# ECON-GA 1025 Macroeconomic Theory I Lecture 2

John Stachurski

Fall Semester 2018

#### This Lecture

- 1. Review of deterministic scalar dynamics
- 2. Dynamic programming examples and overview
- 3. First steps towards analysis / fixed point theory

## Warm Up Discussion: Simple Dynamics

#### Example. Solow-Swan growth

- 1. Agents save some of their current income
- 2. Savings used to increase capital stock
- 3. Capital combined with labor to produce output
- 4. Output is income (wages, rent on capital)
- 5. Return to step 1

What happens to output / capital / etc. over time?

In the model, output in each period is

$$Y_t = F(K_t, L_t)$$
  $(t = 0, 1, 2, ...)$ 

#### Here

- $K_t = \text{capital}$
- $L_t = labor$
- $Y_t = \text{output}$
- ullet F is the aggregate production function

F assumed to be **homogeneous of degree one** (HD1), meaning

$$F(\lambda K, \lambda L) = \lambda F(K, L)$$
 for all  $\lambda \geqslant 0$ 

Examples.

Cobb-Douglas:

$$F(K,L) = AK^{\alpha}L^{1-\alpha}$$

CES:

$$F(K,L) = \gamma \{\alpha K^{\rho} + (1-\alpha)L^{\rho}\}^{1/\rho}$$

#### Closed economy:

current domestic investment = aggregate domestic savings

The savings rate is a positive constant s, so

investment = savings = 
$$sY_t = sF(K_t, L_t)$$

Depreciation means that 1 unit of capital today becomes  $1-\delta$  units next period

Thus, capital stock evolves according to

$$K_{t+1} = sF(K_t, L_t) + (1 - \delta)K_t$$

We simplify  $K_{t+1} = sF(K_t, L_t) + (1 - \delta)K_t$  as follows

Assume that  $L_t = \text{some constant } L$ 

Set  $k_t := K_t/L$  and use HD1 to get

$$k_{t+1} = s \frac{F(K_t, L)}{L} + (1 - \delta)k_t$$
$$= sF(k_t, 1) + (1 - \delta)k_t$$

Setting f(k) := F(k, 1), the final expression is

$$k_{t+1} = sf(k_t) + (1 - \delta)k_t$$

In summary, we can write

$$k_{t+1} = g(k_t)$$
 where  $g(k) := sf(k) + (1 - \delta)k$ 

This kind of equation is called a (scalar) difference equation

Question: What are the implied properties of  $\{k_t\}$ ?

More generally, given

- difference equation  $x_{t+1} = g(x_t)$
- initial condition x<sub>0</sub>,

what are the properties of  $\{x_t\}$ ?

## 45 Degree Diagrams

Useful for one dimensional dynamic systems

Equally helpful for both linear and nonlinear systems

Let's look at some examples, starting with the difference equation

$$x_{t+1} = g(x_t)$$
 when  $g(x) = 2 + 0.5x$ 

We want to be able to take any  $x_0$  and map out the sequence

$$x_0$$
,  $x_1 = g(x_0)$ ,  $x_2 = g(x_1)$ , ...



