ECON-GA 1025 Macroeconomic Theory I Lecture 14

John Stachurski

Fall Semester 2018

Today's Lecture

This lecture is for reference only

It is not subject to assessment

Contents:

- General dynamic programming theory
- Bellman's principle of optimality

Further details on all this material can be found in the course notes

Dynamic Programming: General Theory

Key questions:

- When does Bellman's principle of optimality hold?
- When do optimal policies exist and how can we compute them?

We address these issues in an abstract setting that includes

- All infinite horizon applications covered to date
- Additional applications with nonstandard preferences

An abstract Markov decision process (AMDP) is

- 1. a set X called the state space
- 2. a set A called the action space
- 3. a nonempty correspondence Γ from X to A called the **feasible** correspondence, with **feasible** state-action pairs

$$\mathbb{G} := \{(x, a) \in \mathsf{X} \times \mathsf{A} : a \in \Gamma(x)\}\$$

- 4. a subset $\mathcal V$ of $\mathbb R^{\mathsf X}$ called the set of candidate value functions and
- 5. a state-action aggregator

$$Q: \mathbb{G} \times \mathcal{V} \to \mathbb{R}$$

Interpretation:

In each period, controller observes $x\in X$ and responds with $a\in A$ $\Gamma(x)=$ all actions available to the controller in state x Examples.

- ullet all possible consumption choices given wealth w
- stop or continue in an optimal stopping problem
- order stock or don't order (firm inventory problem)

Figure: Γ and $\mathbb G$ when $A=X=\mathbb R_+$

Loosely speaking, Q(x, a, v) = RHS of the Bellman equation

In other words, Q(x, a, v) = total lifetime rewards, contingent on

- current action a,
- current state x
- use of v to evaluate future states

Assumption. (Monotonicity) The state-action aggregator Q satisfies

$$v \leqslant v' \implies Q(x, a, v) \leqslant Q(x, a, v')$$
 whenever $(x, a) \in \mathbb{G}$

Example. Consider the generic optimal savings model

- state is $x \in X$
- the action is $c \in \Gamma(x)$
- $\mathbb{G} = \{(x,c) \in \mathsf{X} \times \mathbb{R}_+ : c \in \Gamma(x)\}$
- Bellman equation is

$$v(x) = \max_{c \in \Gamma(x)} \left\{ u(c) + \beta \int v(g(x, c, z)) \varphi(dz) \right\} \qquad (x \in X)$$

Maps directly to the AMDP set up with

$$Q(x,c,v) = u(c) + \beta \int v(g(x,c,z))\varphi(dz)$$

The monotonicity condition

$$v\leqslant v' \implies Q(x,a,v)\leqslant Q(x,a,v')$$
 whenever $(x,a)\in\mathbb{G}$

holds here

Indeed, with $v \leqslant v'$,

$$Q(x,c,v) = u(c) + \beta \int v(g(x,c,z))\varphi(dz)$$
$$= u(c) + \beta \int v'(g(x,c,z))\varphi(dz)$$
$$= Q(x,c,v')$$

for all $(x,c) \in \mathbb{G}$

Example. Consider the optimal growth model with IID shocks

- state is $y \in \mathbb{R}_+$
- the action is $c \in \Gamma(y) := [0, y]$
- $\mathbb{G} = \{(y,c) \in \mathbb{R}_+ \times \mathbb{R}_+ : 0 \leqslant c \leqslant y\}$
- Bellman equation is

$$v(y) = \max_{0 \leqslant c \leqslant y} \left\{ u(c) + \beta \int v(f(y-c)z) \varphi(dz) \right\} \qquad (x \in X)$$

Maps to the AMDP set up with

$$Q(y,c,v) = u(c) + \beta \int v(f(y-c)z)\varphi(dz)$$

The monotonicity condition

$$v \leqslant v' \implies Q(x, a, v) \leqslant Q(x, a, v')$$

again holds

With $v \leqslant v'$,

$$Q(y,c,v) = u(c) + \beta \int v(f(y-c)z)\varphi(dz)$$
$$= u(c) + \beta \int v'(f(y-c)z)\varphi(dz)$$
$$= Q(y,c,v')$$

for all $(y,c) \in \mathbb{G}$

Example. Consider an optimal savings problem where

- w_t is current assets
- ullet $\{z_t\}$ is a finite exogenous state process with kernel Π
- labor income is $y_t = y(z_t)$
- The feasible set for consumption is [0, w]

