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Today's Lecture

Dynamical systems
Order
Monotone dynamical systems

From monotonicity to stability
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We previously studied dynamics through 45 degree diagrams
Informal discussions of

® stability

® steady states

® convergence

® etc.

Let's formalize ideas and state some general results
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A dynamical system is a pair (M, g), where
1. M is a metric space and
2. g is a self-mapping on M

In this context, M is called the state space

Example. In the Solow—Swan model we saw that

kir1 = g(ki) where g(k):=sf(k)+ (1—0)k

Since ¢ maps Ry to itself, the pair (R4, g) is a dynamical system
when R has its usual topology

If ¢: u > 2u, then ([0,1],9) is a dynamical system because?
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Let (M, g) be a dynamical system and consider

urr1 = g(ut), where ug = some given point in M

For this sequence we have
uz = g(un) = g(g(uo)) =: g*(uo)
and, more generally,
ur = ¢'(up) where g¢'= gogo---0g
| —

t compositions of g

The sequence {g' (1) } =0 is called the trajectory of uy € M

We will also call it a time series
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Figure: The trajectory of u under g
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Fact. If g is increasing on M and M C IR, then every trajectory is
monotone (either increasing or decreasing)

Proof: Pick any u € M
Either u < g(u) or g(u) < u — let's treat the first case

Since g is increasing and u < g(u) we have g(u) < g*(u)

Putting these inequalities together gives
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Hence, in 1D, increasing functions generate simple dynamics
If ¢ is not increasing then the dynamics can be far more erratic

Example. Let M := [0,1] and g be the quadratic map

g(x) = 4x(1 - x) (1)

Almost all starting points generate “complicated” trajectories
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Figure: Logistic map g(x) = 4x(1 — x) with xo = 0.3
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Steady States

Let (M, g) be a dynamical system
Suppose that u* is a fixed point of g, so that
g(u’) =u

Then, for any trajectory {u;} generated by g,

*

u=u" = U =gw) =gu) =u

In other words, if we ever get to u*™ we stay there
Hence, a fixed point of ¢ in M is also called a steady state

14/75



20

Xn

Xm

05+ X¢

Figure: Steady states of g(x) = 2.125/(1+ x~%) and g(0) =0
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Let (M, g) be a dynamical system

Fact. If g'(u) — u* for some u,u* € M and g is continuous at
u*, then u* is a fixed point of ¢

Proof: Assume the hypotheses, let u; := ¢'(u)
By continuity and u; — u* we have g(u;) — g(u*)
But {g(u¢)} is just {u;} without the first element and u; — u*
Hence g(u;) — u*
We now have
Q(uy) — g(w*) and  g(uy) — u*

Limits are unique, so u* = g(u*)
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Local Stability

Let u* be a steady state of (M, g)

The stable set of u* is

OWw*):={ueM:g"(u) = u* ast— oo}
This set is nonempty (why?)

The steady state u* is called locally stable or an attractor if
there exists an € > 0 such that

Be(u*) C O(u*)
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Figure: Steady states of g(x) = 2.125/(1+ x~%) and g(0) =0
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Figure: ﬁ(xg)
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Global Stability

Dynamical system (M, g) is called globally stable if

1. g has a fixed point u* in M
2. u* is the only fixed point of g in M

3. ¢'(u) > u*ast—ooforalueM

Equivalent: g has a fixed point u* in M and 0(u*) = M
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Figure: Visualizing global stability in R?

22/75



Example. Recall the Solow-Swan growth model where
g(k) =sAk* + (1 —-9)k
with

1. M= (0,00)
2. A>0and 0<s,a,0 <1

The system (M, g) is globally stable with unique fixed point
k* = (814>1/(1_{X)
)
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Proof: Simple algebra shows that for k > 0 we have

1/(1—a)
k=sAk*+(1-0)k <= k= <S§1>

Hence (M, g) has unique steady state k*
It remains to show that g’(k) — k* for every k € M := (0, o)
Let's show this for any k < k*, leaving k* < k as an exercise

Since calculating g’ (k) directly is messy, let's try another strategy
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Claim: If 0 < k < k*, then {g’(k)} is increasing and bounded

Proof increasing: Since ¢ increasing {g¢’(k)} is monotone

From k < k* and some algebra (exercise) we get

k<k' = g(k)>k = {g'(k)} increasing

Proof bounded: From k < k* and the fact that g is increasing,

glk) <g(k*) =k

*

Applying g to both sides gives g?(k) < k* and so on

Hence both bounded and increasing
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Hence g*(k) — k for some k € M

