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Today's Lecture

Neumann series theorem

Applications to finite state asset pricing
Metric spaces

Contractions and Banach’s theorem

Back to asset pricing
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The Neumann Series Theorem

Let A € M(n x n) and let I be the n X n identity

The Neumann series theorem states that if r(A) < 1, then
I — A is nonsingular and

(-4 =) A (1)

Example. If 7(A) < 1, then x = Ax + b has the unique solution

x* = iAib
i=0
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Full proof of the NST: See the course notes
To show that (1) holds we can prove that (I — A) Y2 Al = I

This is true, since

—A);;AZ—I =|(I- J%ZN—I
. n
:nlgrgo —A)i;oAl—
— lim HA”“H —0
n—o0
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Application: Finite State Asset Pricing

An asset is a claim to anticipated future economic benefit
Example. Stocks, bonds, housing
Example. A friend asks if he can borrow $100

If you agree, then you are purchasing an asset
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Risk Neutral Prices
What is the time t price of a stochastic payoff Gy;1 7

The risk neutral price is

pt = BEt Giyq

More generally, the price of Gy, at t 41 is

pr = B"Et Gy

Example. European call option that expires in n periods with strike
price K has price

pt = ‘BnEt max{St+n — K,O}
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Pricing Dividend Streams

Now let's price the dividend stream {d;}

We will price an ex dividend claim

® a purchase at time f is a claim to dy11,ds40, ...

® we seek p; given B and these payoffs

The risk-neutral price satisfies

pr = BE: (dis1 + prs1)

That is, cost = expected benefit, discounted to present value

A recursive expression with no natural termination point...
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To solve
pr = BE: (dis1 + prs1)

let's assume that

® d; = d(x;) for some nonnegative function d

e {x;} is a Markov chain on some set X with [X| =n

° H(x,y) :=P{xpp1 =y|x = x}

We there is a solution of the form p; = p(x;) for some
function p

Thus, our aim is to find a p satisfying

p(xt) = BE; [d(xi41) + p(xe41)]
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Equivalent: we seek a p with

p(x) = BB [d(xe11) + p(xes1) [ X1 = 2]

for all x € X

Equivalent: for all x € X,

p(x) =B Y [d(y) + py)] T1(x,y)
Y

This is a functional equation in p

But also a vector equation in p, since X is finite!
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Let's stack these equations:

p(x1) =B Y [d(y) + p(y)] T1(x1, y)
y

p(xn) =B Y [d(y) + p(y)] (x4, y)

y

Treating p = (p(x1),...,p(xn)) and d = (d(x1),...,d(x,)) as

column vectors, this is equivalent to

p = pIld + pIIp
Does this have a unique solution and, if so, how can we find it?
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Since IT a stochastic matrix we have r(IT) =1
Hence r(BI1) = p < 1

Neumann series theorem implies that p = BI1d + BIIp has the
unique solution

[ee]

p*=(1— ) 'pIld = ) _(BI1)'d

i=1

In particular, py = p*(x;) is the risk-neutral price of the asset
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Ex. Let u be a one period utility function and let lifetime value of
consumption stream {c;} be defined recursively by

or = u(ct) + BEvr 1

Assume that € (0,1) and, in addition

® ¢; = c(x;) for some nonnegative function ¢

e {x:} is a Markov chain on finite set X with |X| =n

© [(x,) = P{xi1 = y|x = x}

Guess there is a solution of the form v; = v(x;) for some function v

Derive an expression for v using Neumann series theory
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An Uncountable State Space

Now let's try to solve
pr = BE: (dit1 + pre1)
again but with

® d; = d(x;) for some nonnegative function d
® x; takes values in R with x;11 = F(x¢, &)

e {¢;} is 1D with common distribution ¢

1ID

Example. xp41 = ax; + b+ 0¢piq with {&;} ~ N(0,1)

We guess a solution of the form p; = p(x;) for some function p
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Now the unknown p is a function on R

It solves the functional equation

—p [[(F(x2) + p(Fx2)pldz) (xR

Can we prove existence of a solution?
Uniqueness?

If so, how to compute the solution?