Bellman equation is

$$v(w,z) =$$

$$\max_{0 \leqslant c \leqslant w} \left\{ u(c) + \beta \sum_{z' \in \mathbf{Z}} v\left((1+r)(w-c) + y(z'), z' \right) \Pi(z, z') \right\}$$

Map to AMDP:

- State is x = (w, z)
- Feasible correspondence is $\Gamma(w,z) = [0,w]$

The aggregator is

$$Q((w,z),c,v) = u(c) + \beta \sum_{z' \in Z} v ((1+r)(w-c) + y(z'),z') \Pi(z,z')$$

Monotonicity obviously holds

Example. Consider again the job search problem with

- IID wage offers $\{w_t\}$
- ullet unemployment compensation c and discount factor eta

Bellman equation is

$$v(w) = \max \left\{ \frac{w}{1-\beta'}, c + \beta \int v(w') \varphi(dw') \right\}$$

Optimal policy is

$$\sigma^*(w) = \mathbb{1}\left\{\frac{w}{1-\beta} \geqslant c + \beta \int v^*(w')\varphi(\mathrm{d}w')\right\}$$

with $w \in \mathbb{R}_+$

Map to AMDP:

- state is $w \in \mathbb{R}_+$
- action is $a \in \{0,1\}$ (reject / accept)
- $\Gamma(w) = \{0,1\}$ for every w
- the aggregator Q is

$$Q(w,a,v) = a\frac{w}{1-\beta} + (1-a)\left[c + \beta \int v(w')q(w') dw'\right]$$

Monotonicity holds because

$$v\leqslant v' \implies Q(w,a,v)\leqslant Q(w,a,v') \quad \text{for all } (w,a)\in\mathbb{G}$$

Example. Job search with correlated wage offers

$$w_t = \exp(z_t) + \exp(\mu + \sigma \zeta_t)$$

The value function satisfies the Bellman equation

$$v(w,z) = \max\left\{\frac{w}{1-\beta}, c+\beta \mathbb{E}_z v(w',z')\right\}$$

Optimal policy is

$$\sigma^*(w,z) = \mathbb{1}\left\{\frac{w}{1-eta} \geqslant c + eta \mathbb{E}_z v^*(w',z')\right\}$$

Map to AMDP:

- state is $(w,z) \in \mathsf{X} := \mathbb{R}_+ imes \mathbb{R}$
- action is $a \in A := \{0,1\}$ (reject / accept)
- $\Gamma(w) = \{0,1\}$ for every w
- \bullet the aggregator Q is

$$Q((w,z)a,v) = a\frac{w}{1-\beta} + (1-a)\left[c + \beta \mathbb{E}_z v(w',z')\right]$$

Monotonicity holds because

$$v \leqslant v' \implies Q((w,z),a,v) \leqslant Q((w,z),a,v')$$

for all $((w,z),a) \in \mathbb{G}$

Example. Job Search with learning

The Bellman equation is

$$v(w,\pi) = \max\left\{\frac{w}{1-\beta}, c+\beta \int v(w',\kappa(w',\pi)) q_{\pi}(w') dw'\right\}$$

where

$$q_{\pi} := \pi f + (1 - \pi)g$$

and

$$\kappa(w,\pi) := \frac{\pi f(w)}{\pi f(w) + (1-\pi)g(w)}$$

• f and g are densities

Map to AMDP:

- state is $x := (w, \pi) \in \mathbb{R}_+ \times (0, 1)$
- action is $a \in \{0,1\}$ (reject / accept)
- $\Gamma(w,\pi) = \{0,1\}$ for every w
- the aggregator Q is

$$Q((w,\pi),a,v) = a\frac{w}{1-\beta} +$$

$$(1-a)\left[c+\beta\int v(w',\kappa(w',\pi))\,q_{\pi}(w')\,\mathrm{d}w'\right]$$

