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This Lecture

1. Review of deterministic scalar dynamics

2. Dynamic programming — examples and overview

3. First steps towards analysis / fixed point theory
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Warm Up Discussion: Simple Dynamics

Example. Solow—Swan growth

1. Agents save some of their current income

. Savings used to increase capital stock

2
3. Capital combined with labor to produce output
4. Output is income (wages, rent on capital)

5

. Return to step 1

What happens to output / capital / etc. over time?
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In the model, output in each period is

Y, =F(Ky, L) (t=0,1,2,..))

Here
® K; = capital
® [, = labor
® Y; = output

® F is the aggregate production function
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F assumed to be homogeneous of degree one (HD1), meaning

F(AK,AL) = AF(K,L) forallA >0
Examples.

Cobb-Douglas:
F(K,L) = AK*L'™*

CES:
F(K,L) = y{aK® + (1 — a)LP}1/F
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Closed economy:

current domestic investment = aggregate domestic savings

The savings rate is a positive constant s, so

investment = savings = sY; = sF(K;, L;)

Depreciation means that 1 unit of capital today becomes 1 — ¢
units next period

Thus, capital stock evolves according to

Kt+1 = SF(Kt, Lt) + (1 — 5)Kt
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We simplify Ky1 = sF(K, Lt) + (1 — 6)K; as follows

Assume that L; = some constant L

Set k; := K;/L and use HD1 to get

F(K:, L)

kt+1 =S + (1 — (S)kt
= SF(kt,l) + (1 — 5)kt
Setting f (k) := F(k,1), the final expression is

kiv1 = sf (ki) + (1 —6)k:

7/86



In summary, we can write

kiv1 = g(k) where g(k):=sf(k)+ (1—0)k
This kind of equation is called a (scalar) difference equation
: What are the implied properties of {k;}?

More generally, given

e difference equation x;41 = g(x¢)

® initial condition X,

what are the properties of {x;}?
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45 Degree Diagrams

Useful for one dimensional dynamic systems

Equally helpful for both linear and nonlinear systems

Let's look at some examples, starting with the difference equation

xt+1 = g(x¢) when g(x) =2+0.5x

We want to be able to take any xg and map out the sequence

xo, x1 =g(x0), x2=g(x1),
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Figure: g(x) = 2 + 0.5x with xo = 0.4
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Figure: g(x) = 24 0.5x with xo = 1.5
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Figure: g(x) = 24 0.5x with xp = 5.8
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Figure: g(x) =1+ 1.2x with xo = 0.4
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Figure: g(x) = 2.125/(1 4 x~*) with xog = 0.85
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Figure: g(x) = 2.125/(1 + x~*) with xg = 1.1
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Let's compare
® 45 degree diagrams

® corresponding time series plots
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Figure: g(x) = 2 + 0.5x with xo = 0.4
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Figure: g(x) = 2 4 0.5x with xq

0.4
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Figure: g(x) =1+ 1.2x with xo = 0.4
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Xt

Figure: g(x) =1+ 1.2x with xo = 0.4
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Figure: g(x) =2.125/(1 4+ x~*) and g(0) = 0 with xo = 0.85
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Figure: g(x) = 2.125/(1 + x*) and g(0) = 0 with xy = 0.85
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Figure: g(x) = 2.125/(1+x~*) and g(0) = 0 with xo = 1.1
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Figure: g(x) = 2.125/(1 + x~*) and g(0) = 0 with xg = 1.1
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Back to Solow-Swan

Let's return to the model

kiv1 = g(k) where g(k):=sf(k)+ (1—0)k
Let's assume that

® f(k) = Ak" where A=1and « = 0.6
® s=03and 6=0.1

The dynamics can be seen graphically
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Figure: Solow-Swan dynamics, low initial capital
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Figure: Solow-Swan dynamics, low initial capital
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Figure: Solow-Swan dynamics, high initial capital
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Figure: Solow-Swan dynamics, high initial capital
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Graphical analysis of the model suggests that

® k; increases over time if kg is small
® k; decreases over time if kg is large

® J; converges to the same point regardless of kg
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Adding Complications

Would like to consider random shocks to production, depreciation,
etc.