We cannot use any previous results because p is not a finite vector

Need a more general approach...
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The approach in a nutshell

1. Introduce metric spaces

2. Introduce operators, fixed points and contractions

3. Show that contractive operators have unique fixed points

® Banach’s contraction mapping theorem

4. Frame the asset pricing functional equation as a fixed point
problem

® Solutions to functional eq = fixed points of a pricing operator

5. Show the contraction property of the pricing operator

6. Conclude existence of unique solution
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Metric Space

Let M be any nonempty set

A function p: M x M — R is called a metric on M if, for any
u,o,we M,

o(u,v) = 0 with p(u,v) =0 <= u=mov

1.
2. p(u,0) = p(o,u)
3. p(1,0) < plu,w) + p(w,0)

Together, the pair (M, p) is called a metric space

Example. (R%,p) with p(u,v) := ||[u — v]| is a metric space
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Let X be any set and let bX be all bounded functions in RX

For all f, g in bX, the pair (bX,d«) is a metric space when

1 flleo = sup f()] and deo(f,8) = |If = 8l

Triangle inequality: given f,g,h in bX, we have
[f(x) = g(x)| = [f(x) — h(x) + h(x) — g(x)|
<|f(x) = h(x)| + |h(x) = g(x)]

< doo(f,h) +d00(h/g)

doo(f,8) < doo(f, 1) + deo(R, g)
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Let X be any countable set, fix p > 1 and define on R*

1/p
HMIpiZ{EX!h(x)I’”} and dy(g,h) =g —hlp

Now set

0p(X) = {h ER: |, < oo}

The pair (£,(X),dy) is a metric space

The triangle inequality follows from the Minkowski inequality,
which follows from the Holder inequality

178l < 1 fllp llglly  whenever p,q & [1,00] with 1/p +1/q =1
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Example. If X = {x1,...,x4} and p = 2, then

1/p
IWM;{ZW@W}

xeX

i 1/2
={;mwmﬁ

= Euclidean norm of K

(Remember that h is identified with the vector (h(x1),...,h(x4)))

In particular, (¢2(X),dy) “is” regular Euclidean space for such X
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The case p = +o0 is also admitted, with

[1Al[eo := sup |1(x)]

xeX
Then leo(X) = {h € RX: ||]|eo < o0}
This space £o(X) coincides with bX when X is countable

For any h € /o (X) with X finite we have

Il = tim, 1],
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Let (M, p) be any metric space
Given any point u € M, the e-ball around u is the set
Be(u) :={ve M:p(u,v) < e}
A point u € G C M is called interior to G if there exists an e-ball
Be(u) such that Bo(u) C G
A set G in M is called open if all of its points are interior to G
A set F in M is called closed if F¢ is open
A sequence {u,} C M is said to converge to u € M if

Ve>0, AINENst.n>N = u, € Be(u)
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Completeness

A sequence {u,} C M is called Cauchy if, given any € > 0, there
exists an N € N such that n,m > N implies p(uy, tty) < €

Ex. Show that if M = R, p(u,v) = |u —v| and u, = 1/n, then
{u,} is Cauchy.

A metric space (M, p) is called complete if every Cauchy
sequence in M converges to some point in M

Under completeness, sequences that “look convergent” do in fact
converge to some point in the space
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Examples.

e Ordinary Euclidean space (R, || - ||) is complete
® (bX,ds) is complete for any choice of X
® (£,(X),dp) is complete for any countable X

e If M= (0,1] and p(u,y) = |u —y|, then (M, p) is
complete
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Let (M, p) be any metric space
Fact. If F C M is closed in M, then (F,p) is complete

Example. Let X be a metric space and let bcX := all continuous
functions in (bX, de)

This set is closed because uniform limits of continuous functions
are continuous

Hence (bcX, dos) is complete
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Fixed Points and Contractions

Let (M, p) be a metric space

A map T from M to itself is called a self-mapping on M
A point x € M is called a fixed point of T if Tx = x
There can be none, one or many...