Ex. Confirm that monotonicity holds

Example. Firm with adjustment costs, inverse demand function

$$p_t := p(q_t, z_t) = a_0 - a_1 q_t + z_t$$

where

$$z_{t+1} = \rho z_t + \sigma \eta_{t+1}, \qquad \{\eta_t\} \stackrel{\text{\tiny IID}}{\sim} N(0,1)$$

Current profits are given by

$$\pi_t := (p_t - c)q_t - \gamma(q_{t+1} - q_t)^2$$

Bellman equation is

$$v(q,z) = \max_{q'} \left\{ (p(q,z) - c)q - \gamma(q'-q)^2 + \beta \mathbb{E}_z v(q',z') \right\}$$

Map to AMDP:

- state is $x := (q, z) \in \mathbb{R}^2$
- action is $q \in \mathbb{R}$
- $\Gamma(q,z) = \mathbb{R}$ for all q,z (unrestricted)
- \bullet the aggregator Q is

$$Q((q,z), q', v) = (p(q,z) - c)q - \gamma(q'-q)^{2} + \beta \mathbb{E}_{z}v(q', z')$$

Ex. Confirm that monotonicity holds

Example. We studied a finite state Markov decision process with

- 1. finite state space X and action space A
- 2. feasible correspondence Γ from $X \to A$
- 3. reward function $r: \mathbb{G} \to \mathbb{R}$
- 4. discount factor $\beta \in (0,1)$ and
- 5. stochastic kernel Π from $\mathbb G$ to X

Bellman equation is

$$v(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \beta \sum_{y \in X} v(y) \Pi(x, a, y) \right\}$$

Maps directly to an AMDP with

$$Q(x,a,v) = r(x,a) + \beta \sum_{y \in \mathsf{X}} v(y) \Pi(x,a,y)$$

The monotonicity condition

$$v \leqslant v' \implies Q(x, a, v) \leqslant Q(x, a, v')$$

holds, since $v \leqslant v'$ implies

$$\begin{split} Q(x,a,v) &= r(x,a) + \beta \sum_{y \in \mathsf{X}} v(y) \Pi(x,a,y) \\ &= r(x,a) + \beta \sum_{y \in \mathsf{X}} v'(y) \Pi(x,a,y) = Q(x,a,v') \end{split}$$

for all $(x,a) \in \mathbb{G}$

The Bellman Equation

A function $v \in \mathcal{V}$ is said to satisfy the **Bellman equation** if

$$v(x) = \max_{a \in \Gamma(x)} Q(x, a, v)$$
 for all $x \in X$

Example. Suppose that X and A are finite,

$$Q(x, a, v) = r(x, a) + \beta \sum_{y \in X} v(y) \Pi(x, a, y)$$

The Bellman equation is

$$v(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \beta \sum_{y \in X} v(y) \Pi(x, a, y) \right\}$$

Recall the basic IID job search problem, where $\Gamma(w)=\{0,1\}$ and

$$Q(w,a,v) = a\frac{w}{1-\beta} + (1-a)\left[c + \beta \int v(w')q(w')\,\mathrm{d}w'\right]$$

The Bellman equation is

$$\begin{split} v(w) &= \max_{a \in \Gamma(w)} Q(w, a, v) \\ &= \max_{a \in \{0,1\}} \left\{ a \frac{w}{1-\beta} + (1-a) \left[c + \beta \int v(w') q(w') \, \mathrm{d}w' \right] \right\} \\ &= \max \left\{ \frac{w}{1-\beta}, \ c + \beta \int v(w') q(w') \, \mathrm{d}w' \right\} \end{split}$$

Policies

Recall that $\mathcal{V} \subset \mathbb{R}^{\mathsf{X}}$ is the set of candidate value functions

Let $\Sigma :=$ a family of maps from X to A such that, for each $\sigma \in \Sigma$,

