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Today's Lecture

® Optimal savings models

® Optimal growth
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Notes: Exam Prep, etc.

Exam = Monday 22nd Oct 9:30-11:30am Room 517

® (Closed book

® Material covered by TJS is examinable — PS 6 provides
practice

® Review lecture slides

® Updated course notes with solved exercises

Office hours: Wed 4pm—-5pm
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Prequel: Topological Conjugacy
Let M and N be metric spaces

A homeomorphism between M and N is a continuous bijection
with continuous inverse

Example. The map 7(x) = Inx from (0,00) to R is a
homeomorphism

Example. Let

e M = N = R" with Euclidean distance

® A be an n X n matrix

When is the map 7: M — N defined by 7(x) = Ax a
homeomorphism?
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Dynamical systems (M, g) and (N, h) are called topologically
conjugate if 3 a homeomorphism T from M to N such that

g=T 'ohoT on M

Visually,

y
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Theorem. Let (M, g) and (N, ) be topologically conjugate under
homeomorphism T

In this setting:
1. g"=7t'lohotforallninN

2. x is a steady state of (M, g) iff T(x) is a steady state of
(N, h)

3. (M, Q) is globally stable iff (N, h) is globally stable

We say that (M, g) and (N, &) have equivalent dynamics
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For example, let's show that

x fixed for g = T(x) fixed for h

Note that
g=T 'ohot <= Tog=hot

Now let x be a fixed point of g in M

We have

QED
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Prequel: Berge's Theorem of the Maximum

Let A and X be metric spaces

Let I' be a nonempty compact valued correspondence from X to A
® I'(x) is a nonempty compact subset of A for every x € X
Let g be a real valued function on
G:={(x,a) eXxA:aeT(x)}

and set

v(x) := max gq(x,a) (x € X)
ael’(x)

Theorem. If I' is continuous on X and g is continuous on G, then
v is well defined and continuous on X
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Note: We omitted the definition of continuity of correspondences

A for I' to be a continuous nonempty
compact valued correspondence is that A € R¥ and

I'(x)={acA:l(x) <a<m(x)}
where

e (,m are continuous R¥ valued functions on X

e /(x) < m(x) forall x in X
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A Generic Optimal Savings Problem

A foundation stone for

® DSGE models

® Bewley / Huggett / Aiyagari heterogeneous agent models

Agent chooses consumption path {c;} to maximize

E

iﬁfu(c»]
t=0
where

® u(cy) is utility of current consumption

® B is a discount factor satisfying 0 < g <1
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Consumption affects a state process via the law of motion
11D
X1 = g(xp ¢4, Gra1) {¢:} ~ ¢
where

® consumption ¢; values in R4
® the state x; values in metric space X
® X is given

® the innovation process {(;} takes values in metric space E

(Arbitrary metric spaces so continuous & discrete both possible)
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The state restricts consumption via a feasibility constraint

Ct € F(xt) C Ry

e for example, T'(x) = [0, x| when x is assets

® [ is called the feasible correspondence

Consumption also required to be adapted to the history

Hy = {xj}j<t

® (; cannot depend on future realizations of the state
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Assumption. The following conditions hold:

1. u is continuous, strictly concave and strictly increasing on Rt
2. g is everywhere continuous

3. I' is nonempty, compact valued and continuous

Collectively, (,B, u,g, q),l") called the generic optimal savings
model

Interpretations

® Consumption and investment in a DSGE model
® Savings and asset accumulation for a household

® Optimal exploitation of a natural resource
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Example. In Brock and Mirman (1972), a representative agent
owns capital k; € R4, produces output

yr = flke,zt)
Here f is the production function and {z;} is an exogenous
productivity process

Consumption is chosen to maximize E [ 12, Bu(ct)]

The resource constraint is

0 < ki1 +cr <y

This combined with the production function leads to the law of
motion

kt+1 = f(kt,Zt) — Ct
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The exogenous state process is assumed to follow the Markov law
IID
zt41 = G(zt, €141), {ee} ~ ¢

Maps to the generic optimal savings model (B,u,g, ¢,T) if we set

o x=(kz)

® |aw of motion

staron = (Tl )
° T(x) = [0, f(k z)]

What do we need for ¢ to be continuous?
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Example. Consider the model of household wealth dynamics

wip1 = (1+741) (W —¢) + Y

w; = household assets
® (; = consumption

® ;11 = non-financial income

rt4+1 = the rate of return on financial assets

Assume y; = y(z¢, 1) and 1y = r(z4, ;) where

® 211 = G(zp,€141)

® {n:}, {¢:} and {e;} are 1D
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Consumption is chosen to maximize
(o]
t
E)_ Bu(c)
t=0