Figure: g(x) = 2 + 0.5x with  $x_0 = 0.4$ 



Figure: g(x) = 2 + 0.5x with  $x_0 = 1.5$ 



Figure: g(x) = 2 + 0.5x with  $x_0 = 5.8$ 



Figure: g(x) = 1 + 1.2x with  $x_0 = 0.4$ 



Figure:  $g(x) = 2.125/(1+x^{-4})$  with  $x_0 = 0.85$ 



Figure:  $g(x) = 2.125/(1+x^{-4})$  with  $x_0 = 1.1$ 

#### Let's compare

- 45 degree diagrams
- corresponding time series plots



Figure: g(x) = 2 + 0.5x with  $x_0 = 0.4$ 



Figure: g(x) = 2 + 0.5x with  $x_0 = 0.4$ 



Figure: g(x) = 1 + 1.2x with  $x_0 = 0.4$ 



Figure: g(x) = 1 + 1.2x with  $x_0 = 0.4$ 



Figure:  $g(x) = 2.125/(1 + x^{-4})$  and g(0) = 0 with  $x_0 = 0.85$ 



Figure:  $g(x) = 2.125/(1 + x^{-4})$  and g(0) = 0 with  $x_0 = 0.85$ 



Figure:  $g(x) = 2.125/(1+x^{-4})$  and g(0) = 0 with  $x_0 = 1.1$ 



Figure:  $g(x) = 2.125/(1+x^{-4})$  and g(0) = 0 with  $x_0 = 1.1$ 

### Back to Solow-Swan

Let's return to the model

$$k_{t+1} = g(k_t)$$
 where  $g(k) := sf(k) + (1 - \delta)k$ 

Let's assume that

- $f(k) = Ak^{\alpha}$  where A = 1 and  $\alpha = 0.6$
- s=0.3 and  $\delta=0.1$

The dynamics can be seen graphically



Figure: Solow-Swan dynamics, low initial capital



Figure: Solow-Swan dynamics, low initial capital



Figure: Solow-Swan dynamics, high initial capital



Figure: Solow-Swan dynamics, high initial capital

#### Graphical analysis of the model suggests that

- $k_t$  increases over time if  $k_0$  is small
- $k_t$  decreases over time if  $k_0$  is large
- $k_t$  converges to the same point regardless of  $k_0$

## Adding Complications

Would like to consider random shocks to production, depreciation, etc.

Generates time series in distribution space

Tracking them requires some

- functional analysis (distributions are functions)
- numerical methods

Would also like to choose s optimally...

## Motivating Examples: Optimization

#### Some dynamic programming problems

- firm problems
- household problems
- search problems
- etc.

To be solved in stages throughout the course

#### Shortest Paths

A famous topic with applications in

- Google maps!
- operations research
- network design

Aim: traverse a graph, following arcs (arrows) from one specified node to another at minimum cost



Figure: A simple graph



Figure: Solution 1



Figure: Solution 2

Large graphs we need a systematic solution

So let v(x) be the **minimum cost-to-go** from node x

The total cost of traveling to the final node from x if we take the best route

The function v is usually called the **cost-to-go function** or the value function



Figure: The cost-to-go function

## Suppose that v(x) is known at all nodes x

Then the least cost path can be computed as follows:

Start at node A

From then on, at node x, move to the node y that solves

$$\min_{y \in \Gamma(x)} \{ c(x, y) + v(y) \} \tag{1}$$

#### Here

- $\Gamma(x)$  is the set of nodes that can be reached from x in one step
- c(x,y) is the cost of traveling from x to y

How to find v in more complex cases?

One way is to exploit the recursion

$$v(x) = \min_{y \in \Gamma(x)} \{c(x, y) + v(y)\} \quad \text{for all } x \in \text{graph} \tag{2}$$

Known as the **Bellman equation** 

A nonlinear equation in v that we need to figure out how to solve...

### Job Search

Let's consider a model of job search due to McCall (1970)

Consider an agent who is currently unemployed

Receives in each period one job offer at wage  $w_t$ 

On receiving each offer, she has two choices:

- 1. accept the offer and work permanently at constant wage  $w_t$  or
- 2. reject the offer, receive unemployment compensation c, and reconsider next period

The wage sequence  $\{w_t\}$  is assumed to be IID with common density q

Suppose worker enters the workforce at t=1, lives for two periods and maximizes

$$v_1(w_1) := \max\{y_1 + \beta \mathbb{E} y_2\}$$
 where  $y_j :=$  is income at time  $j$ 

Income  $y_j$  is either wage income or unemployment compensation

### Notes

- ullet eta lies in (0,1) and represents discounting of future payoffs
- Smaller  $\beta =$  more impatient
- **Lifetime value**  $v_1$  depends on initial offer  $w_1$

### Agent's options:

- 1. accept  $w_1$  and work at this wage for both periods
- 2. reject it, receive unemployment compensation c, and then, in the second period, choose the maximum of  $w_2$  and c

Hence

$$v_1(w_1) = \max\{w_1 + \beta w_1, c + \beta \mathbb{E} \max\{c, w_2\}\}$$
 (3)