- 1. $\sigma(x)$ is in $\Gamma(x)$ for all $x \in X$
- 2. $\hat{v}(x) := Q(x, \sigma(x), v)$ is in \mathcal{V} for all $v \in \mathcal{V}$

Parts 1 and 2 are called **feasibility** and **consistency** respectively

• Σ is called the **feasible policies**

Example. Consider again the job search problem with

- IID wage offers $\{w_t\}$ taking values in [0,M]
- action is $a \in \{0,1\}$ (reject / accept)
- $\Gamma(w) = \{0,1\}$ for every w

Set $\mathcal{V}=$ all bounded Borel measurable functions on [0,M]

Set $\Sigma = \text{all Borel measurable } \sigma \colon [0, M] \to \{0, 1\}$

Each $\sigma \in \Sigma$ is clearly feasible and also consistent, since

$$Q(w,\sigma(w),v) = \sigma(w)\frac{w}{1-\beta} + (1-\sigma(w))\left[c + \beta \int v(w')q(w')\,\mathrm{d}w'\right]$$

is bounded and Borel measurable in w

Example. Consider the finite state MDP

• X and A finite, feasible correspondence Γ given

Take

- ullet $\mathcal V$ to be all of $\mathbb R^{\mathsf X}$
- Σ be all σ in A^X satisfying $\sigma(x)$ is in $\Gamma(x)$ for all $x \in \mathsf{X}$

Obviously each σ in Σ is feasible

Consistency also holds because

$$w(x) := Q(x, \sigma(x), v) = r(x, \sigma(x)) + \beta \sum_{y \in \mathsf{X}} v(y) \Pi(x, \sigma(x), y)$$

is in $\mathcal{V} = \mathbb{R}^{\mathsf{X}}$ whenever $v \in \mathcal{V}$

Lifetime Value of Policy

Given $\sigma \in \Sigma$ a function $v \in \mathcal{V}$ is called a σ -value function if

$$v(x) = Q(x, \sigma(x), v)$$
 for all $x \in X$

Interpretation: $v=v_\sigma:=$ lifetime value of following σ

not obvious, but examples given below

Assumption (UNQ). For each $\sigma \in \Sigma$, there is exactly one σ -value function v_{σ} in \mathcal{V}

essential for our objective function to be well defined

Example. Consider the finite state MDP case we have and suppose that v is a function satisfying, for all $x \in X$

$$v(x) = Q(x, \sigma(x), v)$$

That is,

$$v(x) = r(x, \sigma(x)) + \beta \sum_{y \in \mathsf{X}} v'(y) \Pi(x, \sigma(x), y)$$

An equivalent statement is $v = r_{\sigma} + \beta \Pi_{\sigma} v$

Since $r(\beta\Pi_{\sigma})=\beta<1$, we must have

$$v = v_{\sigma} := \sum_{t \geq 0} \beta^t \Pi_{\sigma}^t r_{\sigma}$$

Note that the uniqueness of v_{σ} in assumption (UNQ) is valid

To see this, pick any $\sigma \in \Sigma$

The statement that

$$v(x) = Q(x, \sigma(x), v)$$
 for all $x \in X$

is equivalent to

$$v = r_{\sigma} + \beta \Pi_{\sigma} v$$

Since $r(\beta\Pi_{\sigma}) < 1$, this equation has only one solution

As per the previous slide, this is the lifetime value

$$v_{\sigma} = \sum_{t \geq 0} \beta^t \Pi_{\sigma}^t r_{\sigma}$$

Example. In the IID growth model and consumption policy $\sigma \in \Sigma$, suppose v satisfies

$$v(y) = Q(y, \sigma(y), v)$$

Expanding out the last expression yields

$$v(y) = u(\sigma(y)) + \beta \int v(f(y - \sigma(y))z)\varphi(dz)$$

We claim this implies that

$$v(y) = v_{\sigma}(y) := \mathbb{E} \sum_{t \geqslant 0} \beta^t u(\sigma(y_t))$$

