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Lecture 6

John Stachurski

Fall Semester 2018
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Today's Lecture

® Markov chains continued
® deterministic linear dynamics

® vector autoregressions
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Markov Chains: Probabilistic Properties

Let IT be a stochastic kernel on X and let x,y be states

We say that y is accessible from x if x =y or

3k € N such that IT¥(x,y) > 0

Accessible in the induced directed graph

A stochastic kernel IT on X is called irreducible if every state is
accessible from any other

The induced directed graph is strongly connected
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Irreducible:

Not irreducible:

417



Aperiodicity

Let I'T be a stochastic kernel on X

State x € X is called aperiodic under IT if

Ji € Nsuch that k > i = ITF(x,x) >0

A stochastic kernel IT on X is called aperiodic if every state in X
is aperiodic under IT

5/77



Aperiodic?

=)

Aperiodic?

1.0 0.5 0.5
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Stability of Markov Chains

Recall the distributions generated by Quah’s model
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What happens when { — oc0?
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At t = 1000, the distributions are almost the same for both
starting points

This suggests we are observing a form of stability

e is (P(X),II) globally stable?
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Not all stochastic kernels are globally stable

Example. Let X ={0,1} and consider the periodic Markov chain
1= (7o)

Ex. Show ¢* = (0.5,0.5) is stationary for IT

SIT — 61 if tis odd
o 0y iftiseven

Ex. Show that

Conclude that global stability fails
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Proving Stability

Fact. The operator IT is always nonexpansive:

[IT = yI[l; < [[¢ —¢[l1 Vo, € P(X)

Proof:

[@IT —9ITfly = Y | T1(x,y)[@(x) — 9(x)]
y | x

<L )lp(x) — ()]
y o x

=Y Y I(x,y)le(x) — p(x)| = o — ¢l
Xy
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With some more conditions we might be able to apply this result:

Theorem. If (M, p) is a compact metric space and T: M — M is
a strict contraction, then (M, T) is globally stable

e strict contraction means p(Tx, Ty) < p(x,y) when x # y

® 3 variation on the Banach CMT

X is finite, so P(X) is compact

We just need to boost nonexpansiveness to strict contractivity
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Lemma. If TI(x,y) > 0 for all x,y, then IT is a strict contraction
on P(X) under the metric dq

The proof uses two lemmas:

Fact. If ¢, € P(X) and ¢ # 1, then

Jx,x" € X such that ¢(x) > ¥(x) and @(x') < P(x')

Fact. If ¢ € R and 3x,x’ € X s.t. g(x) > 0and g(x') <0, then

1Y sl <) Ig(y)

yeX yeX

Ex. Prove both
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Under the conditions of the theorem, if ¢ # ¢, then

!WH—¢HM=Z:Zny

Y

=Y 1) I(x,y)[e(x)
y | x

<Y Y (x, y) [p(x)
e

—p(x)]

Zny

— ()]

—p(x)]

— )] = llo =9l
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We have prove the following:

Proposition. If IT>> 0, then (P(X),I1) is globally stable
But this condition is rather strict

® Hamilton's matrix fails it

® Quah’s matrix fails it

097 0.03 0.00 0.00 0.00
0.05 092 0.03 0.00 0.00
Il = | 0.00 0.04 0.92 0.04 0.00
0.00 0.00 0.04 094 0.02
0.00 0.00 0.00 0.01 0.99
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Let's see if we can do better
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Preliminary observation:

Fact. If (P(X),IT’) is globally stable for some i € N, then
(P(X),II) is also globally stable

Recall: If

1. dynamical system (M, g') is globally stable for some i € N

2. g is continuous at the fixed point of ¢’

then (M, g) is also globally stable

Moreover, 1 — II is everywhere continuous as already discussed
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Theorem. If X is finite and IT is both aperiodic and irreducible,
then IT is globally stable

Proof: It suffices to show that

Vxye XxX, Jiyy, € Nst. k>iy, — % (x,y) > 0

Indeed, if this statement holds, then

i:=max{ir,} = IT(x,y)>0 forall (x,y)€XxX

Implies that

e (P(X),IT) is globally stable
® and hence (P(X),I1) is globally stable

22/77



So fix x,y € X x X and let's try to show that

Ji=iyy € Nst. k>i = II*(x,y) >0
Since I is irreducible, 3j € N such that I (x,y) > 0
Since I1 is aperiodic, 3m € N such that