Generates time series in distribution space

Tracking them requires some

® functional analysis (distributions are functions)

® numerical methods

Would also like to choose s optimally...
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Motivating Examples: Optimization

Some dynamic programming problems

® firm problems
® household problems
® search problems

® etc.

To be solved throughout the course
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Shortest Paths

A famous topic with applications in

® Google maps!
® operations research

® network design

Aim: traverse a graph, following arcs (arrows) from one specified
node to another at minimum cost
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Figure: A simple graph
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Figure: Solution 1
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Figure: Solution 2
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Large graphs we need a systematic solution
So let v(x) be the minimum cost-to-go from node x

The total cost of traveling to the final node from x if we take the
best route

The function v is usually called the cost-to-go function or the
value function
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Figure: The cost-to-go function
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Suppose that v(x) is known at all nodes x
Then the least cost path can be computed as follows:
Start at node A

From then on, at node x, move to the node i that solves

min {e(xy) +o(y)} (1)

Here

® T'(x) is the set of nodes that can be reached from x in one
step

® c(x,y) is the cost of traveling from x to y
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How to find v in more complex cases?

One way is to exploit the recursion

v(x) = min {c(x y)+o(y)} forall x € graph (2)

yer(x)

Known as the Bellman equation

A nonlinear equation in v that we need to figure out how to solve...
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Job Search

Let's consider a model of job search due to McCall (1970)
Consider an agent who is currently unemployed
Receives in each period one job offer at wage w;

On receiving each offer, she has two choices:

1. accept the offer and work permanently at constant wage w; or

2. reject the offer, receive unemployment compensation ¢, and
reconsider next period

The wage sequence {w;} is assumed to be 11D with common
density g
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Suppose worker enters the workforce at t = 1, lives for two periods
and maximizes

v1(w1) := max{y; + BEy2} where y; := is income at time j

Income y; is either wage income or unemployment compensation
Notes

® Bliesin (0,1) and represents discounting of future payoffs
® Smaller B = more impatient

e Lifetime value v1 depends on initial offer wy
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Agent's options:

1. accept wq and work at this wage for both periods

2. reject it, receive unemployment compensation ¢, and then, in
the second period, choose the maximum of w; and ¢

Hence

v1(w1) = max {w; + Bw1, ¢ + BEmax{c, wy}} (3)

Can be calculated as soon as we know wq
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Now let's suppose that the agent works in period t = 0 as well,
maximizes

vo(wo) := max{yo + BEy1 + B> Eyz}

The value of accepting the current offer wy is wo + Bwo + ,BZWO

The continuation value (i.e., reject, wait) is ¢ plus choosing
optimally at f =1and t =2

Thus,
continuation value = ¢+ B Ev;(w;)

We know the function v1 from the previous slide
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Total value from time zero, given wy, is
vo(wp) = max{accept, reject and continue}

Hence

vo(wp) = max {wo + Bwo + ,32 wo, € + 5E01(w1)}

Note recursive relationship between vy and v;

Also a version of the Bellman equation

(4)
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Figure: Decision tree for the job seeker
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Now let's suppose that the worker is infinitely lived

Aims to maximize the expected discounted sum

Y. By (5)
t=0

The trade-off is

® Waiting for a good offer is costly, since the future is
discounted

® Accepting early is costly too, since better offers might arrive
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Suppose current wage offer is w

Lifetime value of accepting is

w

w+ﬁw+ﬂ2w+"':ﬂ

Tomorrow we get a random draw w’ from g

Let v*(w’) be the maximum value that can be extracted from it
by making optimal choices at each step

Continuation value is
e+ B [ o' (@)g(w) dw!

