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Today's Lecture

® Stochastic kernels and Markov chains on sets
® Distribution dynamics

® High performace computing tips

2/32



Prequel 1: Directed Graphs

A directed graph is a nonempty set of X={xy,...,z}
and a set of (x,y) e Xx X

® y is called accessible from x if y = x or 3 a sequence of arcs
leading from x to y

® The graph is called strongly connected if y is accessible from
x forall x,y € X
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Another example

e

® Strongly connected?
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We can also attach numbers to the edges of a directed graph

0.4

The resulting graph is called a weighted directed graph

Interpretation will be given later
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Prequel 2: Brouwer's Fixed Point Theorem

Theorem. (Brouwer-Hadamard, 1910) If

1. Cis a convex compact subset of R?

2. T is a continuous self-map on C

then T has at least one fixed point in C
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Prequel 3: The Space of Distributions

Let X be any finite set with elements x1,...,x,
As usual, on R* we adopt the pointwise partial order
e h < gif h(x) < g(x) for all x € X

The set of distributions on X is denoted P(X) and defined as all
@ € RX such that

) [ > 0
® Yaex o(x) =1
Think of ¢(x) as probability of hitting x
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Metrizing P (X)

As usual,

® |Iilly == Erex [h(x)]
° di(gh) = llg—hlx

Thus,
PX)={heR*:h>0and ||k, =1}

P(X) also called the unit simplex in R”"

® A convex, compact subset of R"
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Figure: The unit simplex in R3
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Notation: g*:=¢gV0and g™ :

(—g)Vvo

Ex. Show that, for all g € ¢1(X) we have

§=8"—-g

and

gl =8 " +g
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Stochastic Kernels

A stochastic kernel on X is a function IT: X x X — R such that

II(x,-) € P(X) forall xeX

In other words,

1. TI(x,y) > 0 for all (x,y) € X x X
2. YyexIl(x,y) =1 forall x € X

Intuition:

1. We have one distribution I(x, -) for each point x € X
2. TI(x,y) is the probability of moving from x to y in one step
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Matrix Representation

There are some alternative representations of stochastic kernels
When X is finite, we can represent I1 by a matrix
IT(x1,x1) «-+ TI(xy,xp)
H(x,:l,yq) e H<xr:1/xn)

Note: this is a Markov matrix / stochastic matrix

1. Square, nonnegative, rows sum to one

2. Distributions are rows, stacked vertically
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Example. (Hamilton, 2005)

Estimates a statistical model of the business cycle based on US
unemployment data

Markov matrix:

0971 0.029 0
Py := 1| 0145 0.778 0.077
0 0508 0.492

® state 1 = normal growth
® state 2 = mild recession

® state 3 = severe recession

Length of the period = one month
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Digraph Representation

Another way to represent a finite stochastic kernel is by a weighted
directed graph

Example. Here's Hamilton's business cycle model as a digraph

0.971 0.778 0.492

normal growth m mild recession severe recession

® set of nodes is X

® no edge means I1(x,y) =0
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Example. International growth dynamics study of Quah (1993)

State = real GDP per capita relative to world average

States are 0-1/4, 1/4-1/2, 1/2-1, 1-2 and 2-c0

0.97
0.05
o = | 0.00
0.00
0.00

0.03
0.92
0.04
0.00
0.00

0.00
0.03
0.92
0.04
0.00

0.00
0.00
0.04
0.94
0.01

The transitions are over a one year period

0.00
0.00
0.00
0.02
0.99
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Quah’s income dynamics model as a weighted directed graph:
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Dropping labels gives the directed graph
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From Stochastic Kernels to Markov Chains

Let

1. X be a finite set

2. {X;}2 4 be an X-valued stochastic process
t=0

{X:}{2, is called a Markov chain on X if there exists a stochastic
kernel IT on X such that

P{X,1=y]|Xo,X1,...,X:} =I(X,,y) forall t>0,y¢€X
In this case we say that {X;}{° is generated by IT

If Xo ~ 1, then ¢ is called the initial condition
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Simulation

One technique for generating {X;} from a given kernel IT

For x € Xand u € (0,1), let
F(x,u) =) yil{gi1(x) <u<qi(x)}
i=1

where {y1,...,y»} = X and

gi(x) =) _TI(x,y;) with go =0
j=1

Now Xy is drawn from ¢y € P(X) and then

11D

X1 = F(Xp, Upr)  where {U;} % U(0,1) (1)
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Generates a Markov chain with stochastic kernel I