I>m — Hé(y,y) >0

Picking £ > m and applying the Chapman—Kolmogorov equation,

we have

W (x,y) = Y TV (x,2)11(z,y) > TV (x,y)IT"(y,y) > 0

zeX

QED
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Example. Quah’s stochastic kernel is both irreducible and aperiodic

And therefore globally stable

Same with Hamilton's business cycle model

mild recession

normal growth )~ )" ( severe recession
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In [1]:

In [2]:

In [3]:

In [4]:
Out [4] :

In [5]:
Out [5] :

In [6]:
Out [6] :

import quantecon as qe

P = [[0.971 , 0.029 , 0],
[0.145 , 0.778 , 0.077]
[0 , 0.508 , 0.492]]

mc = ge.MarkovChain(P)

mc.is_aperiodic
True

mc.is_irreducible
True

mc.stationary_distributions
array([[ 0.8128 , 0.16256,

0.0246411)
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A Weaker Set of Conditions

Let IT be a stochastic kernel on (finite set) X

Theorem. The following statements are equivalent:

1. TI¥ has a strictly positive column for some k € N

2. For any x,x’ € X, there exists a k € N and a y € X such that

I1%(x,y) > 0 and IT*(x',y) >0

3. (P(X),II) is globally stable
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Intuition for sufficiency

We know a stationary distribution exists, just need to prove
convergence

Suppose that, for any x,x" € X, there exists ak € N and a y € X
such that
IT%(x,y) > 0 and TT*(x,y) > 0
Wherever we are now, we can meet up again
Hence no one is stuck at a local attractor

Initial conditions don’t matter in the long run

Hence (P(X),II) is globally stable
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Application: Inventory Dynamics

Let X; = inventory of a product, obeys

(Xt — Dturl)jL if Xp >s
Xip1 = I
(S — Dt+1) if Xt <s

Assume {D;} '~ the geometric distribution, say

A Markov chain on X :={0,1,...,S} with kernel

) P{(x = Di1)" =y} ifx>s
Hixy) = {IP{(S —Di)t =y} ifx<s
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Proposition The pair (P(X),I1) is globally stable
Proof: Suppose that Dy;1 > S

Then
0< Xp1 < (S—Dyy1)T =0

Hence P{D;1 > S} > 0 implies IT(x,0) > 0 for all x

Moreover P{D;.1 > S} > 0 holds for the geometric distribution

Hence (P(X),II) is globally stable
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The Law of Large Numbers

Fix h € R* and let {X;} be a Markov chain generated by I1

Theorem. If X is finite and IT is globally stable with stationary
distribution ¢*, then

IP{hm tht Y h(x) } 1

n—oo 11 xeX

Intuition: {X;} “almost” identically distributed for large ¢

Also, stability means that initial conditions die out — a form of
long run independence

An approximation of the IID property used in the classical LLN
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LLN provides a new for the stationary distribution
Using the LLN with h(x) = 1{x =y}, we have

% Z";ﬂ{xt —y} = Y I{x =y} (x) = ¢ ()

xeX

Turning this around,

Y*(y) ~ fraction of time that {X;} spends in state y

This is always valid the chain in question is stable
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Deterministic Linear Models

Linear vector valued dynamic models — workhorse of macro

® Often used as a building block for more complex models

® Even nonlinear models can often be mapped into linear
systems (at cost of higher dimensionality)

Our generic (deterministic) linear model specification on R" is
Xt41 = AXt +b (1)
where

® x;isn X 1, a vector of state variables

® Aisnxnandbisn x1
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Maps to the dynamical system (R”,g) with ¢(x) = Ax+b
When is it stable?
Example. Consider n =1 and g(x) = ax + b for scalars a and b
If a # 1, then g has a unique fixed point x* =b/(1 —a)
Moreover, iterating backwards,

t—1

xp=a'xo+b)_a
i=0

e Converges to b/ (1 —a) whenever |a| <1
® Hence (R, g) is globally stable whenever |a| < 1
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In the general n dimensional case,

Xy =Ax; 1 +b=A(Ax; 2 +b)+b=A%x; ,+Ab+b=---

Leads to
t—1

x=g'(xo) = Alxg+ Y_ A'b (2)
i=0

Does this sequence converge as t gets large?
Does g have a fixed point?