Because g is continuous, k is a fixed point

But k* is the only fixed point of ¢ on M, as discussed above
Hence k = k*

In other words, ¢'(k) — k* as claimed
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Figure: Global stability in the Solow—Swan model
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Example. Consider again the Solow-Swan growth model
g(k) =sAK* + (1 —9)k

where parameters are as before

If M =[0,00) then (M, g) is globally stable

® \We showed above that ¢ has a fixed point k* in (0, 00)
® However, 0 is also a fixed point of g on [0, c0)

® Hence (M, g) has two steady states in M = [0, c0)

Moral: The state space matters for dynamic properties
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Global Stability of Powers

The next result will be used in our study of Markov chains
Fact. Let (M, g) be a dynamical system
If

1. (M,g") is globally stable for some i € N and

2. g is continuous at the steady state u* of ¢,

then (M, g) is globally stable with unique steady state u*

Proof: See course notes
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Closed Invariant Sets

Let (M, g) be a globally stable dynamical system with fixed point
u* and let F be a closed subset of M

We say that g is invariant on F if u € F implies g(u) € F

Fact. If F is nonempty and g is invariant on F, then u* € F

Ex. Check it

We use this many times in what follows
Examples.
® Concavity of the value function in savings problems

® Monotonicity of reservation wages, etc.
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Application: Asset Pricing

When are asset prices increasing in x7?

Recall that the equilibrium risk neutral price function satisfies
pi(x)=p / [d(F(x,2)) + p"(F(x,2))] 9(dz) ~ (x €R)

Under what conditions does p* increase in x?

Additional assumptions:

® ( is increasing on R

® F(x,z) is increasing in x for each z

Does this sound like enough?
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Recall that p is the unique fixed point in bcX of
Tp(x) = p [ [d(F(x,2)) + p(F(x,2))] 9d2)

The pair (bcR, T) forms a dynamical system!
Let ibcR be the increasing functions in bcR
Ex. Show that this set is closed in (bcRR, dwo)

Hence, if T is invariant on ibcIR, then

® jts fixed point lies in ibcIR

® in particular, p* is increasing
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Under the stated assumptions, T is invariant on ibcR
Proof: Pick any p in ibcR and fix x,x" in R with x < x’

For any z,

d(F(x,z)) < d(F(x',z)) and p(F(x',2)) < p(F(x',2))

Tp(x) = B [ [4(F(x,2)) + p(E(x,2))] 9(d2)
<B [ [HF(,2) + p(F(,2)] g(d2)
= Tp(x')

In particular, Tp € ibcR
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Sufficient Conditions for Global Stability

When is dynamical system (M, g) globally stable?
One sufficient condition is the Banach CMT

Requires that
® M is complete

® ¢ is a contraction map on M

But this theorem doesn’t always apply...
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Example. Consider g(k) = sf(k)+ (1 — &)k with general f

® Typically a contraction mapping...

® Moreover, the state (0,00) is complete
We require some alternative fixed point / stability results
Some of them use order theory

These results will be useful for many other problems so let's state
them in an
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Order Structure

To study order in an abstract setting we introduce abstract notions
of

® (partial) order
® suprema and infima
® |attices and sublattices

® isotonicity (increasing functions)
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A partial order on nonempty set M is a relation < on M x M
satisfying, for any u, v, w in M,

1. u<u,
2. u=vand v = u implies u = v and

3. uXvand v X wimplies u < w
Paired with <, the set M is called a partially ordered set

Example. A subset M of RY with the pointwise order <
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Example. Let X be any set and let ©(X) be the set of all subsets
Then C is a partial order on ((X), since

1. ACA
2. ACBand BC A implies A=B
3. ACBand BC Cimpliess ACC

Example. Let X be set and, given f, ¢ € RX, write

f<gif f(x) < g(x) forall x € X

This is the pointwise partial order on R*

Ex. Check it satisfies the definition of a partial order
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Given a subset E of a partially ordered set M, we call u € M an
upper bound of E in M if e < u whenever e € E

If there exists an s € M such that

1. s is an upper bound of E and

2. s =< u whenever u is an upper bound of E,

then s is called the supremum of E in M

Note: Equivalent to the traditional definition when M C R

Ex. Show that a subset E of M can have at most one supremum
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Given a subset E of a partially ordered set M, we call £ € M a
lower bound of Ein M if { <eforallec E

If there exists an i € M such that

1. iis a lower bound of E and

2. ¢ < i whenever ¢ is a lower bound of E,

then i is called the infimum of E in M

Note: Equivalent to the traditional definition when M C R

Ex. Show that a subset E of M can have at most one infimum
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Example. Let < be the pointwise partial order on RX

Fix K€ Ry and let E C Bx(0) = {f € bX: ||f|lo < K}
Fact. The supremum of E exists in (bX, <) and is given by