Choose the max of these two
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But how to find v*?

The Bellman equation states that
* o w * / ! /
v (w) —max{l_ﬁ,c—i—ﬁ/v (w )q(w)dw}

Intuition: acting optimally today and then continuing to act
optimally in the future leads to maximal value today

The Bellman equation is a on v

We can use it to try to solve for v*...
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Optimal Consumption and Savings

Wealth of a given household evolves according to

w1 = (L +re1) (wr —¢) + Y (8)

Here

® w; is wealth (net asset asset holdings) at f,
® (; is current consumption,

® Y11 is non-financial (or labor) income received at the end of
period t and

® 7i11 > 0 is the interest rate.
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Agent seeks to maximize

E gﬁtu(a) (9)

subject to (8) as well as ¢; > 0 and w; > 0 for all ¢

(Nonnegative wealth excluded at this point)

Here

® u(cy) is the utility derived from current consumption ¢;

e B€(0,1) is a time discount factor
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Assume labor income and the interest rate are functions
ye =y(z,&) and 1y =7(z4, Q)

Both &; and {; are transient shocks

The sequence {z;} is some exogenous state process

It obeys a given transition rule—say

I1ID

zey1 = aze + b+ o with {7} ~ N(0,1)

(10)

(11)
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Suppose that v*(w, z) is maximal utility obtainable from
wealth w and exogenous state z

We will show: the household should choose ¢ according to

max {u(c) + BE.v* (v, 2')} (12)

0<e<w

where

w' = (1+r(Z,¢))(w—rc) +y(,7)

Here [E, indicates expectation over the random elements r(z/,&’)
and y(z/,{’) conditional on z; = z
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But how to find v*?

Later we show it satisfies

v*(w,z) = max {u(c)+ pE0"(w',2')} (13)

0<cesw

Intuition: optimally trading of present and future rewards
maximizes value

Steps:

1. consider (13) as a functional equation restricting v*

2. use functional analysis / fixed point theory to solve it
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Summary

We will deconstruct high dimensional problems using recursive
methods

The recursions lead to functional equations like

v(w) = max{l_ c+/3/ dw} (14)

v(w,z) = max {u(c) +pE.0(w,z)} (15)

0<esw

Unknown v is a function

To solve such equations we use functional analysis / fixed point
theory
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Next Topics

. Notational conventions

. Reminders on real analysis

. Functional analysis

. Fixed point theory
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Preliminary |: Notation and Conventions

You will see expressions such as [ g(x)F(dx) where F is a CDF

Interpretation: as

/g Eg(X) where X ZF (16)

Example. If g(x) = x then [ ¢(x)F(dx) is the mean of F

Example. If g(x) = x? then [ g(x)F(dx) is the second moment
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If X is scalar and F/ = f, so that f is the density of X, then

[s@F@n = [~ g dx

—00

If F corresponds to a PMF p supported on a countable set X, then

[ 8)F(@x) = ¥ g(x)p(x)

xeX

Remarks:

® | ebesgue's theory of integration unifies these concepts

® \We skip this topic while borrowing some rules for integrals
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Functions on Finite Sets = Vectors

® R% is all d-tuples (x1,...,x4) of real numbers

e R*X is all functions f mapping X to R
® Each f defined by the value f(x) it assigns to each x € X
Observe: If X = {x1,...,x4} then
R* > f=(f(x1),..., f(xq)) € R? (17)
This is a one-to-one correspondence between RX and R?

R 5 (y1,...,ya) = (f(x1),..., f(xa)) = f€RX  (18)

Hence, if X has d elements, then we regard R* and R¥ as the
expressed in different ways
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Preliminary Il: Real Analysis

Recall that {x,} in R converges to x € R if

Ve >0, IN € Ns.t. |x, — x| < € whenever n > N

Rules for sequences: If {x,} and {y,} are sequences in R with
Xp — x and y, — v, then

1. xp+yn = x+yand x,y, — xY

2. xp < Yy for all n implies x <y

3. ax, — ax for any &« € R

4. x4y Vyy — xVyand x, ANy — XAy
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In what follows, a nonempty set X is called countable if it is

® finite or

® can be placed in one-to-one correspondence with IN

Example. {1,...,n}, N, Z, @, etc.

