ECON-GA 1025 Macroeconomic Theory |

Lecture 10

John Stachurski

Fall Semester 2018

1/73



Today's Lecture

® Quadratic optimization
® | inear quadratic optimal control

® Discrete dynamic programs
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Notes

1. Congratulations to Paul Romer & NYU

When | learned mathematical economics, a different equi-
librium prevailed. Not universally, but much more so than
today, when economic theorists used math to explore ab-
stractions, it was a point of pride to do so with clarity,
precision, and rigor. — Romer, AER P&P, 2015

2. Guest lecture by Tom Sargent tomorrow
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Preliminary Discussion: Quadratic Optimization

A function f: R" — R is called a quadratic form if it is a
polynomial where each element has order 2
Examples.

® f(x,y) = x> — y? is a quadratic form

® f(x,y) = x> — xy — y? is a quadratic form

® f(x,y) = x> — x is not a quadratic form

4/73



Fact. f: R" — R is a quadratic form if and only if there exists a
symmetric n X n matrix Q such that

f(x) =x'Qx forall x € R"

Fact. If f(x) = x’Qx for symmetric n X n matrix Q, then

® fis convex <= Q is positive semidefinite
® fis concave <= Q is negative semidefinite
® f is strictly convex <= Q is positive definite

® f is strictly concave <= Q is negative definite
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Suppose we wish to solve

v(x) = min {#'Qu + (Ax + Bu)'P(Ax + Bu)}

ueR™

where

® P is symmetric, positive semidefinite and n X n
® () is symmetric, positive definite and m X m

® Aisnxnand Bisn xm

Ex. Show that Q + B/PB is nonsingular
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Lemma. The minimizer of v is
u*:= —(Q+ B'PB)"'B'PAx
and the minimized value v satisfies
v(x) = x'Mx

where
M := A'PA — A'PB(Q + B'PB) "'B'PA

Ex. Confirm these claims using matrix algebra and the following
two facts from matrix calculus:

d , _ d i _ /
g u=a and duuHu_(H+H)u
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Linear Control Systems

Linear quadratic dynamic programming problems are those
where

® the law of motion is linear
® in state, control and shocks

® rewards are sums of quadratic forms
® in state and controls

Also called

® |LQ control problems

® linear regulator problems
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Costs: Assumptions are restrictive

Benefits: Tractable even in very high dimesions

Examples.

® Optimal fiscal policy
® monetary policy
® energy policy

® operations research

Refs:

® “Recursive methods of dynamic linear economies.” Hansen
and Sargent, Princeton UP, 2013
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Dynamics:
Xi11 = Axp + Buy + C&pyq

Here

® Xy given

{x:} takes values in R"

{u;} takes values in R"

A and B are n X n and n X m respectively

Cisn xjand {¢:} is D with E¢; = 0 and E; &) = I

10/73



FeER

1

Ax+ Bu+C¢

X T x’
I
u e R"

t=t+1

Figure: State dynamics for LQ control
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Example. Consider the law of motion for wealth

Wiy = (1+7)(wr —ct) + Yis1

Assume that

Yyt = p+ o where {&} '~ N(0,1)

Can we express this as

Xt11 = Axt + But + C§t+1?

One problem: y; is 1ID but not zero mean
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Step 1: Let u; := ¢; — ¢ where ¢ = "ideal” level of consumption

Then
w1 = (L+7)(wr —up — ) + p+0Gria

is equal to the first row of

(wt1+1 > _ < 1gr —(1+1r)c‘+;4 > ( u17t>

(0 (3o
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The linear specification is now complete

Xt = <Z$t>, A::<1—(1)—1’ —(1—}—11’)5—1—;1/!),

(7)) e (5)

Then the first row of

Set

Xt+1 = Axt + Buy + CCia

W1 = (1 +7r)(wr —ur — ) + P+ 0Gr1
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In the LQ model we will aim to a flow of
Current loss given by

0(x,up) := x;Rx; + u;Quy

Here

® R is n X n, symmetric and positive semidefinite

® (Jis m X m, symmetric and positive definite
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Example. Consider the household with

wt

1), control = u; =c¢;—¢

state = x; = <

A typical choice of R and Q would be

00
Q:=1 and R.-(O 0>

XjRx; + ujQuy = u? = (¢ — ¢

Then
2

® current loss for household = squared deviation of
consumption from ideal
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Finite Horizon Optimality

finite horizon problems

® technically challenging — cannot use backward induction

® hut often neat because decisions are time invariant

Time matters little because agents always face an infinite future

But in some settings we specifically wish to inject time

Common include

® |ife cycle savings and consumption

® retirement planning
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Finite Horizon Theory

Problem: choose ug,...,ur_1 to minimize

E {Tzl B (xiRx; + ujQuy) + 5Tx’TfoT}
t=0
subject to
Xt11 = Axy + Buy + CGpyq1 ateacht
with B € (0,1]

® Ryisn X n and positive semidefinite

® Note p =1 is permitted
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To solve the finite horizon problem we use backwards induction