Can be calculated as soon as we know  $w_1$ 

Now let's suppose that the agent works in period t=0 as well, maximizes

$$v_0(w_0) := \max\{y_0 + \beta \mathbb{E} y_1 + \beta^2 \mathbb{E} y_2\}$$

The value of accepting the current offer  $w_0$  is  $w_0 + \beta w_0 + \beta^2 w_0$ 

The **continuation value** (i.e., reject, wait) is c plus choosing optimally at t=1 and t=2

Thus,

continuation value 
$$= c + \beta \mathbb{E} v_1(w_1)$$

We know the function  $v_1$  from the previous slide

Total value from time zero, given  $w_0$ , is

$$v_0(w_0) = \max\{\text{accept, reject and continue}\}$$

Hence

$$v_0(w_0) = \max \left\{ w_0 + \beta w_0 + \beta^2 w_0, c + \beta \mathbb{E} v_1(w_1) \right\}$$
 (4)

Note recursive relationship between  $v_0$  and  $v_1$ 

Also a version of the **Bellman equation** 



Figure: Decision tree for the job seeker

Now let's suppose that the worker is infinitely lived

Aims to maximize the expected discounted sum

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^{t}y_{t}\tag{5}$$

The trade-off is

- Waiting for a good offer is costly, since the future is discounted
- Accepting early is costly too, since better offers might arrive

Suppose current wage offer is  $\boldsymbol{w}$ 

Lifetime value of accepting is

$$w + \beta w + \beta^2 w + \dots = \frac{w}{1 - \beta} \tag{6}$$

Tomorrow we get a random draw w' from q

Let  $v^*(w')$  be the **maximum value** that can be extracted from it by making optimal choices at each step

#### Continuation value is

$$c + \beta \int v^*(w')q(w')\,\mathrm{d}w'$$

Choose the max of these two

But how to find  $v^*$ ?

The Bellman equation states that

$$v^{*}(w) = \max \left\{ \frac{w}{1 - \beta}, c + \beta \int v^{*}(w') q(w') dw' \right\}$$
 (7)

Intuition: acting optimally today and then continuing to act optimally in the future leads to maximal value today

The Bellman equation is a restriction on  $v^*$ 

We can use it to try to solve for  $v^*$ ...

# Optimal Consumption and Savings

Wealth of a given household evolves according to

$$w_{t+1} = (1 + r_{t+1})(w_t - c_t) + y_{t+1}$$
 (8)

#### Here

- $w_t$  is wealth (net asset asset holdings) at t,
- c<sub>t</sub> is current consumption,
- $y_{t+1}$  is non-financial (or labor) income received at the end of period t and
- $r_{t+1} > 0$  is the interest rate.

### Agent seeks to maximize

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^{t}u(c_{t})\tag{9}$$

subject to (8) as well as  $c_t \geqslant 0$  and  $w_t \geqslant 0$  for all t

(Nonnegative wealth excluded at this point)

#### Here

- $u(c_t)$  is the utility derived from current consumption  $c_t$
- $\beta \in (0,1)$  is a time discount factor

Assume labor income and the interest rate are functions

$$y_t = y(z_t, \xi_t)$$
 and  $r_t = r(z_t, \zeta_t)$  (10)

Both  $\xi_t$  and  $\zeta_t$  are transient shocks

The sequence  $\{z_t\}$  is some **exogenous state process** 

It obeys a given transition rule—say

$$z_{t+1} = az_t + b + c\eta_{t+1}$$
 with  $\{\eta_t\} \stackrel{\text{IID}}{\sim} N(0,1)$  (11)

Suppose that  $v^*(w,z)$  is maximal lifetime utility obtainable from wealth w and exogenous state z

We will show: the household should choose c according to

$$\max_{0 \leqslant c \leqslant w} \left\{ u(c) + \beta \, \mathbb{E}_z v^*(w', z') \right\} \tag{12}$$

where

$$w' := (1 + r(z', \xi'))(w - c) + y(z', \zeta')$$

Here  $\mathbb{E}_z$  indicates expectation over the random elements  $r(z',\xi')$  and  $y(z',\zeta')$  conditional on  $z_t=z$ 

But how to find  $v^*$ ?