What is the correct generalization of the condition |a| < 1 from
the scalar case?
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Fact. If r(A) < 1, then (R",g) is globally stable with steady state
x* = ZAib (3)
i=0

Proof: r(A) <1 = (I - A)" 1 =Y2, Al
Hence x* in (3) is the unique solution to x = Ax +b

Regarding stability, given xo and yo in R”,

lxe = yell = 14" (xo = yo) [l < 1A[ - [lx0 = ol

o But [|Af]| = 0, so0 [|x; — y¢]| = 0

® Taking yo = x* completes the proof
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Example. The Samuelson multiplier—accelerator model

Consumption obeys
Ci=aYi 1+

Aggregate investment increases with output growth:

Iy = B(Yi—1 — Yi2)

Letting G be a constant level of government spending and using
the accounting identity

Y =CG+L+G
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Combining equations gives

Y = (a + ﬁ)thl — IBYt_Q + G+ Y

This is a first order system

But we map it to the first order framework by taking

cm () A= ), ()

0

We can recover (4) from the first entry in

Xpp1 = Ax;+Db
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Stability depends on r(A)
Step 1: Solve det(A — AI) =0

Letting p1 := a+ b and pa := —b, the two solutions are the roots
of
A2 —piA—p2=0

01+ /0] +402
A= ! i=172

i 2

Hence

If both are interior to the unit circle in C, then r(A) < 1

In the next fig, « = 0.6 and p = 0.7, so r(A) ~ 0.837
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output

Figure: Time series of output
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Adding Stochastic Components

Now we wish to add shocks to the model — get closer to data
Before that let's review some building blocks:

® Conditional expectations
® Martingales

® Martingale difference sequences
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Let Y and 4 := {Xy,..., X} be random variables with finite
second moments

Problem: Predict Y given ¢
® |n this context, ¢ is called an information set

Thus, we seek a function f: RF — R such that

A

Y := f(Xq,...,Xx) is a good predictor of Y
“Good" defined to mean that E[(Y — Y)?] is small

Thus, we seek f that solves

f= arg;ninlE[(Y — f(X1,..., X))

a1/77



Fact. There exists an (almost everwhere) unique f in the set of
Borel measurable functions from R to R that solves

f= arg;ninE[(Y — f(X1,.. ., X0)?)

We call the resulting variable
Y= f(Xy,...,Xp)
the conditional expectation of Y given ¢
Common alternative notation:
EgY = E[Y|¥9] = E[Y|Xy,..., Xy

The definition extends to RVs with finite moment — details
omitted
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We say that Y is ¢4-measurable if there exists a Borel measurable
function f such that Y = f(X,..., Xx)

® Meaning: Y is perfectly predictable given the data in ¢

Fact. Let X and Y be random variables with finite first moment,
let « and B be scalars, and let ¢ and JZ be information sets

The following properties hold:

Ey[aX + BY] = aEy X + BEgY

If ¢ C A, then E¢[E »Y] = E4Y and E[E¢Y] = EY
If Y is independent of the variables in ¢, then EgY = EY
If Y is 4-measurable, then E¢Y =Y

If X is &-measurable, then E¢[XY] = XEyY

oA~ b=

43/77



Let

® Y =(Yy,...,Yn) be a vector
® ¢ be an information set

The (vector valued) conditional expectation of Y given ¥ is

just the vector containing the conditional expectation of each
element

Thus, written as column vectors,

Y7 EyYq

(Same as ordinary unconditional expectation for vectors)
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Martingales

A filtration is an increasing sequence of information sets {%; }+>0

® Increasing in set inclusion, so that 4 C %1 for all t > 0

Example. If {&;}t=>0 is a stochastic process, then the filtration
generated by {C;}i>0 is

%:{50/“-1’;} t=>0

A stochastic process {#;} is said to be adapted to filtration ¥; if
Nt is ¥-measurable for all ¢

® time f value is revealed by time t information.
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A stochastic process {w; }>1 taking values in R" is called a
martingale with respect to a filtration {%;} if

® E| w1 < oo and
® {w;}i>1 is adapted to {4}

® and
Elwi |4 =w, VE>1
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Example. Consider a scalar random walk {w;} defined by

t
wy = ZCZ‘, {Ct} is IID with E[gt] =0
i=1

This process is a martingale with respect to the filtration generated

by {&:}, since

1. adapted
2. satisfies

E[wi1|%] = Elw: + 11| 4] = E[wt | %] + E[Gi+1 | 4]

The martingale property now follows (why?)
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A stochastic process {w;}>1 in R" is called a martingale
difference sequence (MDS) with respect to a filtration {%;} if

® E| w1 < oo and
® {w;}i>1 is adapted to {4}

® and
Elwi |4 =0, Vix1
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Example. If {v;} is a martingale with respect to {%;} then
wy := vy — v;_1 is an MDS with respect to {4}

Proof: For any t,

Elwii1 | %] = E[vi — 0t | %]