which is the lifetime value of following σ

To see this (using some Banach space theory), observe that

$$v(y) = u(\sigma(y)) + \beta \int v(f(y - \sigma(y))z)\varphi(dz)$$

is equivalent to

$$v = u \circ \sigma + \beta \Pi_{\sigma} v$$

Here Π_{σ} is the operator defined at h in $bc\mathbb{R}_{+}$ by

$$(\Pi_{\sigma}h)(y) = \int h[f(y-\sigma(y))z]\varphi(dz)$$

By the Neumann series theorem, the unique solution to (33) is

$$v(y) = \sum_{t \ge 0} \beta^t \Pi_{\sigma}^t(u \circ \sigma) = \mathbb{E} \sum_{t \ge 0} \beta^t u(\sigma(y_t))$$

Optimality

A policy σ^* is called **optimal** if $\sigma^* \in \Sigma$ and

$$v_{\sigma^*}(x) \geqslant v_{\sigma}(x)$$
 for all $\sigma \in \Sigma$ and all $x \in X$

The value function associated with our AMDP is defined by

$$v^*(x) = \sup_{\sigma \in \Sigma} v_{\sigma}(x) \qquad (x \in \mathsf{X})$$

Evidently, a feasible policy σ^* is optimal if and only if

$$v_{\sigma^*}(x) = v^*(x)$$
 for all $x \in X$

Given v in \mathcal{V} , a policy $\sigma \in \Sigma$ is called v-greedy if

$$Q(x,\sigma(x),v) = \max_{a \in \Gamma(x)} Q(x,a,v) \qquad \text{ for all } x \in \mathsf{X}$$

treats v as the value function

Equivalent

$$\sigma(x) \in \operatorname*{argmax}_{a \in \Gamma(x)} Q(x, a, v)$$
 for all $x \in X$

In the IID job search problem, a policy σ is v-greedy if

$$\begin{split} \sigma(w) &\in \operatorname*{argmax}_{a \in \{0,1\}} Q(w,a,v) \\ &= \operatorname*{argmax}_{a \in \{0,1\}} \left\{ a \frac{w}{1-\beta} + (1-a) \left[c + \beta \int v(w') q(w') \, \mathrm{d}w' \right] \right\} \end{split}$$

This is equivalent to

$$\sigma(w) = \mathbb{1}\left\{\frac{w}{1-\beta} \geqslant c + \beta \int v(w')\varphi(\mathrm{d}w')\right\}$$

ullet optimally accept or reject if v is the value function

Example. In the optimal savings model, we can take

$$\Sigma := \{ \text{all Borel measurable } \sigma \in \mathsf{A}^\mathsf{X} \text{ s.t. } \sigma(x) \in \Gamma(x), \ \forall \, x \in \mathsf{X} \}$$

Borel measurable so that integrals are well defined

A policy σ is v-greedy if $\sigma \in \Sigma$ and

$$\sigma(x) \in \operatorname*{argmax}_{c \in \Gamma(x)} \left\{ u(c) + \beta \int v(g(x,c,z)) \varphi(\mathrm{d}z) \right\}$$

Fact. If $v \in bcX$, then at least one v-greedy policy exists Proof requires a measurable selection theorem — details omitted

Key Optimality Theorem

Let assumption (UNQ) hold

Theorem. If

- 1. v^* lies in ${\cal V}$ and satisfies the Bellman equation
- 2. at least one v^* -greedy policy exists

then

- a. the set of optimal policies is nonempty and
- b. σ is optimal if and only if σ is v^* -greedy

In other words, Bellman's principle of optimality holds

Proof:

Suppose $v^* \in \mathcal{V}$ satisfies the Bellman equation

By the definition of greedy policies,

$$\sigma \text{ is } v^*\text{-greedy} \iff Q(x,\sigma(x),v^*) = \max_{a \in \Gamma(x)} Q(x,a,v^*), \ \ \forall \, x$$

$$\iff Q(x,\sigma(x),v^*) = v^*(x), \ \ \forall \, x$$

$$\iff v^* = v_\sigma$$

$$\iff \sigma \text{ is optimal}$$

In other words, Bellman's principle of optimality holds Existence of an optimal policy follows from $\exists \ v^*$ -greedy

Summary

So now we know: If

- 1. v^* satisfies the Bellman equation
- 2. we can calculate v^*
- 3. v^* admits a greedy policy

then finding an optimal policy is trivial: apply Bellman's principle of optimality, compute a v^* greedy policy

Key remaining questions:

- ullet When does v^* satisfy the Bellman equation?
- How can we compute it?

