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Today's Lecture

Lots of new theory
Just joking
Euler equation + revision

See “Lecture 14" for general DP results (not examinable)
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Optimal Savings: The Envelope Condition

Recall the 11D model with Bellman equation

o) = gnax {u(©) + B [o(flw—0gd) ) (wER)

0<e<y

We know that
0 is optimal <= 0 is v*-greedy

We can get additional characterizations of optimality if we impose
more conditions
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Assumption. (INA) Both f and u are strictly increasing,
continuously differentiable and strictly concave

In addition,

f(0) =0, limf(k) >0

and

— (o) — (o) —
u(0) =0, 11_r>r8u(c)—oo and Ch_}rgou(c)—o

Remark. We ignore the restriction #(0) = 0 in some applications
below — I'm aiming to remove it
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Proposition. Let

® v be an increasing concave function in bcRR+

® o be the unique v-greedy policy in £

If assumption (INA) holds, then

1. o is interior, while

2. Tov is continuously differentiable and satisfies

(To) =u' o0

Corollary If o* is the optimal consumption policy, then

(U*)/ — u/ O(T*
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Proof that (Tv)" = u’ o o when ¢ is v-greedy:

Since 0 is v-greedy,

By the
=8 [ @) )y = o(v)z(d2)
The FOC from the Bellman equation yields

=8 [ @) £y = o(y))z0(dz)

Combining the last two equations gives (Tv) = u' o0
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Let ¥ := all continuous strictly increasing o € X satisfying

0<o(y)<y forall y>0

We say that o € ¥ satisfies the Euler equation if

(' o0)(y) =B /(M' 00)(fly—o¥)2)f'(y — o(y))zg(dz)

forally >0
® A functional equation in

In sequence notation, u'(¢;) = BEu (crv1) f(ki)zt+1
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Let's introduce an operator K corresponding to the Euler equation

Fix o€ ¢ andy >0

The value Ko (y) is the ¢ in (0,y) that solves
() = B [ (0 00)(f(y = )2)f (v — c)z9(d2)
We call K the Coleman—Reffett operator

Ex. Show o in % is a fixed point of K if and only if it satisfies the
Euler equation
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Proof that K is well defined:
For any o € €, the RHS of
=B [0 00)(fy—)2)f (v — zg(d2)
is continuous, strictly increasing in ¢, diverges to +oc0 asc 1y

The LHS is continuous, strictly decreasing in ¢, diverges to +oo as
clO

Hence
H(y,<) B [ o) (Fly = 2)f (v — 0)z0(d2)

when regarded as a function of ¢, has exactly one zero
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100 4

Figure: Solving for the ¢ that satisfies H(y,c) = 0.

—— o Hip.e) with y fixed
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The Euler Equation and Optimality

Proposition. If assumption (INA) holds and ¢* is the unique
optimal policy, then

1. (¢,K) is globally stable and

2. the unique fixed point of K in € is o*

In particular, o € € is optimal if and only it satisfies the Euler
equation
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Sketch of proof:

Let ¥ be all strictly concave, continuously differentiable v
mapping R+ to itself and satisfying v(0) = 0 and v'(y) > u/(y)
whenever y > 0

As before, let € be all a continuous, strictly increasing functions
on Ry satisfying 0 < o(y) <y

For v € ¥ let Mv be defined by

(Mo)(y) = {g“”y” o 1)

where m(y) := (u/)"(y)
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The course notes show that

1. M is a homeomorphism from ¥ to &

2. for every increasing concave function in bcR,
o:= MTv
is the unique v-greedy policy

3. The Bellman operator and Coleman—Reffett operator are
related by
T=M"'oKoMon¥

Ex. Use 1-3 above to show that (%, K) is globally stable with
unique fixed point o*
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Remark. The Euler equation is often paired with the
transversality condition

lim lBtEl/l/(Ct)kt =0

t—o0

Standard results (see, e.g., Stokey and Lucas) tell us that

Euler + transversality condition =—> optimality

Our last result shows transversality is not needed under our
assumptions
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Ex. Following the basic CRRA cake eating model, set

1—
u(c) = - and f(k)z = Rk

Insert the conjecture 0*(y) = Oy into the Euler equation

Recover our earlier result that this policy is optimal when

o_1_ (ﬁle“Y)lm

Ex. Repeat for the log / CD model, where u(c) = Inc and
flk)z=Ak"z, 0<A, 0<a<l

Insert the conjecture 0*(y) = Oy into the Euler equation and
recover your earlier result for the optimal policy
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Exercise: Predicting Quadratics

Let

® {%}i>1 be a filtration

® {&}>1 be a stochastic process in R/
Recall: {&;}¢>1 is called a martingale difference sequence
(MDS) with respect to {4} if

® E|&]1 < oo and

® {Ci}i>1 is adapted to {4}

® and
E[i1|%] =0, Vt=1
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Suppose that
® x111 = Axt + CE&yq in R” with xg given

b gt - {x0/§0/€1/"'/€f}
® {&}>1 is an R/-valued MDS with respect to %; satisfying