§(x) :=supg(x)  (xe€X) ()
gcE

Proof: Sups of bounded sets in R exist, so ¢ exists in bX

Moreover,

A

.8=>gforallgeE

A

. h>gforall g € Eimpliesh > g

Similarly, §(x) := infecp g(x) is the infimum of E
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Given u and v in M, the supremum of {u,v}, when it exists, is
also called the join of u and v, and is written u V v

The infimum of {u, v}, when it exists, is also called the meet of u
and v, and is written u A v

This is consistent with our earlier notation for vectors...
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Figure: The points Vv and u A v in R?
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Figure: Functions f V g and f A ¢ when defined on a subset of R
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Suprema and infima do not necessarily exist

Example. Consider M = R with the usual order, where E = R+
has no upper bounds in M and hence no supremum
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If (M, =) has the property that every subset of M has both
a supremum and in infimum then (M, <) is called a lattice

Example. Given metric space X, the set bcX is a lattice when
endowed with the pointwise partial order <

Proof: If f and g are continuous and bounded on X, then

® f A g is continuous and bounded

® fV g is continuous and bounded

Example. The set of continuously differentiable functions on
[—1,1] is a lattice under the pointwise partial order <

For example, the supremum of {x — x,x — —x} is x — |x|
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A subset L of a lattice M is called a sublattice of M if

u,vel =— wuAvelanduVveL

Examples. Given metric space X,

® pcX is a sublattice of the lattice bX
® The set of nonnegative functions in bcX is a sublattice of bcX

® The set strictly positive functions in bcX is a sublattice of bcX
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Suppose we have a metric space (M, p) and < is a partial order on
M

e Often we want outcomes to replicate what we see in R?

® |n Euclidean space, weak orders are preserved under limits

For this reason, we often require that < is closed with respect to p

This means that

Uy, — U, v, -0 and u, v, foralme N — u=<v
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Example. The pointwise partial order < is closed on (bX, d)

Proof: Suppose that

® f, = fand gy = g inds
® f, < guforalln

For any fixed x € X,

® fu(x) — f(x) and g,(x) — g(x) in R (why?)
® fu(x) < gu(x) forall n

Since orders are preserved by limits in R, we have f(x) < g(x)

Since x was arbitrary, we have f < g in (bX, <)
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Given two partially ordered sets (M, <) and (L, <), a function g
from M to L is called isotone if

u=v = gu)<g(v) (3)

If M=L =1 and = and < are both equal to <, the standard
order on IR, then isotone means increasing (i.e., nondecreasing)

Other terms for isotone

® monotone increasing
® monotone

® order-preserving
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Example. Recall the equilibrium price operator T on bcIR defined
by

Tp(x) =B / [d(F(x,2)) + p(F(x,2))] 9(dz)  (x €R)

Endow bcIR with the pointwise partial order <

For p,q in bcR with p < ¢ and arbitrary x € R, we have
Tp(x) = B [ [4(F(x,2)) + p(F(x,2)] 9(dz)
<B [ [d(F(2) +q(F(x,2)] 9ldz)

= Tq(x)

Hence Tp < Tq and T is isotone
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Let S and T be isotone self-mappings on partially ordered set M

Ex. Show that So T is also an isotone self-mapping on M

Ex. Show that if u is a point in M with u < Tu, then the
sequence defined by u, := T"u is monotone increasing

(Meaning: u, < 1,4 for all n)
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Parametric Monotonicity

A major concern in economic modeling is whether or not
endogenous objects are shifted up (or down) by a change in some
underlying parameter

Examples.

® Does a given policy intervention decrease steady state
inflation?

® Does faster productivity growth increase firm profits?

® Does higher unemployment compensation increase average
unemployment duration?
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Let's see what we can say about such parametric monotonicity
when the endogenous objects are

Let < be a closed partial order on metric space M

Given two self-maps ¢ and & on M, we write

¢=h if g(u) <h(u) foreveryu € M

® Sometimes & is said to dominate the function g

Domination is related to ordering of fixed points but does not
guarantee it
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Figure: The dominating function has a higher fixed point
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Fact. If (M, g) and (M, h) are dynamical systems such that

1. h is isotone and dominates ¢ on M

2. (M, h) is globally stable with unique fixed point uy,

then ug =< uy, for every fixed point ug of ¢

Proof: Since g = h, we have 1y = g(ug) =< h(uy)

Hence (by what laws?)

h(ug) < hz(ug) and therefore Ug = hz(”g)

Continuing in this fashion yields ug < h'(ug) for all ¢

Taking the limit in ¢ gives ug < uy,
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Ex. Let g(k) = sAk* 4 (1 — )k where
® all parameters are strictly positive
e xe(0,1)and 6 <1
Let k*(s, A, &, ) be the unique fixed point of g in (0,00)

Without using the expression we derived for k* previously, show
that

1. k*(s, A,a,0) is increasing in s and A
2. k*(s, A, u,0) is decreasing in §
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Application: Patience and Asset Prices

Let's go back to the equilibrium risk neutral price function

—p [[A(F(x,2) +p(F(x,2)] pldz)  (x€R)

How does it vary with parameters?
Consider two discount values 81 and B>
Let p; and p2 be the corresponding equilibrium price functions

If B1 < B2, is it true that p; < po?