To answer these questions we introduce two operators

Operators

For each $\sigma \in \Sigma$, we define the σ -value operator

$$T_{\sigma}v(x) = Q(x, \sigma(x), v) \qquad (x \in \mathsf{X}) \tag{1}$$

- Maps $\mathcal V$ to itself (by the definition of Σ)
- constructed s.t. fixed points of T_{σ} coincide with σ -value functions

By assumption, T_σ has exactly one fixed point in ${\mathcal V}$

Lemma The operator T_{σ} is isotone on $\mathcal V$ when paired with the pointwise partial order \leqslant

why?

Our second operator is the **Bellman operator**, defined on ${\mathcal V}$ by

$$Tv(x) = \sup_{a \in \Gamma(x)} Q(x, a, v)$$
 (2)

Constructed such that

- 1. any solution to the Bellman equation is a fixed point of T and
- 2. a fixed point v of T in V is a solution to the Bellman equation if the sup in (2) can be replaced with max

Greedy policies can now be characterized as follows:

$$\sigma$$
 is v -greedy \iff $Tv = T_{\sigma}v$ (3)

Theorem. If

- 1. T has at least one fixed point \bar{v} in \mathcal{V} ,
- 2. there exists at least one \bar{v} -greedy policy in Σ , and
- 3. for all $\sigma \in \Sigma$ and all $x \in X$,

$$\lim_{k \to \infty} T_{\sigma}^{k} \, \bar{v}(x) \geqslant v_{\sigma}(x) \tag{4}$$

then

- 1. $\bar{v} = v^*$ and
- 2. v^* is the unique solution to the Bellman equation in ${\cal V}$

 \implies existence of an optimal policy and Bellman's principle of optimality

Key Sufficient Conditions

Let ${\mathcal V}$ be endowed with a metric ho such that

$$\lim_{n\to\infty}\rho(v_n,v)=0\implies \lim_{n\to\infty}v_n(x)=v(x) \text{ for all } x\in\mathsf{X}$$

example?

Stable AMDP assumptions:

- S1. Given any $\sigma \in \Sigma$, the system $(\mathcal{V}, T_{\sigma})$ is globally stable
- S2. There exists a subset $\hat{\mathcal{V}}$ of \mathcal{V} such that
 - a. Each $v \in \hat{\mathcal{V}}$ has at least one v-greedy policy in Σ and
 - b. $(\hat{\mathcal{V}}, T)$ is globally stable

Key Theorem for Applications

Theorem. If the stable AMDP conditions S1–S2 hold, then

- 1. Assumption UNQ is satisfied
- 2. v^* lies in $\hat{\mathcal{V}}$ and is the unique solution to the Bellman equation in \mathcal{V}
- 3. $T^n v \to v^*$ whenever $v \in \hat{\mathcal{V}}$
- Bellman's principle of optimality is valid and at least one optimal policy exists

This is all we need for applications

Proof is in course notes

Example. Recall the finite state MDP

- X, A finite, feasible correspondence Γ given
- $\mathcal{V} = \text{all of } \mathbb{R}^X$
- $\Sigma = \text{all } \sigma \text{ in } \mathsf{A}^\mathsf{X} \text{ satisfying } \sigma(x) \text{ is in } \Gamma(x) \text{ for all } x \in \mathsf{X}$

and

$$T_{\sigma}v(x) = r(x, \sigma(x)) + \beta \sum_{y \in X} v'(y)\Pi(x, \sigma(x), y)$$

Claim: Condition S1 holds

Proof: T_{σ} is a contraction of modulus β on $(\mathcal{V}, d_{\infty})$

(See lecture 10)

