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Today's Lecture

This lecture is for reference only
It is

Contents:
® General dynamic programming theory

® Bellman's principle of optimality

Further details on all this material can be found in the course notes
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Dynamic Programming: General Theory

Key questions:

® When does Bellman's principle of optimality hold?

® \When do optimal policies exist and how can we compute
them?
We address these issues in an abstract setting that includes

® All infinite horizon applications covered to date

® Additional applications with nonstandard preferences

3/52



An abstract Markov decision process (AMDP) is

1. a set X called the state space
2. a set A called the action space

3. a nonempty correspondence I' from X to A called the feasible
correspondence, with feasible state-action pairs

G:={(x,a) eXxA:aeTl(x)}

4. a subset V of RX called the set of candidate value
functions and

5. a state-action aggregator

Q:GxV =R
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In each period, controller observes x € X and responds with a € A
['(x) = all actions available to the controller in state x
Examples.

® all possible consumption choices given wealth w

® stop or continue in an optimal stopping problem

® order stock or don't order (firm inventory problem)
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I'(x) {

Figure: T and G when A =X =R+
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Loosely speaking, Q(x,4,v) =

In other words, Q(x, a,v) = total lifetime rewards, contingent on

® current action a4,
® current state x

® use of v to evaluate future states

Assumption. (Monotonicity) The state-action aggregator Q
satisfies

v< v = Q(x,4,0) <Q(x,a,0") whenever (x,a) € G
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Example. Consider the generic optimal savings model

® stateis x € X
® the action is ¢ € T'(x)
e G={(x,c) eEXXRy:ceT(x)}

® Bellman equation is

cel

v(x)_max{ +,B/ (x,¢,2) dz)} (x € X)

Maps directly to the AMDP set up with

Q(x,c,v) =u(c +,B/ g(x,¢,2))p(dz)
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The monotonicity condition
v<? = Q(x,4,0) < Q(x,a,9') whenever (x,a) € G

holds here

Indeed, with v < ¢/,

Q(x,c,v) =u(c +ﬁ/ g(x,¢,2))p(dz)

+ﬁ/ (x,¢,2))p(dz)

= Q(x,¢,v)
for all (x,¢) € G
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Example. Consider the optimal growth model with 11D shocks

® stateisy € Ry

® the action is c € I'(y) := [0, y]
G={(y,c) eRy xRt :0<c<y}
Bellman equation is

v(y) = max { +,3/ dz)} (x € X)

0<ce<y

Maps to the AMDP set up with

Qly,c,0) = u(e) + B [ o(f(y = c)2)p(dz)
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The monotonicity condition
v<?v = Q(x,a,0) <Q(x,a,7)
again holds

With v < ¢/,
Qly,c,0) = u(e) + B [ o(f(y— c)2)p(d2)
—u(c) +p [ o(Fly —)2)p(dz)

= Q(y,c, 7"
for all (y,c) € G

11/52



Example. Consider an optimal savings problem where

® w; is current assets
e {z;} is a finite exogenous state process with kernel TT
® labor income is y; = y(z;)

® The feasible set for consumption is [0, w]

Bellman equation is

v(w,z) =

max { o)+pB Y v((147) —c)—i—y(z/),z/)H(z,z/)}

<c<
O<esw z'eZ

12/52



Map to AMDP:

® Stateis x = (w, z)

® Feasible correspondence is I'(w, z) = [0, w]

The aggregator is

Q((w,2),¢,0) =

c)+B Z (T+7r)(w—rc)+y(Z),2)(z,2)

z'eZ

Monotonicity obviously holds
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Example. Consider again the job search problem with

® 11D wage offers {w;}

® unemployment compensation ¢ and discount factor B

Bellman equation is
w / /
v(w) = max {1 — 5 c—l—ﬁ/v(w )o(dw )}

Optimal policy is

o) = 1 {15 > e [ @)l |

1—

with w € R4

14/52



Map to AMDP:

® stateisw € R4

e action is a € {0,1} (reject / accept)
e T'(w) ={0,1} for every w

® the aggregator Q is

w

Q(w,a,v) =a

Monotonicity holds because

v<v = Q(w,a,v) < Q(w,a,v) forall (w,a) e G

[+ (=) e+ B [ ool |
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Example. Job search with correlated wage offers

wy = exp(z¢) +exp(p +0C)
The value function satisfies the Bellman equation

v(w,z) = max {1Z_U’B,c + BEv(w', ZI)}

Optimal policy is

U*(wzz) =1 {f > C—{-ﬂEZU*(wflzl)}
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Map to AMDP:

e stateis (w,z) € X:= Ry xR

® actionisa € A:={0,1} (reject / accept)
e T'(w) = {0,1} for every w

® the aggregator Q is

Q((w,z)a,v) =a +(1—a) [c+ BE. v(w',2')]

w
1-p
Monotonicity holds because

v<?v = Q((w,z),a,9) < Q((w,z),a,7)

for all ((w,z),a) € G
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Example. Job Search with learning

The Bellman equation is

ofeo, ) = max { 0 e p [ o, xla, 7)) () o

where
qr:=1f+(1-m)g

and

mf (w)
f(w) + (1 - m)g(w)

k(w, ) :=

® f and g are densities
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Map to AMDP:

e stateis x := (w, ) € Ry x (0,1)
® action is a € {0,1} (reject / accept)
® T'(w, ) ={0,1} for every w

® the aggregator Q is

Q((w, m),a,v) =a +

w
=
(1—a) [c+,3/v(w’,;c(w’, 7)) gr(w') dw’

Ex. Confirm that monotonicity holds
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Example. Firm with adjustment costs, inverse demand function

pe = p(qe,2¢) = ap — a1q¢ + z¢

where

Zt+1 = Pzt + 0Ny, {m} '~ N(0,1)

Current profits are given by
7t = (pr — )qe — y(qes1 — G1)°

Bellman equation is

0(q,2) = max{(p(q,2) ~c)g — (g’ - q)> + BE:0(q,2)}
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Map to AMDP:

® stateis x := (q,z) € R?

® actionisg € R

® T'(q,z) = R for all g,z (unrestricted)
® the aggregator Q is

Q((9,2),4',v) = (p(9,2) —c)g—v(q' — q)* + BEz0(q',2)

Ex. Confirm that monotonicity holds
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Example. We studied a finite state Markov decision process with

. finite state space X and action space A

. feasible correspondence I' from X — A

1

2

3. reward function r: G — R

4. discount factor B € (0,1) and
5

. stochastic kernel IT from GG to X

Bellman equation is
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Maps directly to an AMDP with

Q(x,a,v) =r(x,a)+ B Y v(y)(x,a,y)

yeX

The monotonicity condition
v< v = Q(x,a,0) <Q(x,a,7)
holds, since v < v implies

Q(x,a,v) =r(x,a)+ B} v(y)(x,a,y)

yeX

=r(x,a)+ B ) o' (y)(x,ay) =Qxa,)

yeX
for all (x,a) € G
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The Bellman Equation

A function v € V is said to satisfy the Bellman equation if
v(x) = max Q(x,a,v) for all x € X

ael(x)

Example. Suppose that X and A are finite,

Q(x,a,v) =r(x,a)+ B ), v(y)I(x,a,y)

yeX

The Bellman equation is

v(x) = max {r(x,a) +BY, v(y)ﬂ(x,a,y)}

a€l(x) yex
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Recall the basic 11D job search problem, where T'(w) = {0,1} and

Q(w,a,v) =

0"+ (1-a) [c+/3/

The Bellman equation is

v(w) = arer}%) Q(w,a,v)

= max {a (-0 e p [ olw)

:max{l_wﬁ, c—i—ﬁ/v(w’

o

i) i
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Policies

Recall that ¥V C RX is the set of candidate value functions

Let X := a family of maps from X to A such that, for each 0 € X,
1. o(x)isin T'(x) for all x € X
2. 9(x) :=Q(x,0(x),v)isin V forallv eV

Parts 1 and 2 are called feasibility and consistency respectively

® 3 is called the feasible policies
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Example. Consider again the job search problem with

® 11D wage offers {w;} taking values in [0, M]
e action is a € {0,1} (reject / accept)
e T'(w) =1{0,1} for every w

Set V = all bounded Borel measurable functions on [0, M]
Set X = all Borel measurable ¢: [0, M] — {0,1}

Each 0 € ¥ is clearly feasible and also consistent, since

is bounded and Borel measurable in w
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Example. Consider the finite state MDP
® X and A finite, feasible correspondence I" given

Take

® V to be all of RX
® ¥ be all ¢ in AX satisfying o(x) is in T'(x) for all x € X

Obviously each o in X is feasible

Consistency also holds because

is in ¥V = RX whenever v € V
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Lifetime Value of Policy