Any nonempty set X that fails to be countable is called
uncountable

Example. R, RY, (a,b) C R, etc.

See any text on real analysis
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If f,¢ € RX then f+ g, af, fg to be interpreted pointwise
In particular, for all x € X,

* (f+8)(x):=f(x)+g(x)
* (af)(x):=af(x)

* (f8)(x) = f(x)g(x)

® etc.

Similarly, f V g, f A\ g defined by

* (fVg)(x):= f(x)Vg(x) = pointwise max
* (fAgQ)(x):= f(x) A g(x) = pointwise min
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Let XCR
A function f € R is called continuous at x if

f(xn) = f(x) whenever x, — x

The function f is continuous if continuity holds at all x € X
Continuity is preserved under standard algebraic manipulations
Examples.

® f,g continuous = f + g continuous
® f,g continuous = fg continuous

® etc.
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Suggestion for proofs: minimize use of Ve >0, 3...
Example. To show that f, g continuous implies f + ¢ continuous
Pick any x € X and any x, — x

Since f is continuous, f(x,) — f(x)

Since g is continuous, g(x,) — g(x)

Since limits of sums are sum of limits,
flxn) +g(xn) = f(x) +8(x)  (n— o)

Hence f + g is continuous at x

Since x was arbitrary, f + g is continuous on X
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Vector Analysis: Preliminaries

As before, R? denotes the set of all d vectors x = (x1,...

® |n matrix algebra, x defaults to column vector

The Euclidean norm || - || on R is defined by

p 1/2
[l = (Z x?)
i=1

® ||x|| represents the “length” of x

Interpretation:

® ||x —y|| represents distance between x and y
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Fact. For any x € R and any x,y € RY, the following statements
are true:

1. ||x|| > 0 and ||x|]| =0 if and only if x =0
2. x| = faf][x]]

3. lx+y| < |lx]| + ||yl (triangle inequality)

The Euclidean norm satisfies the Cauchy-Schwarz inequality

'yl < llx[l[lyl

(Here x'y is the inner product Y7 ; x;;)
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Order

Let x and y be vectors in R¥

We write x < y if every element is correspondingly ordered

Examples.

1 1 1 0
()< @) = (2)£()
Letting e; be the k-th canonical basis vector,

x<y <= ¢ex<eyinRforallk

Ex. Show that < is a partial order on R?
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y = (y1.42)
Y2
V/
x = (x1,x2)
X1 [ ]
X1 < 1

Figure: In R2, x < Yy means y is north-east of x
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Sequences and Convergence

Fixa € R and € > 0
Let Be(a) :== {x e R?: ||x —a|| < €}

A sequence {x,} said to converge to a € RY if

Ve >0, AINEN st.n >N = x, € Bs(a)

Equivalent: ||x, —al| — 0in R
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Facts Analogous to the scalar case,

1. Ifx, = xandy, = ythenx, +y, = x+y
If x;, = x and & € R then ax,;, — ax
If x, — x and z € R then z'x,, — z'x

If x, = x, v, =y and x, <y, foralln € N, then x <y

A

Each sequence in R? has at most one limit
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Infinite Sums in R?

Analogous to the scalar case, an infinite sum in R? is the limit of
the partial sum:

® If {x,} is a sequence in R?, then
00 J
Y xy:=lim ) x, if the limit exists
n=1

J—o0 =1

In other words,

= X <— lim

J
an —yH —0
n=1
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The Set of Matrices M (n X k)

Let M (n x k) be the set of n X k real matrices

Questions:

® When is matrix A “close" to matrix B?
® When does A,, converge to A?