Later we show it satisfies

$$v^*(w,z) = \max_{0 \le c \le w} \{ u(c) + \beta \, \mathbb{E}_z v^*(w',z') \}$$
 (13)

Intuition: optimally trading of present and future rewards maximizes value

### Steps:

- 1. consider (13) as a functional equation restricting  $v^*$
- 2. use functional analysis / fixed point theory to solve it

# Summary

We will deconstruct high dimensional problems using recursive methods

The recursions lead to functional equations like

$$v(w) = \max\left\{\frac{w}{1-\beta}, c+\beta \int v(w')q(w') dw'\right\}$$
(14)

or

$$v(w,z) = \max_{0 \le c \le w} \left\{ u(c) + \beta \mathbb{E}_z v(w',z') \right\}$$
 (15)

Unknown v is a function

To solve such equations we use functional analysis / fixed point theory

# Next Topics

- 1. Notational conventions
- 2. Reminders on real analysis
- 3. Functional analysis
- 4. Fixed point theory

# Preliminary I: Notation and Conventions

You will see expressions such as  $\int g(x)F(\mathrm{d}x)$  where F is a CDF Interpretation: as

$$\int g(x)F(\mathrm{d}x) = \mathbb{E}g(X) \text{ where } X \stackrel{\mathscr{D}}{=} F$$
 (16)

Example. If g(x) = x then  $\int g(x)F(dx)$  is the mean of F

Example. If  $g(x) = x^2$  then  $\int g(x)F(dx)$  is the second moment

If X is scalar and F' = f, so that f is the density of X, then

$$\int g(x)F(dx) = \int_{-\infty}^{\infty} g(x)f(x) dx$$

If F corresponds to a PMF p supported on a countable set X, then

$$\int g(x)F(\mathrm{d}x) = \sum_{x \in \mathsf{X}} g(x)p(x)$$

#### Remarks:

- Lebesgue's theory of integration unifies these concepts
- We skip this topic while borrowing some rules for integrals

## Functions on Finite Sets = Vectors

- $\mathbb{R}^d$  is all d-tuples  $(x_1, \ldots, x_d)$  of real numbers
- $\mathbb{R}^{X}$  is all functions f mapping X to  $\mathbb{R}$ 
  - Each f defined by the value f(x) it assigns to each  $x \in X$

Observe: If  $X = \{x_1, \dots, x_d\}$  then

$$\mathbb{R}^{\mathsf{X}} \ni f = (f(x_1), \dots, f(x_d)) \in \mathbb{R}^d$$
 (17)

This is a **one-to-one correspondence** between  $\mathbb{R}^{\mathsf{X}}$  and  $\mathbb{R}^d$ 

$$\mathbb{R}^d \ni (y_1, \dots, y_d) =: (f(x_1), \dots, f(x_d)) = f \in \mathbb{R}^X$$
 (18)

<u>Hence</u>, if X has d elements, then we regard  $\mathbb{R}^X$  and  $\mathbb{R}^d$  as the same set expressed in different ways

# Preliminary II: Real Analysis

Recall that  $\{x_n\}$  in  $\mathbb R$  converges to  $x \in \mathbb R$  if

$$\forall \, \epsilon > 0, \; \exists \, N \in \mathbb{N} \; \text{s.t.} \; |x_n - x| < \epsilon \; \text{whenever} \; n \geqslant N$$

Rules for sequences: If  $\{x_n\}$  and  $\{y_n\}$  are sequences in  $\mathbb R$  with  $x_n\to x$  and  $y_n\to y$ , then

- 1.  $x_n + y_n \rightarrow x + y$  and  $x_n y_n \rightarrow xy$
- 2.  $x_n \leqslant y_n$  for all n implies  $x \leqslant y$
- 3.  $\alpha x_n \to \alpha x$  for any  $\alpha \in \mathbb{R}$
- **4**.  $x_n \vee y_n \to x \vee y$  and  $x_n \wedge y_n \to x \wedge y$

In what follows, a nonempty set X is called **countable** if it is

- finite or
- ullet can be placed in one-to-one correspondence with  ${\mathbb N}$

Example.  $\{1,\ldots,n\}$ ,  $\mathbb{N}$ ,  $\mathbb{Z}$ ,  $\mathbb{Q}$ , etc.