:]E[Ut-i-l‘%] —]E[Ut|gt] =0t — Ut =0

Example. If {v¢} is 11D with zero mean and {%;} is the filtration
generated by {v;}, then {v;} is an MDS with respect to {¥;}

Ex. Check it
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An MDS is additive white noise:

Fact. If {w;} is an MDS with respect to {4}, then

E[w¢] =0 for all t > 0
Ex. Check it

Fact. If {w;} is an MDS with respect to {%;}, then w; and w; are
orthogonal, in the sense that

E[wsw;] = 0 whenever s # t

Ex. Check it
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Linear Vector Systems with Noise

Next consider
® xpp1 = Axi + b+ CCty1 with xg given

® % = {-x()/g()/gl/- . -;gt}
® {&}>1 is an R/-valued MDS with respect to %; satisfying

E[gigi] =1

An example of a vector autoregressive (VAR) process

52/77



What are the dynamics of the state process {x;}?

This is a multi-layered question so let's start with an easy
component

What is the time path of the first two moments?

These are
* pp = E[x]

o ¥, :=var[x] = E[(x; — pr) (% — Z/‘t)/]
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Dynamics of the Mean

First, regarding i, take expectations over
Xty1 = Axp + b+ Cliyq

to get
Pip1 = Apr+D

Fact. If r(A) < 1, then {p;} converges to the unique fixed point

Alb

‘ﬁ*
I
¢

0

regardless of 1
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Dynamics of the Variance

Consider again
xp11 = Axt + b+ Clria

We want a similar law of motion for X; := var|x;]
We will use the fact that E[x;{; ] =0

Ex. Show this follows from the assumptions above

56/77



By definition,
var([xe1] = E[(xer1 — pe1) (X1 — )]
= B[(A(xt — pt) + CZra1) (A(xr — pr) + CZry1)']
The right hand side is equal to

E[A(x; — pe) (x¢ — )" A"l + E[A(x; — pe)E141C

+ E[CCry1(x: — Vt)/Al] + E[CétH@’;HC']

Some further manipulations (check) lead to

Y = AL A 4+ CC
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To repeat

Y1 = g(X) where S(X):= AXA'+CC’

Variance is a trajectory of the dynamical system (M (n x n),S)

A steady state of this system is a X satisfying

> =AXA +CC

Fact. If r(A) < 1, then (M(n x n),S) is

e distance is generated by the (spectral) norm on M (n x n)
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In the proof, we use the following extension of Banach's fixed point
theorem

Theorem. Let T be a self-mapping on complete metric space M
such that

1. T* is a Banach contraction mapping on M for some k € N

2. T is continuous on M

Then (M, T) is globally stable

Ex. Verify this based on our results for dynamical systems
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Consider the discrete Lyapunov equation

Y =AXA + M

® all matrices are in M(n x n) and X is the unknown

Given A and M, let ¢ be the Lyapunov operator

((X) = ATA + M

Ex. Show that ¢ is continuous on M (n X n)

Fact. If r(A) < 1, then (M(n x n), ) is globally stable
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Proof: Suffices to show that /¥ is a Banach contraction on
(M(nxmn),| -] for some k € N

From the definition,

() = A2 (A + A TM(ARY o M

Hence, for any £, A in M(n X n), we have

J5(E) = (M) = || A"z A%y — AFA (AR

- HAk(z—A)(Ak)/

< [JAM- (12 = Al 1A
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Transposes don't change norms, so || (A¥)’|| = || A¥|| and hence

164(2) = (M) < [AFIPIIE — Al

Since r(A) < 1, we can find k € N, A <1 such that

[65(2) — F(A)|| S A|Z = A for all £, A € M(n x m)

Now apply Banach contraction mapping theorem

Note: Gives an algorithm for computing Z*
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Application: Log Output
Kydland and Prescott (1980) study detrended log output via
Yer1 = a1y + ooy +eq,  {e} ¥ N(0,0)  (5)
We can map it to our VAR framework x;,1 = Ax; + b+ CGpyq via

(W _(m (v
=) A= (3 5) =)

along with ¢; := %et

Estimated values: &1 = 1.386 and &, = —0.477

Implies 7(A) ~ 0.75
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Distribution Dynamics: The Gaussian Case

We have obtained the moment dynamics of

Xiy1 = Axp + b+ CCiyq (6)

They were

* ¢'(uo) where g(4) := Ap +b on R”
* 5'(Xg) where $(X) := A’SA +CC' on M(n x n)

Now we want to learn about the distributions themselves

That is, we wish to track {{;} where

Y 1= the distribution of x;
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This is straightforward if the model is Gaussian
® Gaussian distributions described by their first two moments

We can give a complete analytical description of the marginal
distributions {y;}

Works because

® |inear combinations of mutivariate Gaussians are Gaussian

® Qur law of motion x4 = Ax; + b+ CC1q is linear
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A scalar random variable z has a (univariate) standard normal
distribution if

; 2
zZ ¢ where ¢(s) = %exp (;) (s eR)

We write z = N(O 1).