In other words, to we get higher prices for the asset in all states?
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The functions p; and p; are fixed points of the operators

Tip(x) = 1 [ [d(F(x,2)) + p(F(x,2))] 9(dz)

and

Tap(x) = P2 /[d(F(x,Z))+P(F(xfz))]§0(dz)

If B1 < B2, then the following statements are true

° Tip(x) < Top(x) for all p € beX, x € X
® Tip < Top in the pointwise partial order for all p € bcX
® T is dominated by T, on (bcX, <)
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Summarizing what we know,

1. Ty is dominated by T, on (bcX, <)
2. Ty is isotone on (bcX, <)
3. (beX, Ty) is globally stable

Hence p1 < py in (beX, <)
In particular, p1(x;) < pa(x¢) for all realizations of x;

Thus, p yields higher prices in all states
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From Order to Stability

Monotonicity is also connected to fixed points and stability

To illustrate, let's think again about the Solow—Swan growth model

kivr = g(ke) := sf(ke) + (1= ki

So far, we have proved stability in the case of

® Cobb-Douglas production f(k) = Ak"

® some suitable parameter restrictions
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Figure:
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45 degree diagram for the Solow—Swan model
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It seems that global stability will hold more generally
All we really need is a similar shape for f
Example.
® f is strictly increasing and concave
® f'(0) = co and f'(e0) =0
Then the 45 degree diagram will be similar too

But what proof technique can we use?

Not the Banach CMT, since

® gis a contraction

® The set (0,00) is complete
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Clearly we need another fixed point theorem

There aren’t many that give

1. existence
2. uniqueness

3. global convergence of successive approximations

But we need one...
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Our plan is to exploit

1. order structure (e.g., the Solow map is )
2. algebraic structure (e.g., the Solow map is )

3. topological structure (e.g., small points are mapped up
and large points are mapped down )
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Order Structure in R?: Reminders

We use the standard pointwise partial order < in RY discussed
earlier: for u = (uy,...,uy) and v = (vq,...,0v4) in RY,

usLv <= u; <o foralli

In addition,
e if u; < v; for all i and u # v then we write u < v
e if u; < v; for all i then we write u < v

As usual,

® UNv:=(Ug ANV, ..., ug Nvg)

® uVo:=(uVoy..., usVoy)
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Recall: A subset L of R? is called a sublattice of R if, given u,v
in R?, we have

u,vel — uNveELanduVovelL

Examples.
® The positive cone
C:=R%:={ucR:u>0}
is a sublattice of R?

® The interior of the positive cone is a sublattice of R?

® The unit ball is a sublattice of R4
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Recall that a map T from M C R to itself is called isotone if

uveMandu<v — Tu<To

Example. If A = A(x,y) is a nonnegative matrix, then v — Av is
isotone, since

u<o = ZA(x,y)u(y) < ZA(x,y)v(y)
Y Y

Hence Au < Av pointwise on R?
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Concavity and Convexity in R?

A subset C of RY is called convex if

uveCand0< A<l = Au+(1-A)peC

An self-map T on C is called convex if, for any u,v € C and
A €[0,1],

T(Au+(1—-A)v) <ATu+(1—-A)To

An self-map T on C is called concave if, for any u,v € C and
A €[0,1],

T(Au+(1—-A)v) 2 ATu+ (1 —-A)To
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Let C be a sublattice of R?

Theorem FPT2 (finite dimensional case): Let T be an isotone
self-mapping on C such that

1. Yu € C, there exists a point a € C with a < u and Ta > a

2. Yu € C, there exists a point b € C with b > u and Tb < b

If, in addition, T is either concave or convex, then (C,T) is
globally stable

Proof: See the course notes (appendix)
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Figure: Global stability for an increasing concave functions
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Corollary: Let g be a function from (0, o0) to itself with the
following two properties:

1. For each x > 0, there is an a < x such that g(a) > a.

2. For each x > 0, there is a b > x such that g(b) < b.

If ¢ is also increasing and concave, then
® ¢ has a unique fixed point % in (0,00) and

° g”(x) — X for every x € (0,00)
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Corollary of corollary: If

(k) = sf(k) + (1 =)k

where 0 <'s5,6 < 1 and f is a increasing concave function on
(0,00) satisfying

1. f'(k) — oo as k — 0 and
2. f'(k) - 0 as k — oo,

then ¢ has a unique fixed point k* in (0,00) and g"(x) — X for
every x € (0,00)

Ex. Check the details
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