Any nonempty set X that fails to be countable is called **uncountable** 

Example.  $\mathbb{R}$ ,  $\mathbb{R}^d$ ,  $(a,b) \subset \mathbb{R}$ , etc.

See any text on real analysis

If  $f,g \in \mathbb{R}^X$  then f+g,  $\alpha f$ , fg to be interpreted pointwise

In particular, for all  $x \in X$ ,

- (f+g)(x) := f(x) + g(x)
- $(\alpha f)(x) := \alpha f(x)$
- (fg)(x) := f(x)g(x)
- etc.

Similarly,  $f \vee g$ ,  $f \wedge g$  defined by

- $(f \lor g)(x) := f(x) \lor g(x) = \text{pointwise max}$
- $(f \land g)(x) := f(x) \land g(x) = \text{pointwise min}$

#### Let $X \subset \mathbb{R}$

A function  $f \in \mathbb{R}^{X}$  is called **continuous** at x if

$$f(x_n) \to f(x)$$
 whenever  $x_n \to x$ 

The function f is **continuous** if continuity holds at all  $x \in X$ 

Continuity is preserved under standard algebraic manipulations

## Examples.

- f,g continuous  $\implies f+g$  continuous
- f,g continuous  $\implies fg$  continuous
- etc.

Suggestion for proofs:  $\underline{\text{minimize}}$  use of  $\forall \epsilon > 0, \exists \dots$ 

Example. To show that f, g continuous implies f + g continuous

Pick any  $x \in X$  and any  $x_n \to x$ 

Since f is continuous,  $f(x_n) \to f(x)$ 

Since g is continuous,  $g(x_n) \rightarrow g(x)$ 

Since limits of sums are sum of limits,

$$f(x_n) + g(x_n) \to f(x) + g(x) \qquad (n \to \infty)$$

Hence f + g is continuous at x

Since x was arbitrary, f + g is continuous on X

# Vector Analysis: Preliminaries

As before,  $\mathbb{R}^d$  denotes the set of all d vectors  $x=(x_1,\ldots,x_d)$ 

• In matrix algebra, x defaults to column vector

The **Euclidean norm**  $\|\cdot\|$  on  $\mathbb{R}^d$  is defined by

$$||x|| := \left(\sum_{i=1}^d x_i^2\right)^{1/2}$$

#### Interpretation:

- ||x|| represents the "length" of x
- ||x y|| represents distance between x and y

**Fact.** For any  $\alpha \in \mathbb{R}$  and any  $x,y \in \mathbb{R}^d$ , the following statements are true:

- 1.  $||x|| \ge 0$  and ||x|| = 0 if and only if x = 0
- 2.  $\|\alpha x\| = |\alpha| \|x\|$
- 3.  $||x + y|| \le ||x|| + ||y||$  (triangle inequality)

The Euclidean norm satisfies the Cauchy-Schwarz inequality

$$|x'y| \leqslant ||x|| ||y||$$

(Here x'y is the **inner product**  $\sum_{i=1}^{d} x_i y_i$ )

## Order

Let x and y be vectors in  $\mathbb{R}^d$ 

We write  $x \leq y$  if every element is correspondingly ordered

Examples.

$$\begin{pmatrix} 1 \\ -2 \end{pmatrix} \leqslant \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad \text{but} \quad \begin{pmatrix} 1 \\ -2 \end{pmatrix} \not \leq \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

Letting  $e_k$  be the k-th canonical basis vector,

$$x \leqslant y \iff e'_k x \leqslant e'_k y \text{ in } \mathbb{R} \text{ for all } k$$

**Ex.** Show that  $\leq$  is a partial order on  $\mathbb{R}^d$ 



Figure: In  $\mathbb{R}^2$ ,  $x \leq y$  means y is north-east of x

# Sequences and Convergence

Fix 
$$a \in \mathbb{R}^d$$
 and  $\epsilon > 0$ 

Let 
$$B_{\epsilon}(a) := \{x \in \mathbb{R}^d : ||x - a|| < \epsilon\}$$

A sequence  $\{x_n\}$  said to **converge** to  $a \in \mathbb{R}^d$  if

$$\forall \epsilon > 0, \ \exists \ N \in \mathbb{N} \ \text{ s.t. } n \geqslant \mathbb{N} \implies x_n \in B_{\epsilon}(a)$$