® What does ) ;> ; A, mean?

To answer these questions, we introduce a norm on M (n X k)
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The Spectral Norm

Given A € M(n x k), the spectral norm of A is

A
|All :== sup{HH;iH :x e R, x 7&0}

® |HS is the spectral norm of A

® RHS is ordinary Euclidean vector norms

We often just say the norm of A

Fact. In the sup we can restrict attention to x s.t. ||x|| =1
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Fact. For the diagonal matrix

d 0
0 d
D = diag(dq,..., d,) = | . .
0 0
we have

D] = max|d
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Properties of the Spectral Norm

Similar to Euclidean norms on vectors,

Fact. For all A,B € M(n x k),

1. |A|| >0and [[A]| =0 <= A=0
2. |laA| = |a|||A|| for any scalar «

3. la+ Bl <[lAll + Bl

Ex. Show that

1A < Al - [lx] VxeRF
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Fact. If AB is well defined, then ||AB|| < ||A||||B]|

Proof: Let A € M(n x k), let B € M(k x j) and let x € R/
We have

[ABx|[ < [lA[[ - [ Bx[| < [[A]l - [|BI| - flx]]

< [lAl-[IBll

Called the submultiplicative property

Implication: || Af|| < || A/ for any j € N and A € M(n x n)
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Distance, Convergence, etc.

Having a norm on matrices gives us a notion of distance:

d(A,B) = [|A - B

We say that A; converges to A if |[A; — Al = 0in R

Similarly,

=0

agk

A]-:B <— lim
J—o0

J
) Aj—B
j=1

~.
Il
—_
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A scalar A € C is called an eigenvalue of A € M(n x n) if there
exists a nonzero e € C" such that

Ae = Ae

The vector e is called the eigenvector

Ex. A square matrix is called stochastic if it is nonnegative and
its rows sum to one. Show that 1 is an eigenvalue of every
stochastic matrix.
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Fact. For any square matrix A

A is an eigenvalue of A <= det(A—AI) =0

Proof: Let A by n X n and let I be the n X n identity
We have

det(A —AI) =0 <= A — Al is singular
<= Jx #0st. (A—A)x=0
<~ dx #0s.t. Ax = Ax

<= A is an eigenvalue of A
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Example. In the 2 X 2 case,

a b a—A b
A_<Cd) — A—/\I_< ) d_A>
det(A—AI) =(a—A)(d—A) —bc

=A%~ (a+d)A+ (ad — be)

Hence the eigenvalues of A are given by the two roots of

A —(a+d)A+ (ad —bc) =0

Equivalently,
A% — trace(A)A +det(A) =0
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Spectral Radius

Let 0(A) be the spectrum of A (i.e., the set of its eigenvalues)

For A € M(n x n), the spectral radius is

A) = A
r(A) @%' |

Example. For the diagonal matrix D = diag(dy, ..., d,) we have

ID[| = max |d;] Arg%)!\ (4)

Fact. r(A) < ||A]| always holds

Fact. If A is a stochastic matrix then 7(A) =1
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Fact. Ifa € R and A € M(n x n), then r(aA) = |a|r(A)

Fact. For all A € M(n x n), we have

LAl = vr(A’A)
2. || A"l = [|A]] and r(A") = r(A)

Gelfand’s formula states that, for all A € M(n x n),

HAkHl/k—H’(A) as k — oo

Ex. Use Gelfand’'s formula to show that

rA) <1 = ||AY| =0
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Proof that ||A¥|| = O(r(A)¥) when A is diagonalizable

Fix k € N and P, D such that A = PDP~! where

D = diag(A1,...,Ax)
We have A¥ = PD¥P~! where D* = diag(Af, ..., AK)
Hence || A¥|| = [[PD*P~1|| < [|P[[[| D¥[[|| P~
With C := ||P||||P7Y,

| A¥|| < Cmax|)\k] = Cmax\)\ K= Cr(A)
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