Maps to the generic optimal savings model (B,u,g, ¢,T') when

oy — (zu, z)
® ¢ = distribution of ¢ := (6,’715)

® ¢issetto

g((w,z),¢,¢) = <(1 +rz OZ;((ZZ;)C) + 1/(2,77))

* T((w,2)) = [0,w]

What do we need for ¢ to be continuous?
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Stationary Markov Policies

Recall: Consumption must be adapted to H; := {x;};<

Means that, at each point in time ¢, we have
ct = 01(x0, X1, - -+, Xt)

for some suitable function 0; — called a policy function

In what follows we focus exclusively on stationary Markov
policies

® depend only on the state

® time invariant (0; = o)

(In fact every optimal policy has these properties)
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A stationary Markov policy is a function ¢ mapping X to R+

Interpretation:
ce =0(x;) forallt>0

We call ¢ a feasible consumption policy if

1. it is Borel measurable and

2. it satisfies
o(x) eT(x) forall xeX

Requires that

® functions nice enough to compute all expectations

® resource constraint is respected
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Each o € X for the state process
® determines a first order Markov process {x;} via
X1 = g(xt, 0(xt), Cet1)

This is important!
Choosing a policy o € £ chooses a Markov process

Associated value is
vo(x) :=E ) Bu(c(x;))
t=0

® Here {x;} obeys (20) with xp = x
® (Called the o-value function
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The value function v* is defined by

v*(x) := sup vy (x) (x € X)

ceX

A consumption policy o* is called optimal if it is feasible and

v (x) = v*(x) forall x € X

In most settings v* satisfies the Bellman equation

v(x) = max { +ﬁ/ (x,¢,2) (dz)} (x € X)

cel(x

Intuition: maximal value obtained by trading off current vs
expected future rewards possible from next state
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Proposition. Let (B,u, f, ¢,T') be a generic optimal savings model
If u is bounded, then
1. v* is the unique solution to the Bellman equation in bcX

2. A feasible consumption policy ¢ is optimal if and only if

o(x )eargmax{ +ﬁ/ g(x, ¢ z) (dz)}

cel(x)
for all x € X

3. At least one such policy exists

Proof: Deferred
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Consistent with earlier notation, o € X is called v-greedy if

o(x )Gargmax{ —I—,B/ (x,¢,2) (dz)}

cel'(x)
forall x € X
The last proposition states that, for 0 € &

0 is v*-greedy <= ( is optimal

This is another version of Bellman’s principle of optimality
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We started with one optimization problem

® choosing an optimal consumption path cg,cq, ... to maximize
expected discounted lifetime utility

and ended up with another one

® finding a greedy policy from the value function

But we are much better off — why?
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Of course, being better off is contingent on obtaining the value
function

® needed to compute v*-greedy policies

Standard method:

1. Choose initial guess v

2. iterate from v via the Bellman operator

To(x) = max { —i—ﬁ/ (x,¢,2) (dz)}

cel(x
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Proposition. If u is bounded, then

1. T is a contraction of modulus 8 on (bcX, des)

2. Its unique fixed point in bcX is v*

® Why is u required to be bounded?

This assumption is not ideal, since it fails in many applications
Unbounded u issues have to be treated case-by-case

For now let's prove part 1 of the proposition
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First let's show that T is a self-map on bcX

Is Tv is bounded on X whenever v € bcX?
Fix any such v and any feasible x

We have

|To(x)| < max
a€l(x

u( +[3/ (x,¢,2)

< lulleo + Bllolleo

RHS does not depend on x, so Tv is bounded

¢(dz)
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Next we need to show that Tv is continuous when v € bcX

We employ Berge’s theorem of the maximum, which tells us
that To will be continuous whenever

g(x,c) :==u(c +ﬁ/ g(x,¢,2))p(dz)

is continuous on G := {(x,c) € X xRy :c € T(x)}

The tricky part is to show that

/v(g(xn,cn, ¢(dz) —>/ (x,¢,2))p(dz)

when (x,,,¢,) — (x,¢)

Follows from the DCT (see course notes)
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Finally, let v and w be elements of bcX and fix x € X

Recalling our sup inequality

| sup f(a) —sup g(a)| < sup |f(a) - g(a)]

acE acE acE

we have

Tolx) ~ To(x)| < max B [ o(g())(dz) - [ wlg()p(d:)

< max p [ fo(g(x,c,2)) ~w(3(xc,2))] g(d2)

ITo — Twlle < Bllv — w]|eo
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Problems with Analytical Solutions
For a small subset of optimal savings problems, both the optimal
policy and the value function have known analytical solutions
These models are limited and simplistic!