Examples.

e If f: R — R is the identity f(x) = x, then every x € R is a
fixed point

® If f: R — R is defined by f(x) =x+1,thennox € Ris a
fixed point
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20

— Tx

— 45 degree line

@® ® fixed points of T
1.5} -
1.0 -
05 -
0.0 . . . '
0.0 0.5 1.0 15 2.0
Figure: Fixed points in one dimension
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e
Contractions

Self-mapping T on (M, p) is called a contraction mapping with
modulus A if

IA<1 st p(Tx, Ty) < Ap(x,y)

forall x,ye M
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Example. The nicest case: Tx = ax + b on R where a and b are
parameters

For any x,y € R we have

|Tx — Ty| = |ax + b —ay — b

= |ax — ay|
= la(x —y)|
= |a[|x — y|

Hence |a| <1 <= T is a contraction mapping on R
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Banach Contraction Mapping Theorem

Fact. If M is complete and T is a contraction mapping on M then

1. T has a unique fixed point ¥ € M

2. T"x - X asn —ooforanyx e M
Proof of uniqueness: Suppose that x,y € M with
Tx=x and Ty=y

Then
p(x,y) = p(Tx, Ty) < Ap(x,y)

Since A < 1, it must be that p(x,y) =0, and hence x =y
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Sketch of existence proof: Fix x € M and let

d:=p(Tx,x)
It can be shown that p(T"1x, T"x) < A"d for all n

d <M < A% < A3d

One can then show that {x,} := {T"x} is Cauchy
The Cauchy property implies convergence to some ¥ € M

It can then be shown that & is a fixed point
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By the way, why does M need to be complete?

An example of failure when M is not complete:

Tx=x/2 and M = (0,0)

20 "
Tx=x/2
— 45 degree line

0.0 05 10 15 20
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Back to Asset Pricing

Recall that we wanted to solve for {p;} in
pr = BE; (drs1 + prsa)
Here B € (0,1),

® d; = d(x;) for some nonnegative function d

11D

® Xt1 = F(xt,8p1) in R with {G} ~ ¢
Guess a solution of the form p; = p(x;)

Assumption: d is bounded and d and F are both continuous
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Reduces to the functional equation
p) =B [ [A(F(x,2) +p(F(x2)]pdz)  (xeR) ()
We seek a solution in bcR — paired with metric deo

Consider the operator T on bcR defined by

Tp(x) =p / [d(F(x,2)) + p(F(x,2))] 9(dz)  (x € R)

Important: p € bcR solves (2) iff p is a fixed point of T

T is called the equilibrium price operator
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Steps:

1. Show that T is a self-mapping on bcR

2. Show that T is a contraction mapping on bcIR of modulus
3. Conclude that T has a unique fixed point in bcIR

4. Hence the pricing equation has a unique solution p* in bcR

Additional remarks

® T'p — p*asn — oo for all p € beR

® So we have a method to compute the solution
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Step 1: T is a self-mapping on bcIR

Proof: For p € bcR and x € R we have

Tp(3)] = |B | 18P (5,2) + p(F(, ) o)

<B [14(F(x,2)) + p(F(x,2) 9(d2)
<B [1d(F(2)lg(dz)+B [ Ip(F(x2)lg(d2)
Hence [Tp(x)] < B(d ]l + [ pll)

In particular, Tp is bounded on R
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Step 1 continued: T is a self-mapping on bcIR

Proof: For p € bcR, x € R and x, — x, we have

lim Tp(x,) =B lim [ [d(F(xy,2))+ p(F(xn,2))] @(dz)

n—oo n—o00

—p [ [Jim d(F(x0,2)) + lim p(F(x,2))] p(dz2)

= p [ [d(F(x,2)) + p(F(x,2))] 9(d2)
Hence limy, o Tp(x,) = Tp(x)

In particular, T'p is continuous on R
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Step 2: T is a contraction on bcRR of modulus

Proof: For p,q € bcR and x € R we have
Tp(x) = Ta(0)] = |B [ p(Flx,2) - (Pl 2Dlgld:)
<B [ Ip(F(x,2)) = q(F(x,2))p(d2)
<8 [Ip=alop(dz) = Bllp gl

Taking the supremum over x € R gives

[Tp —Tqllc < Bl —qlleo
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Step 3: From Banach's CMT we see that T has a unique fixed
point in bcR

Step 4: Hence the pricing equation has a unique solution in bcR

We are done...