E(gd] =1
Question: Is {x;} adapted to %;?
Ex. Let E; := E[- | 4]
Show that if H € M(n x n), then

Et[x} 1 Hxt1] = x;A'"HAx; + trace(C'HC)
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Solution: We have

Ei[xt 1 Hxp 1] = B[ (Axs 4+ Cry1) H(Axt + CGii1)]

The RHS expands to

]Et[xQA/HAxt] + ZEt[x;A/HC§t+1] + ¢ [CQHC’HC@H]

=1+ I1I+1I1
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Since x; is known at f we have

I = Ey[x;A'HAx;] = x;A'"HAx,

Since {¢;} is an MDS,

II = 2E4[x}A"HCE, 1] = 2x}A"HC Ey[E;41] = 0

Finally,
11 = E4[¢;,1C'HC¢t41] = trace(C'HC)

Hence
E:[x},1Hxt+1] = x;A’HAx; + trace(C'HC)
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Application: LQ Risk Neutral Asset Pricing

Recall the risk neutral asset pricing formula

pt = BEi[di1 + prya]

Here

e {d;} is a cash flow
® py is asset price at time k
® B € (0,1) discounts values

e [ is time t conditional expectation

Aim: solve for {p;}
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Assume that

d; = x;Dx; for some positive definite D

Here
® x;11 = Axt + C&ryq in R™ with xg given

b gt - {XO/COICL .. -/(’;zi}
® {&}>1 is an R/-valued MDS with respect to %; satisfying

E[thé] =1
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Prices as Functions of the State

We conjecture that

pt = p(x¢) for some function p

Another leap: guess that prices are a in Xt

In particular, we guess that
p(x) = x'Px 4

for some positive definite P and scalar ¢
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Substituting

pr = xiPx;+6 and d; = x;Dx;

into
pt = BE¢[di1 + pria]

gives

XtPx;+ 0 = BBy[x; 1 Dxpr1 + Xp 1 Pxegs + 9]
= BE¢[x};1(D + P)x41] + o

= px;A'(D + P)Ax; + Btrace(C'(D + P)C) + o
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So, we seek a pair P € M(n x n), § € R such that
x'Px+ 8 = Bx'A'(D + P)Ax + Btrace(C'(D + P)C) + Bo

for any x € R"

Claim: If P* satisfies
P* = ,BA'(D + P")A

and

5= 1fﬁtrace(C'(D—FP*)C)

then P*,J* solves the above equation for any x
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Proof: By hypothesis, P* = BA'(D + P*)A

x'P*x = Bx'A'(D + P*) Ax

x'P*x + 6" = Bx'A'(D + P*) Ax + §*

To complete the proof, suffices to show that

&* = Btrace(C'(D + P*)C) + ps&*

True by definition of §*
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Summary: With such a P*,
pr = x;P¥xp + 6
is an equilibrium price sequence

But does there exist a P € M (n X n) that solves

P=BA(D+P)A

Ex. Under what condition does a unique solution exist?
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Solution: Write P = BA'(D + P) A as the discrete Lyapunov
equation

P=APA+M
where
° A:= \/BA
e M:=A'DA

The solution P* is the fixed point of operator £ defined by

(P =APA+M

As shown previously, ¢ is globally stable when r(A) < 1
Equivalent: r(A) <1/+/B
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Recall that P* is the solution to

P=BA(D+P)A

Ex. Show that P is positive semidefinite
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We need to show that x’P*x > 0 for all x € R"
Let Mp be the set of positive semidefinite matrices in M (n x n)
This set is closed in M(n X n) under the matrix norm
To see this, pick
® any {E,} C Mp and E € M(n x n) with E, = E
® any x € R"
We showed in another context that x’E,x — x’Ex in R
Since x’E,x > 0 for all n, we have xX’Ex >0
Since x was arbitrary we have E € Mp

Hence Mp is closed
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Since

1. Mp is closed in M(n x n)
2. P* is the fixed point of /P = A'PA + M

it suffices to show that £ maps Mp to itself
So pick any P € Mp and any x € R"
We have, with y := Ax,

x'((P)x = x'(N'PA+ M)x
=x'(BA'(D+ P)A)x
= Bx' A'DAx + Bx' A’ PAx

= By'Dy + By'Py >0
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Application: Firm Entry and Exit

Let

® 7 be a finite subset of R
® JT a stochastic kernel on Z
® g be a distribution in P(Z)

An individual firm’s productivity {z;} obeys IT
® 201 ~ II(z,-) for all ¢

When a firm’'s productivity falls below Z € Z, the firm exits

Replaced by a new firm with productivity z;11 ~ ¢

Ex. How does the distribution of firms (i.e., cross-section) evolve?
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Solution: A randomly selected firm has

I1(z,2') ifz>z
q(z") ifz<z

P{zi,1 =2 |z1 =z} = {
The cross-sectional firm distribution sequence {i;} satisfies

i (2) = q(2) Y vi(z) + ) Tz, 2)¢i(2)

z<z z>Z

=Y [1{z < z}q(2) + 1{z > 2}11(z,2)] g1 (2)

zeZ
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We can write

P (@) = ) [H{z <z2}a() + 1{z > 2}11(z,2) | ¢1(2)

zeZ
as

Pri1(z ZQZZ VPi(2)

ze”Z

where
Q(z,7') == 1{z < z}q(") + 1{z > z}11(z,Z)

is the stochastic kernel for the “rejuvenating firm”
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Ex.