Given ¢ € X a function v € V is called a o-value function if

v(x) = Q(x,0(x),v) forall x € X

Interpretation: v = v, := lifetime value of following o

® not obvious, but examples given below

Assumption (UNQ). For each 0 € ¥, there is exactly one o-value
function v, in V

® essential for our objective function to be well defined
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Example. Consider the finite state MDP case we have and suppose
that v is a function satisfying, for all x € X

That is,

o(x) =r(x,o(x)+B Y. v (y o(x),y)

An equivalent statement is v = 7, + BI1,v

Since r(BI1,) = B < 1, we must have

0v="0,:=)_ PBTlr,

t>0
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Note that the uniqueness of v, in assumption (UNQ) is valid
To see this, pick any 0 € &

The statement that
v(x) = Q(x,0(x),v) for all x € X

is equivalent to
v =r,+ Bll,v

Since r(BI1,) < 1, this equation has only one solution
As per the previous slide, this is the lifetime value

v =) _ BT,

t>0
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Example. In the 11D growth model and consumption policy ¢ € X,
suppose v satisfies

v(y) = Qy,o(y),0)
Expanding out the last expression yields

v@)ZuWWD+ﬁ/UUW—UWD@¢@ﬂ

We claim this implies that

v(y) = vo(y) =B Y pulc(y:))

t>0

which is the lifetime value of following o
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To see this (using some Banach space theory), observe that

o(y) = u(o(y)) +ﬁ/v(f(y—0(3/))2)¢(d2)

is equivalent to
v=uoc+ Bl

Here I, is the operator defined at 4 in bcR4 by

(eh)(v) = [ hlfly —o(v)zlp(dz)

By the Neumann series theorem, the unique solution to (33) is

o(y) = ) BTl (uco) =B pulo(y:))

t20 20
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Optimality

A policy 0™ is called optimal if c* € ¥ and

Ve (X) 2 vs(x) foralloc € X and all x € X

The value function associated with our AMDP is defined by

v*(x) = sup vy (x) (x € X)

e

Evidently, a feasible policy o* is optimal if and only if

Vo (x) =0"(x) forall x € X
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Given v in V, a policy 0 € X is called v-greedy if

Q(x,o(x),v) = mretx) Q(x,a,v) forall x € X
acl(x

® treats v as the value function

Equivalent

o(x) € argmax Q(x,a,v) for all x € X
ael’(x)
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In the 11D job search problem, a policy o is v-greedy if

o(w) € argmax Q(w, a,v)
ae{0,1}

=m0 e [t

This is equivalent to

o) =1 {5 > et p [ olw)plan)

® optimally accept or reject if v is the value function

36/52



Example. In the optimal savings model, we can take

Y. := {all Borel measurable ¢ € AX s.t. o(x) € T(x), Vx € X}

® Borel measurable so that integrals are well defined

A policy o is v-greedy if o € ¥ and

o(x )Eargmax{ +,B/ (x,¢,2) (dz)}

cel'(x)

Fact. If v € bcX, then at least one v-greedy policy exists

Proof requires a measurable selection theorem — details omitted
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Key Optimality Theorem

Let assumption (UNQ) hold

Theorem. If

1. v* lies in V' and satisfies the Bellman equation

2. at least one v*-greedy policy exists
then

a. the set of optimal policies is nonempty and

b. o is optimal if and only if ¢ is v*-greedy

In other words, Bellman's principle of optimality holds
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Proof:
Suppose v* € V satisfies the Bellman equation

By the definition of greedy policies,

o is v*-greedy <= Q(x,0(x),v") = mre}x)Q(x,a,v*), Vx
acl(x

<~ Q(x,0(x),v*) =0v"(x), Vx
— v =uv,
<= o is optimal

In other words, Bellman's principle of optimality holds

Existence of an optimal policy follows from 3 v*-greedy
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Summary

So now we know: If

1. v* satisfies the Bellman equation
2. we can calculate v*

3. v* admits a greedy policy

then finding an optimal policy is trivial: apply Bellman's principle
of optimality, compute a v* greedy policy

Key remaining questions:

® When does v* satisfy the Bellman equation?