Equivalent: 
$$||x_n - a|| \to 0$$
 in  $\mathbb R$ 







### Facts Analogous to the scalar case,

- 1. If  $x_n \to x$  and  $y_n \to y$  then  $x_n + y_n \to x + y$
- 2. If  $x_n \to x$  and  $\alpha \in \mathbb{R}$  then  $\alpha x_n \to \alpha x$
- 3. If  $x_n \to x$  and  $z \in \mathbb{R}^d$  then  $z'x_n \to z'x$
- 4. If  $x_n \to x$ ,  $y_n \to y$  and  $x_n \leqslant y_n$  for all  $n \in \mathbb{N}$ , then  $x \leqslant y$
- 5. Each sequence in  $\mathbb{R}^d$  has at most one limit

### Infinite Sums in $\mathbb{R}^d$

Analogous to the scalar case, an infinite sum in  $\mathbb{R}^d$  is the limit of the partial sum:

• If  $\{x_n\}$  is a sequence in  $\mathbb{R}^d$ , then

$$\sum_{n=1}^{\infty} x_n := \lim_{J \to \infty} \sum_{n=1}^{J} x_n \text{ if the limit exists}$$

In other words,

$$y = \sum_{n=1}^{\infty} x_n \quad \iff \quad \lim_{J \to \infty} \left\| \sum_{n=1}^{J} x_n - y \right\| \to 0$$

# The Set of Matrices $\mathcal{M}(n \times k)$

Let  $\mathcal{M}(n \times k)$  be the set of  $n \times k$  real matrices

#### Questions:

- When is matrix A "close" to matrix B?
- When does  $A_n$  converge to A?
- What does  $\sum_{n=1}^{\infty} A_n$  mean?

To answer these questions, we introduce a norm on  $\mathcal{M}(n \times k)$ 

### The Spectral Norm

Given  $A \in \mathcal{M}(n \times k)$ , the **spectral norm** of A is

$$||A|| := \sup \left\{ \frac{||Ax||}{||x||} : x \in \mathbb{R}^k, \ x \neq 0 \right\}$$

- LHS is the spectral norm of A
- RHS is ordinary Euclidean vector norms

We often just say the **norm** of A

**Fact.** In the sup we can restrict attention to x s.t. ||x|| = 1

#### Fact. For the diagonal matrix

$$D = \operatorname{diag}(d_1, \dots, d_n) = \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & d_n \end{pmatrix}$$

we have

$$||D|| = \max_{i} |d_i|$$

# Properties of the Spectral Norm

Similar to Euclidean norms on vectors,

**Fact.** For all  $A, B \in \mathcal{M}(n \times k)$ ,

- 1.  $||A|| \geqslant 0$  and  $||A|| = 0 \iff A = 0$
- 2.  $\|\alpha A\| = |\alpha| \|A\|$  for any scalar  $\alpha$
- 3.  $||A + B|| \le ||A|| + ||B||$

Ex. Show that

$$||Ax|| \le ||A|| \cdot ||x|| \quad \forall x \in \mathbb{R}^k$$

**Fact.** If AB is well defined, then  $||AB|| \leq ||A|| ||B||$ 

Proof: Let  $A \in \mathcal{M}(n \times k)$ , let  $B \in \mathcal{M}(k \times j)$  and let  $x \in \mathbb{R}^j$ We have

$$||ABx|| \le ||A|| \cdot ||Bx|| \le ||A|| \cdot ||B|| \cdot ||x||$$

$$\therefore \quad \frac{\|ABx\|}{\|x\|} \leqslant \|A\| \cdot \|B\|$$

Called the submultiplicative property

Implication:  $||A^j|| \le ||A||^j$  for any  $j \in \mathbb{N}$  and  $A \in \mathcal{M}(n \times n)$ 