Question: Why did we use bcIR as our space rather than bR?
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Extension: Lucas 1978

In Lucas (1978), the price process obeys

_ “I(Ct+1)
pr = BE: W' (cr) (di1 + pre1)

where ¢; is consumption and u is utility

In equilibrium, ¢; = d; = d(x;) for all ¢

Taking g; := pru/(ct) and x(x) := u'(d(x))d(x), we get

9t = BB [k(xp41) + qr41]
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Lucas adopts the following assumptions

11D

® Xi41 = F(Xt,§t+1) in R with {gt} ~ @
® 4 and F are both continuous, d > 0

® u is continuously differentiable, strictly increasing, bounded
and concave with u(0) =0

Proposition: The function x(x) := u/(d(x))d(x) is bounded on R
Proof: this is immediate if #/(¢)t is bounded over t > 0

Ex. Show that 3 M < oo with |u/(#)t| < M for all t > 0
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Proposition: The map x(x) := u/(d(x))d(x) is continuous on R

Why?
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Now we go back to

9t = BE: [K(x¢41) + i1

and guess that g; = g(x;) for some function g on R

This leads to the equilibrium pricing equation

q(x) = p /[K(F(X/Z))+Q(F(x12))]¢(dz)

Proposition: There exists a function g in bcRR that solves the
equilibrium pricing equation

Ex. Check the details
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Extension: Unbounded Dividends

Many functional forms we like to work with are unbounded

Examples.

® u(c) =Inc
o d; = exp(z;) with 2,41 = az; + b+ &1, {&} '~ N(0,1)

This breaks the argument above

(For example, requires u bounded)

How can we get around this?
Answer: We need a different function space
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Spaces of Integrable Functions

Fix X C R4 p > 1 and a cDF ¢ on X

For Borel measurable functions 1, ¢ € RX, define

1/
Il i={ [ Potan ) and dlem =g -l

Now set

Ly(¢) = {all Borel measurable 1 € R* : ||k, < 00}

The pair (Ly(¢),dp) is a metric space
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The triangle inequality (again, the Minkowski inequality) follows
from the integral version of the Holder inequality

178l < fllp liglly  whenever p,q € [1,00] with 1/p+1/q =1

Symmetry is OK
However, we have d,(f,g) = 0 even when f and g are distinct
Example. X = (0,1), ¢ is the uniform ¢DF, f = 1g and g =0

The problem is that

/If x)[Pg(dx) /1@ =0

The rationals have measure zero in (0,1)
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The solution: agree to call f and g the “same function” when

dp(f,g) =0

e formally, when f and g are equal ¢-almost everywhere

® details omitted

Now
Ly(¢) = {all Borel measurable i € RX : A, < 00}

is a metric space under dp

In fact a metric space
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Now we go back to

qt = BB [k(xt41) + Ge11]
and guess that q; = gq(x;) for some function g on R
We that

e {x;} is stationary and hence identically distributed by ¢

® i is nonnegative and Ex(x;) < oo

Example. If x; is Gaussian, u(c) = c!=7/(1 — 7) for some 7y > 0
and d(x) = exp(x), then

Ex(x) = exp((1—7)x1) < oo
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We seek a solution g in Li(¢) to

q(xt) = BBt [k(x11) + g(xe11)]

Equivalently, we seek a fixed point g in L1 (¢) for the operator
equilibrium price operator

Tq(xt) = BB [k(xt11) +q(x141)]

Note: g is in Li(¢) if and only if E|g(x;)| < oo
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Claim 1: The operator
Tq(xi) = BE: [k(xt11) + q(xe41)]
is a self-map on Li(¢)

Proof: Fixing g € Li(¢), we have, by the law of iterated
expectations

E|Tq(xt)| = B |BE: [K(x¢+1) +q(xe41)]|
< BEE; [x(xt11) +q(xe41)]
< BE [x(xp11)] + E[q(xe41)]

< 0
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Claim 2: The operator T is a contraction map on Li(¢)

Proof: Fixing 1,42 € L1(¢), we have, by the law of iterated
expectations

E[Tq1(x:) — Tqz2(xt)| = BE[Eeq1(xt41) — Erga(xi41)]
< BEE:|q1(xe41) — g2(xe41)]

< BE|q1(xe+1) — g2(x41) |

=8 [ In(x) g2 lp(cx)

d1(Tq1, Tq2) < Bd1(q1,92)
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