How about S2, which requires a subset $\hat{\mathcal{V}}$ of \mathcal{V} such that

- a. Each $v \in \hat{\mathcal{V}}$ has at least one v-greedy policy in Σ and
- b. $(\hat{\mathcal{V}}, T)$ is globally stable

This works with $\hat{\mathcal{V}} := \mathcal{V} = \mathsf{all}$ of \mathbb{R}^X

Existence of greedy policies is trivial in a finite setting

Moreover

$$Tv(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \beta \sum_{y \in X} v(y) \Pi(x, a, y) \right\}$$

is a contraction of modulus β on $(\mathbb{R}^{\mathsf{X}}, d_{\infty})$

Example. Consider again the job search problem with

- ullet IID wage offers $\{w_t\}$ taking values in [0,M]
- action is $a \in \{0,1\}$ (reject / accept)
- $\Gamma(w) = \{0,1\}$ for every w

Set

- ullet ${\cal V}=$ all bounded Borel measurable functions on [0,M]
- $\hat{\mathcal{V}} = \mathcal{V}$
- $\Sigma = \mathsf{all} \ \mathsf{Borel} \ \mathsf{measurable} \ \sigma \colon [0,M] \to \{0,1\}$

S1 requires that, given any $\sigma \in \Sigma$, the system $(\mathcal{V}, T_{\sigma})$ is globally stable

To see this is true, observe that, given σ , we have

$$T_{\sigma}v(x) = \sigma(w)\frac{w}{1-\beta} + (1-\sigma(w))\left[c + \beta \int v(w')q(w')\,\mathrm{d}w'\right]$$

- **Ex.** Fix v_1 and v_2 in \mathcal{V} and $w \in [0, M]$
 - 1. Show that

$$|T_{\sigma}v_1(w) - T_{\sigma}v_2(w)| \le \beta ||v_1 - v_2||_{\infty}$$

2. Conclude that T_{σ} is a contraction of modulus β on \mathcal{V}

S2 requires a subset $\hat{\mathcal{V}}$ of \mathcal{V} such that

- a. Each $v \in \hat{\mathcal{V}}$ has at least one v-greedy policy in Σ and
- b. $(\hat{\mathcal{V}}, T)$ is globally stable

This works with $\hat{\mathcal{V}}=\mathscr{C}:=$ all continuous functions on [0,M]

The Bellman operator T is

$$Tv(w) = \max_{a \in \{0,1\}} \left\{ a \frac{w}{1-\beta} + (1-a) \left[c + \beta \int v(w') q(w') dw' \right] \right\}$$
$$= \max \left\{ \frac{w}{1-\beta'} c + \beta \int v(w') q(w') dw' \right\}$$

We have already shown that greedy policies always exist, T is a contraction map on $(\mathscr{C}, d_{\infty})$

Example. Recall the generic optimal savings model

- the action is $c \in \Gamma(x)$
- utility function u is bounded
- $\mathbb{G} = \{(x,c) \in \mathsf{X} \times \mathbb{R}_+ : c \in \Gamma(x)\}$
- state-action aggregator is

$$Q(x,c,v) = u(c) + \beta \int v(g(x,c,z))\varphi(dz)$$

• $\Sigma = \text{all Borel measurable } \sigma \in \mathsf{A}^\mathsf{X} \text{ s.t. } \sigma(x) \in \Gamma(x), \ \forall \ x \in \mathsf{X}$

S1 requires that, given any $\sigma \in \Sigma$, the system $(\mathcal{V}, T_{\sigma})$ is globally stable

S2 requires existence of a subset $\hat{\mathcal{V}}$ of \mathcal{V} such that

- a. Each $v \in \hat{\mathcal{V}}$ has at least one v-greedy policy in Σ and
- b. $(\hat{\mathcal{V}}, T)$ is globally stable

We have already checked these conditions when

- V = bmX := all Borel measurable functions in bX
- $\hat{\mathcal{V}} = bcX$

In particular,

- T_{σ} is a contraction of modulus β on bmX for all σ
- T is a contraction of modulus β on bcX