The next exercise asks you to verify this

Ex. Conditional on X; = x, show that, foreachiin1,...,n,
1. X1 = y; if and only if

gi—1(x) < U1 < qi(x)

2. This event has probability IT(x, y;)

Conclude that X;;1 in (1) is a draw from TI(x, -)
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Linking Marginals

By the law of total probability we have

P{Xi11 =y} = ) P{Xer1 =y | X = x} - P{X; = x}

xeX

Letting 1 be the distribution of X}, this becomes

Pra(y) = Y M y)p(x) (Y €X)

xeX
Regarding distributions as vectors, we can write this as
Pry1 = Pl
The map ¢ — ¢I1 of the state
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Dynamical System Representation

Think of (P(X),I1) as a dynamical system
e IIis identified with the map ¢ — ¢II,

() (y) = ) TI(x,y)p(x)

xeX

® Also called the Markov operator generated by kernel IT

Ex. Show that IT is a self-mapping on P(X)
Interpretation of trajectories:

e Xp=x — XtN(Sth
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Some of trajectories in P(X) under Hamilton's business cycle
model:
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Figure: Distributions from Quah’s stochastic kernel, Xg =1
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Figure: Distributions from Quah’s stochastic kernel, Xg = 4
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Higher Order Kernels

Let IT be a stochastic kernel and let {TT¢} be defined inductively by
IT':=11 and IT""'(x,y):= ) II(x,2)IT*(z,y)

zeX

® Called the k-step stochastic kernel

® We are just taking matrix powers (finite case)

Ex. Show that if IT is a stochastic matrix, then so is IT¥ for all k
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If {X;} is generated by I, then, for any k € N, we have

MT(x,y) =P{Xy =y|Xo=x} (x,y€X)

To see why, recall that

{X;} generated by IT and Xg = x = X; ~ §,ITF

Hence
P{Xx =y | Xo = x} = (6:11%)(y)

But
(6:119) (y) = 1T (x, y)
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Chapman-Kolmogorov Equations

The kernels {TT¢} satisfy the Chapman—Kolmogorov relation

W (xy) = Y T 2) W (zy) () €XxX)

zeX

Proof: Let Xy = x and let y € X be given

By the law of total probability, we have

IV (x,y) = P{Xjx = y}

= 2 P{Xj+k =Yy | Xk = Z}P{Xk = Z}

zeX

=) II*(x,2)IV(z,y)

zeX
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Expectations

Given stochastic kernel TT and / in RX, consider

(I1h)(x) = th(y)fl(x,y) (x € X)
ye

(ITh = the product of matrix IT and column vector )

Interpretation
(ITh) (x) = E[h(Xe) [ Xe = 2]
More generally,

(ITh) (x) = Y h(y)1T*(x,y) = Blh(Xp14) | Xe = ]
Y
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Stationary Distributions
Let IT be a stochastic kernel on X
If p* € P(X) satisfies

¥ (y) = ) Hxy)y*(x) forall yeX

xeX

then 9™ is called stationary or invariant for I1

Equivalent to the above:

° llj* — lP*H
® ¢* is a steady state of (P(X),IT)

Interpretation:
Xi~ 9" = X ~ ¢°
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Existence

Theorem (Krylov—Bogolyubov). If X is finite then IT has at
least one stationary distribution
Proof: Think of distribution ¢ € P(X) as vector (¢(x;))" ;

® [T is a continuous map (just matrix multiplication)

® IT maps P(X) into itself

e P(X) is a closed, bounded subset of R"

e P(X) is also convex in R”

Existence of a fixed point follows from Brouwer
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Computing the Stationary Distribution

Consider solving ¢p*IT = ¢p* for p*
Problem: there are trivial solutions, such as * =0

To force our solution to be in P(X), let

® | be the n X n identity matrix

® 1, be the 1 x n vector of ones, 1,«, be the n x n matrix of
ones

Ex. Show that i € P(X) is stationary for IT if and only if

1y = ¢(I =TT+ Lyyxn) (2)

Now transpose and solve for ¢ — requires that I — IT+ 1, is
nonsingular
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