® How can we compute it?
To answer these questions we introduce two operators
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Operators

For each o € X, we define the c-value operator

TUU(X) = Q(x,a(x),v) (x € X) (1)

® Maps V to itself (by the definition of X)

® constructed s.t. fixed points of T, coincide with o-value
functions

By assumption, T,; has exactly one fixed point in V

Lemma The operator T, is isotone on V) when paired with the
pointwise partial order <

® why?
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Our second operator is the Bellman operator, defined on V by

To(x) = sup Q(x,a,v) (2)
a€l’(x)

Constructed such that

1. any solution to the Bellman equation is a fixed point of T and

2. a fixed point v of T in V is a solution to the Bellman equation
if the sup in (2) can be replaced with max

Greedy policies can now be characterized as follows:

ois v-greedy <= Tv=T,v (3)
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Theorem. If

1. T has at least one fixed point @ in V,
2. there exists at least one 7-greedy policy in X, and
3. forallc € ¥ and all x € X,
lim TX5(x) > vy(x) (4)

k—o0

then
1. 3 =v* and

2. v* is the unique solution to the Bellman equation in V

— existence of an optimal policy and Bellman's principle of
optimality
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Key Sufficient Conditions

Let V be endowed with a metric p such that

giirgop(vn,v) =0 = 7}grolovn(x) =o(x) forall x € X

® example?
Stable AMDP assumptions:
S1. Given any ¢ € X, the system (V, T ) is globally stable

S2. There exists a subset } of V such that

a. Each v € V has at least one v-greedy policy in X and
b. (U, T) is globally stable
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Key Theorem for Applications

Theorem. If the stable AMDP conditions S1-S2 hold, then

1. Assumption UNQ is satisfied

2. v* lies in V and is the unique solution to the Bellman
equation in V

3. T"v — v* whenever v € V
4. Bellman's principle of optimality is valid and at least one
optimal policy exists
This is all we need for applications

Proof is in course notes
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Example. Recall the finite state MDP

e X, A finite, feasible correspondence I" given
e ) = all of RX
® ¥ = all ¢ in AX satisfying o'(x) is in T'(x) for all x € X

and

Claim: Condition S1 holds
Proof: T, is a contraction of modulus 8 on (V,d«)

(See lecture 10)
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How about S2, which requires a subset ¥ of V such that

a. Each v € V has at least one v-greedy policy in £ and
b. (U, T) is globally stable

This works with V :=V = all of RX
Existence of greedy policies is trivial in a finite setting

Moreover

To(x) = max {r(x,a) +B Y v(y)I(x, a,y)}

aeT (x) yex

is a contraction of modulus B on (RX, dw)
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Example. Consider again the job search problem with

® 11D wage offers {w;} taking values in [0, M]
e action is a € {0,1} (reject / accept)
e T'(w)=1{0,1} for every w

Set

¢ V = all bounded Borel measurable functions on [0, M]
*V=Y
e Y. = all Borel measurable o: [0, M] — {0,1}
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S1 requires that, given any ¢ € X, the system (), T;,) is globally
stable

To see this is true, observe that, given o, we have

Too(x) = o(w) 5 + (1 - o (@) [c +B / o(w')q(w') dw’}
Ex. Fix v1 and v; in V and w € [0, M]
1. Show that

| Trv1(w) — Trva(w)| < Bllor — 02

2. Conclude that T; is a contraction of modulus 8 on V
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S2 requires a subset V of V such that

a. Each v € V has at least one v-greedy policy in & and
b. (V,T) is globally stable
This works with V = % := all continuous functions on [0, M]

The Bellman operator T is
Totw) = max {ag %5+ (1-0) oo fetaat) v
—max { {25, ¢ B [ o(w)(w) dw'}

We have already shown that greedy policies always exist, T is a
contraction map on (%, de)
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Example. Recall the generic optimal savings model

® the action is ¢ € T'(x)
e utility function u is bounded
G={(x,c) eXxRy:cel(x)}

state-action aggregator is

Q(x,c,v) =u(c —i—ﬁ/ g(x,¢,2))p(dz)

Y. = all Borel measurable o € AX s.t. o(x) € T(x), Vx € X
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S1 requires that, given any ¢ € X, the system (V, T;,) is globally
stable

S2 requires existence of a subset ¥ of V such that
a. Each v € V has at least one v-greedy policy in X and
b. (U, T) is globally stable

We have already checked these conditions when

e )V = pmX := all Borel measurable functions in bX
e V= bheX

In particular,

® T, is a contraction of modulus B on bmX for all o

® T is a contraction of modulus  on bcX
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