But helpful for
® building intuition
® testing ideas

® testing numerical algorithms

Let's look at some examples
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Cake Eating with Interest

Objective function is Y52 Blu(cy)

Utility is
-7
u(e) == (v>0,v#1)
and
wiy1 = R (wy — ¢4)
Here

® R =1+ris a gross interest rate
® 0 < c; < wy where w; is wealth

® BR"7 < 1 is assumed to hold
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Maps to generic savings model (ﬁ, u,g, o, T') with

° g(x,c ) =R(x—c)
o T(x) = [0, ]
° q):(sl

Fact. There exists a constant 6 € (0,1) such that
o (w) = bw

is the optimal consumption policy

Let’s verify this claim and seek the value of 6
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First, observe that if ¢; = Ow; for all ¢, then

w; = R'(1—0)'w when wy=w

61—

1-B(R(1-6))
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Under the conjecture o*(w) = 0w, the Bellman equation takes the
form

v*(w) = max
c

1= g1 (R(w—rc))""
1=, P = 1—
Y 1-B(R(1—-9)) i
Taking the derivative w.r.t. ¢ yields the first-order condition
¢ "+ Bm(R(w—c)) " (—R) =0
where
ol

TR0

Hence ¢=7 = BmR' ™" (w —¢)~7
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Substituting the optimal policy ¢*(w) = @w into this equality
gives us

1-ypl—y
(bw) " = PRE

Tipra-ey 0

Solving the above equality for 6 yields

o=1- (pr)""

The value function becomes
[

U = s Ra—e)

u(w) =0 "u(w)
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Log—CD Example

Set u(c) = Inc and
f(k)=Ak*, 0<A, O<a<l

Let {z:} be a lognormal 11D sequence, with In z; Z N(u,0?) for
somey € Rand o >0

The state can be set to
Vi1 = f(yr — 1)z = A(yr — 1) *zea

The agent maximizes

EZ‘Btlnct

t=0
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Ex. Conjecture that the optimal policy is linear in income y
That is, 3 a positive constant 6 such that ¢*(y) = 6y is optimal

Following the approach of the CRRA cake eating example

1. find the value of 6
2. obtain an expression for the value function and

3. confirm that the value function satisfies the Bellman equation
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CRRA Preferences and Stochastic Financial Returns

Let's look at a recent paper by Alexis Akira Toda (2018, JME)

He studies a heterogeneous agent economy where households

optimize
o0 oo
t Ct

BY A)ule) =B} plz) 7

=0 t=0

® 1 is CRRA as before and v > 0

® Note that j is state dependent

Gives conditions for Pareto tails in the wealth distribution
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Wealth dynamics are given by
i1 = R(zt) (wr — cx)
The state process {z;} is

® exogenous

® 3 Markov chain on finite set Z with stochastic kernel T

We assume that
1. TI(z,Z') > 0 for all z,z" in Z
2. B(z) >0and R(z) >0forallze Z

What does positivity of IT imply?
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The Bellman equation is now

v(w,z) = max {u(c) +B(z) Y v[R(z)(w — c),z’]H(z,z')}

0<esw sz

for all (w,z) € X: =Ry X Z.

Let K be the square matrix defined by

K(z,7') = B(z)R(z)""T1(z,2) ((z,2)eZx2Z)

In the slides below,

Kg(z) := Zg(z')K(Z/Z’) (z €2

(Think of the matrix product with column vector g)
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Toda (2018) shows that if #(K) < 1, then

1. There exists a g* in R? satisfying

g2 ={1+Kg @} (zez)

2. The optimal consumption policy is

o (w,2) = g"(z) 7w

3. The value function satisfies
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Let's
1. do the proof of part 1
2. work out how to compute the solution g*

3. study the impact of parameters

We adopt the standard pointwise partial order < on R?

Recall that
® self-map T on RZ is called isotone if ¢ < h implies Tg < Th

® ¢ < h means g(z) < h(z) for all z
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Let i be the scalar map defined by

p(t) = A+ (£20)

Consider the operator S mapping
C={gcR?:¢g>0}

to itself via

58(z) = p(Kg(2))

Note that, for g € C,

g(z) = {1+[Kg(2)]V7}, vz = sg=g
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Proposition. If 7(K) < 1, then (C,S) is globally stable

To prove the proposition we use this result from lecture 4:

(FPT2): Let T be an isotone self-mapping on sublattice L of R
such that

1. Vue L, dapointae Lwitha<uandTa>a

2.Yuel, Japointbe Lwithb>uand Th < b

Suppose, in addition, that T is either concave or convex

Then (L, T) is globally stable
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To apply this result we need to show that