® Under what conditions does
Q(z,7') :=1{z < z}q(Z') + 1{z > z}11(z,7)

have a stationary distribution?

® What's a simple condition on g,IT under which (Q,P(Z)) is
globally stable?

® How would you go about computing that stationary
distribution when it the condition is satisfied?
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Application: Optimal Firm Exit

An incumbent within an industry has current profits

e = 71t(ze, pi)

o {7} ~ @ is a firm-specific productivity process
° IID . .
{pt} ~ v is an exogenous price process

® (z, pt) takes values in X C Rk

Decision problem: Continue or exit? (optimal stopping)
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Timing runs as follows

At the start of time ¢, observe z; and p;

If decision = continue, then

1. receive 71; now

2. start next period as an incumbent

If decision = exit, then

1. receive scrap value s € R

2. receive 0 in all subsequent periods
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Maximizes

E Z ﬁtrt

t=0

Here
7ty if still incumbent

rP =45 upon exit
0 after exit

Assume that 0 < B < 1 and 7t is continuous and bounded

Ex. Without looking at the next slide, try to write down the
Bellman equation for an incumbent firm
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Bellman equation:
olz,p) = max {s, m(z,p)+ B [ o, ol v(dr) |

Bellman operator:

To(z,p) = max {5, (e, p) + B [ o(<, gl )v(cp)

Ex. Without looking ahead, show that T is a self-mapping on bcX
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If v € bcX, then
Tole,p)| = fmax {5, 7(z,p) + 6 [ o(=, ) ple= ()

< fsl+ l7tlleo +Moleo

Moreover,
To(z,p) = max {s, (e, p) + B [ ol /) gl )v(dp)
= max {s, 7(z,p) + constant}
is clearly continuous in (z, p)

39/47



Without looking ahead, show that T is a contraction of mod 8 on
(beX, doo)
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We use the elementary bound

laVx—aVy| < |x—y (0, x,y € R)

Fix v,w in beX and (z,p) € X

By this bound and the triangle inequality (check details),
|To(z,p) — Tw(z, p)| ﬁ/!v 2, p") —w(Z, p)lp(dz")v(dp’)
< Bllo—wllo

Taking the supremum over all (z,p) € X leads to

ITo — Twlle < Bllv — ]
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The value function v* is the unique fixed point of T in bcX

® proof is in lecture 14

Suppose that p and z are real valued
Ex. Under what conditions is v* increasing in (z,p)?

Hint: Look at

To(z, p) = max {s, n(z,p)+ B / v(Z, p’)q)(dz’)v(dp/)}
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Solution: If 77 is increasing in (z, p), then so is v*

Indeed, under this condition
Tv(z, p) = max {s, n(z,p)+ B / v(Z, p’)go(dz’)v(dp’)}
maps ibcX into itself (increasing bounded continuous)

Moreover, ibcX is closed in (beX, doo)

Hence the fixed point v* lies in ibcX
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Ex. Can you suggest an easier way to solve the Bellman equation

v(z, p) = max {s, n(z,p)+ B / v(Z, p’)qo(dz’)v(dp’)}
Can you map it to a lower dimensional problem?

Hint: We only need to find the of the value function
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One solution: set h:= [ov(z,p")p(dz")v(dp’)
The Bellman equation is

o(z,p) = max{s, 7(z,p) + ph}

Now shift forward in time and take expectations to get

h= /max {s, n(z',p') + Bh} ¢(dz")v(dp")
Ex. Show that
F() = [ max s, (2, p') + ph} g(dz))v(dp)
is a contraction on Ry
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Solution: The triangle inequality for integrals gives

[F(g) — F(h)| <
/ |max {s, 7(z,p') + Bg} —max {s, n(z,p") + ph}| ¢(dz")v(dp’)
From the elementary bound

laVx—aVy| < |x—y| (0, x,y € R)

this leads to

[E(3) — F()] < [ |83 — Bl g(dz)v(dp') < Blg —h|
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Final comments

Exam might ask you to provide algorithms

® Describe steps of a computer solution, why the procedure
works

® You don't need to write code by hand

All lemmas / thms / facts from the slides can be used freely in the
exam

Example. “From the lectures we have [a Vx —a Vy| < |x —y|,
from which it follows that ..."

Good luck :-)
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