## Distance, Convergence, etc.

Having a norm on matrices gives us a notion of distance:

$$d(A,B) = ||A - B||$$

We say that  $A_j$  converges to A if  $\|A_j - A\| \to 0$  in  $\mathbb R$  Similarly,

$$\sum_{j=1}^{\infty} A_j = B \quad \iff \quad \lim_{J \to \infty} \left\| \sum_{j=1}^{J} A_j - B \right\| = 0$$

A scalar  $\lambda \in \mathbb{C}$  is called an **eigenvalue** of  $A \in \mathcal{M}(n \times n)$  if there exists a nonzero  $e \in \mathbb{C}^n$  such that

$$Ae = \lambda e$$

The vector e is called the **eigenvector** 

**Ex.** A square matrix is called **stochastic** if it is nonnegative and its rows sum to one. Show that 1 is an eigenvalue of every stochastic matrix.

### **Fact.** For any square matrix A

$$\lambda$$
 is an eigenvalue of  $A \iff \det(A - \lambda I) = 0$ 

Proof: Let A by  $n \times n$  and let I be the  $n \times n$  identity We have

$$\det(A - \lambda I) = 0 \iff A - \lambda I \text{ is singular}$$
 
$$\iff \exists \, x \neq 0 \text{ s.t. } (A - \lambda I)x = 0$$
 
$$\iff \exists \, x \neq 0 \text{ s.t. } Ax = \lambda x$$
 
$$\iff \lambda \text{ is an eigenvalue of } A$$

Example. In the  $2 \times 2$  case,

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \quad \Longrightarrow \quad A - \lambda I = \left(\begin{array}{cc} a - \lambda & b \\ c & d - \lambda \end{array}\right)$$

$$\therefore \det(A - \lambda I) = (a - \lambda)(d - \lambda) - bc$$
$$= \lambda^2 - (a + d)\lambda + (ad - bc)$$

Hence the eigenvalues of A are given by the two roots of

$$\lambda^2 - (a+d)\lambda + (ad - bc) = 0$$

Equivalently,

$$\lambda^2 - \operatorname{trace}(A)\lambda + \det(A) = 0$$

## Spectral Radius

Let  $\sigma(A)$  be the **spectrum** of A (i.e., the set of its eigenvalues)

For  $A \in \mathcal{M}(n \times n)$ , the **spectral radius** is

$$r(A) := \max_{\lambda \in \sigma(A)} |\lambda|$$

Example. For the diagonal matrix  $D = \operatorname{diag}(d_1, \ldots, d_n)$  we have

$$||D|| = \max_{i} |d_i| = \max_{\lambda \in \sigma(A)} |\lambda| = r(A)$$

Fact.  $r(A) \leqslant ||A||$  always holds

**Fact.** If A is a stochastic matrix then r(A) = 1

**Fact.** If  $a \in \mathbb{R}$  and  $A \in \mathcal{M}(n \times n)$ , then r(aA) = |a|r(A)

**Fact.** For all  $A \in \mathcal{M}(n \times n)$ , we have

1. 
$$||A|| = \sqrt{r(A'A)}$$

2. 
$$||A'|| = ||A||$$
 and  $r(A') = r(A)$ 

**Gelfand's formula** states that, for all  $A \in \mathcal{M}(n \times n)$ ,

$$||A^k||^{1/k} \to r(A)$$
 as  $k \to \infty$ 

Ex. Use Gelfand's formula to show that

$$r(A) < 1 \implies ||A^k|| \to 0$$

Proof that  $||A^k|| = O(r(A)^k)$  when A is diagonalizable

Fix  $k \in \mathbb{N}$  and P, D such that  $A = PDP^{-1}$  where

$$D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$$

We have  $A^k = PD^kP^{-1}$  where  $D^k = \mathrm{diag}(\lambda_1^k, \ldots, \lambda_n^k)$ 

Hence 
$$\|A^k\| = \|PD^kP^{-1}\| \leqslant \|P\|\|D^k\|\|P^{-1}\|$$

With 
$$C := ||P|| ||P^{-1}||$$
,  
 $||A^k|| \le C \max_i |\lambda_i^k| = C \max_i |\lambda_i|^k = Cr(A)^k$