. C is a sublattice of RZ

[

2. S is an isotone self-map on C

w

. Forall g eC,

3¢ € C with £(z) < g(z) and (S¢)(z) > £(z) for all z

o

. Forall g eC,

dm € C with g(z) < m(z) and (Sm)(z) < m(z) for all z

5. S is either concave or convex
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We already know that C is a sublattice of R?
Ex. Show that S is a self-mapping on C
To see that S is isotone on RZ, observe that
® S=9yokK
® the composition of two isotone maps is isotone
The map ¢ — Kg is isotone on RZ because K is nonnegative

Indeed, if f < g on RZ, then

K(g—f)(z) =} [8(z)) — f()]K(z,2) > 0

Z/

Hence K(¢— f) = Kg—Kf >0
Clearly (t) = (14 t/7)7 is also isotone
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Ex.

Show that
$it) = (14 £/

1. convex on Ry whenever 0 < ¢ <1

Ex.

concave on R4 whenever v > 1

Show that S =9 oK is

1. convex on C whenever 0 < v < 1

Ex.

concave on C whenever ¢ > 1

Show that SO > 0
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By the and positivity of K,

Je > 0s.t. Ke=r(K)e

® ¢ is called the dominant eigenvector of K

e A :=r(K) is called the dominant eigenvalue

Ex. Let & be a positive constant and let 1 be a vector of ones

Show that

1 v
“e>><1—/\1/7) 1 = S(ae) < we
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To complete the proof we need only show that

Vgel, dm=>g st. Sm<m

So fix g € C and choose « such that

1 Y
ne > <1_/\1/’Y> 1 and wae 2 g

For m := we, we have m > ¢ and
Sm = S(we) < ae =:m

the proof is now done
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See toda_crra.ipynb, which solves for

® the unique positive fixed point g* of S

® the corresponding state contingent savings rate

s(z):=1-(g* )"V (z€2)

The simulations suggest that

1. BB = s<

2. R<R = s<éwhen0<y<1
3. RSR = §<swhenl< 7y <o

Ex. Show that this is always true
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toda_crra.ipynb

A Model with Independent Shocks

How can analysis can proceed without analytical solutions?

As a starting point, we consider a model with

® only one source of randomness — exogenous process {z;}

® this shock process is 11D

Simplifies the problem to one with a single state variable
That state variable is {y;} evolving according to

Yer1 = f(yr —ct)zen

® Example. stock of a renewable resource
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Assumption.

® f is continuous, concave and strictly increasing with f(0) =0

® u is continuous, strictly concave and strictly increasing on R
The Bellman equation is now

o) = gnax {u(©) + 6 [o(flw - 02gd) ) (e R

0<ce<y

The corresponding Bellman operator T is

Toly) = gax {u(e) + B [ (7l - )2)gldz) }
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Theorem. T is a contraction of modulus 8 on (bcRy,dwo)
Moreover,

1. v* is the unique fixed point of T in bcR+

2. 0 € X is optimal if and only if it is v*-greedy

3. Exactly one optimal policy and that policy is continuous

Proof:

Parts 1 and 2 follow from earlier results for the generic optimal
savings model

Same for the existence component of part 3
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Regarding uniqueness of the optimal policy,

Ex. Let % be the set of increasing concave functions in bcR 4

® Show that T maps % into itself

® Show that v* is concave and increasing

Regarding uniqueness, observe that

argmax {u(0) + 6 [ (/v - cJ2)gldz) |

0<ce<y

is a singleton

® why?

® why does this imply uniqueness of the optimal policy?
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To compute v* we can use value function iteration

Pick intial vy in bcR4 and iterate with

To(y) = max {u(e) + B [ o(7(y — J2)gldz) |

0<cey

But how to store Tv, T?v, etc.?
Options:

1. Discretize the whole model

2. Use interpolation over a grid to store TXv at each k
The second option

® s less susceptible to the curse of dimensionality

® allows us to track errors
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We will focus on

Advantages

® preserves monontonicity of interpolant

® preserves shape properties like concavity / convexity

® preserves contractivity of the Bellman operator

For details see the course notes
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—_—

iy vt}

Figure: Approximation by piecewise linear interpolation
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draw {z;} =g
input grid G, := {y; ?;01 CR+;
input {vo(y;) ?:_01, an initial guess of v* evaluated on Gy, ;
input error tolerance T and set e <~ 7+1 ;
k< 0;
while € > 7 do
vx < Ky, oe(yi) } s // interpolated function
forie {0,...,n—1} do
‘ Ok41(Yi) < maxo<esy, {u(c) + B U on(f(yi — C)Zj)} ;
end

€ < max; |0k (yi) — k1 (yi)|
k< k+1:;

end
return vy
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See opt_growth.ipynb

(O > < =r <>
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opt_growth.ipynb

