1=

1
m !

E[F"(x)] =

N
Il
—

Also consistent, since the SLLN vyields, with prob one,

lim F"(x) = B[1{w! < x}] = P{w; < x} = ¥(x)

m—» 0o
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Figure: The empirical distribution F., for different values of ¢
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