Scalar random variable x has normal distribution N(y, ) for
some y € R and 0 > 0 if

x2y+cfz for some z with z—N(O 1)

Note that we allow o = 0, in which case x is a point mass on p
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A random vector x in R" is called multivariate Gaussian with
distribution N(p, X) if

® uis a vector in R”

® Y is a positive semidefinite element of M (n x n) and

o i'x Z N(Wu,W'Sh) on R for any h € R"
2. is positive definite, then x has density

p(s) = det(27%) 2 exp <—;(s — (s — y))

Question: If x; and xp are normally distributed in R, is
x = (x1,xp) multivariate Gaussian?
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To shift to the Gaussian case we assume that
® {&}=1 '~ N(0,1I) and
@
® x9 = N(po, Zo)
® 1 is any vector in R/ and ¥ is positive semidefinite

The random vector xg is assumed to be independent of {¢;}

Under these Gaussian conditions we have

xi Z N (g (4o), S(Zo)) forall £ >0 )

Ex. Check normality using the definition of multivariate Gaussians
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Proposition. If r(A) < 1, then under the Gaussian conditions we
have

Pr = N2 (t— ) (8)

where

w . L o
® — means weak convergence (convergence “in distribution”)

<
|I&Q

N

° u Zl 0 A'b and
® >* is the unique fixed point of X := A’XA + CC’

Equivalent to (8): the characteristic function of N (i, X¢)
converges pointwise to that of N(u*,X*)
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Proof: We must show that, at any fixed s € R",
lim exp ( is'u; — 15’2 s) =exp(is'u* — 1s’Z*s (9)
t—o0 p p 2 ! p # 2
Fixing such an s, to prove (9) it suffices to show that
sup—s'y* and §'%ys — §'L's inRast — oo (10)

From the Cauchy-Schwarz inequality we have

/

|5 ue = 'u*| = 1" (ue — ) < lsll - [l — Il = 0

Ex. Prove the second part of (10)
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Example. In the AR(1) case, {x;} is real valued and obeys

Xe1 =ax; +b+oe, {e}r ~ N(0,1) (11)

In this case 7(A) = |a|

The stable case |a| < 1 is called mean-reverting

The distribution of x; converges weakly to

b 2
yr=N <1—aliaz> (12)
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Dynamical systems formulation

Let ¢4 be the set of all Gaussian distributions on R"

® topology = weak convergence

Let IT be the operator on ¢ defined by
¥ = N(p,X) — ¢pIl:= N(g(p), S(%))

Then

® [ is a self-mapping on ¢
e (¢4,11) is globally stable whenever r(A) < 1
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Distribution Dynamics: The General Density Case

Let's drop the Gaussian assumptions, replace them with

e {¢;} is 1D on R" with density ¢

® Cis n x n and nonsingular
Under these assumptions, each ¥; will be a density
To prove this we use

Fact. If ¢ has density ¢ and C is nonsingular, then y =d + C¢
has density

py) = ¢ (C(y—d)) | detc|™? (13)
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The density of x;,1 conditional on x; = x is therefore

(x,y)=¢ (C_l(y — Ax — b)) |detC| ™!

The law of total probability tells us that, for random varables
(x,y) with densities,

p) = [ plylx)p(x) d

Hence the densities {; and ;1 are connected via

Ya(y) = [detCl ! [ g (CM(y = Ax =) gulx) dx
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Suppose we introduce an operator IT from the set of densities D
on R" to itself via

(WD) = [ 7(x)p(x) dx (14)
Then our law of motion for marginals

pra(y) = [detC|™ [ (C7y — Ax— 1)) pu(x) dx

becomes
Y1 = Pell

® a concise description of distribution dynamics
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Comments:

® In {1 = PIT we write the argument to the left following
tradition (see Meyn and Tweedie, 2009)

® The set of densities D is endowed with the topology of weak
convergence

Proposition. If r(A) < 1, then (D,I1) is globally stable

Moreover, if h is any function such that [ |i(x)|p*(x)dx is finite,

then
IP{nlgrgontht /h }:1

77/77