Let
Jr(x) := x'Ryx

Controller at T — 1 facing state x7_1

® takes xT_1 as given

® solves
min{x7_Rxr_1 +'Qu+ BE Jr(Axr-1 + Bu+ Clr)}

Now let

]T,1 (x) = rrhin{x/Rx + u’Qu + ﬁE]T(AX + Bu + CCT)}
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Consider the decision problem at T — 2

® Jr_1(x) gives us from state x

Controller chooses u to solve

rnuin{x/T—szT—Z +1u'Qu+ BEJr_1(Axr—p + Bu+ Cér_1)}

Let Jr_2(x) be the minimum cost-to-go from state x:

Jr_2(x) = rr}lin{x’Rx +u'Qu+ BEJr_1(Ax + Bu+Cér_1)}

The pattern for backwards induction is now clear...
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Calculate the cost-to-go functions {J];} recursively via
Je-1(x) = min{x'Rx + u'Qu + BEJi(Ax + Bu + C§;)}
and

Jr(x) = x'Ryx

® 3 version of the Bellman equation

® Ji(x) represents total cost-to-go from time f and state x when
the controller behaves optimally

Minimizers at each stage are the optimal controls
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Questions: Given the structure of our model,

® is there a parsimonious way to represent J; at each t?7

® is there a parsimonious way to represent the optimal choices?
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Proposition. Each J; has the form Ji(x) = x'Pix + d;, where

® The sequence {P;} is defined recursively by Pr := Ry and

P,y =R —B2A'P,B(Q + BB'PB) 'B'PA + BA'PA

® The scalar sequence {d;} is defined recursively by dr = 0 and

di_1 = B(d; + trace(C'P,C))

® The optimal controls are given by

up_1 = —Fx; where F :=(Q+ BB'PB) 'BB'PA
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Proof is by induction

The claim is true at £ = T with Pr = Ry and dr=20
Suppose now that it holds at some t < T
We then have, for arbitrary x € R”,

Ji—1(x) = min

{x'Rx+1'Qu+ BE(Ax+ Bu+C¢&) P:(Ax+ Bu+C&) + Bd: }

Ex. Show that the minimizer is

u_1 = —(Q+ BB'PB) ' BB'P;Ax
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Ex. Show that

Ji—1(x) = x'Pqx +diq

where
P,y =R— B*A'P,B(Q+ BB'PB) 'B'P,A+ BA'PA

and
di_1 = B(d; + trace(C'P:C))
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Algorithm 1: Computing the cost-to-go in finite horizon LQ

t<—T;

Py + Rf ;

dt +~—0;

while t > 0 do
P4 + R—B*A'PB(Q + BB'PB) !B’ A + BA'PA ;
di—1 < B(d; + trace(C'P,C)) ;
t—t—1

end

return {P,, d;} L,
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With
F := (Q+ BB'P,,1B) !B 1 A

we can simulate as follows

Algorithm 2: Simulate states and controls in finite horizon LQ

< 0;

X; < initial condition xg ;

while t < T do
Up < _tht ;
X1 < Axy + Buy + C8pyq ;
t—t+1

end

return {x;, u;} ' U {xr}
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Example: Consumption Smoothing

Early Keynesian models assumed that households have a constant
marginal propensity to consume from current income

Data contradicts this

® “Why is Consumption So Smooth?” Campbell and Deaton,
REStud (1989)

Milton Friedman, Franco Modigliani and others built models based
on preference for smooth consumption stream

Let's investigate an LQ version
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Example. Recall the wealth dynamics

wWiy1 = (14+7)(wr — ) + p+ 0811

expressed as
Xey1 = Axp + Buy + Crp

where

1 —(1 C
xt;:@), A;:< b <+{>C+ﬂ>,
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The finite horizon objective is
T-1
E§ Y Bler =0+ plqut
t=0
where g is a large positive constant

® Why do we need it?

Ex. Pick R, Q and Ry to express this as

T—1
E { Y B (xRoxy + uyQuy) + ﬁTx’TfoT}
=0
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Set

e r=005and p=1/(1+7)
e =2 yu=10=025and g =10
e T =45

I1ID

Assume {&;} ~ N(0,1)

Ex. Complete the following tasks by computer
1. Construct the correspond matrices A, B, C, R, Q, Ry
2. Insert into the preceding algorithms
3. Solve, simulate, plot income, consumption, wealth

Figure should be similar to the next slides
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Figure: Consumption and income in the life cycle problem
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—— non-financial income — wealth
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Figure: Consumption and wealth in the life cycle problem
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Infinite Horizons

Unchanged dynamics, objective function
E {i}ﬁt(x,{th + uiQut)}
=
Time dependence in {P;}, {d;} and {F;} are replaced by
P =R - (BB'PA)'(Q+ BB'PB) ' (BB'PA) + BA’PA

F=(Q+BB'PB)"}(BB'PA)

and
d := trace(C'PC) 1513

34/73



The expression
P=R— (BB'PA)'(Q+ ,BB'PB)’l(,BB'PA) + BA'PA

is called a discrete time algebraic Riccati equation

® s there a solution?
® is it unique?

® how can we compute it?

Depends on “controllability” and “observability” (see course notes)
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Let
® % be the self-mapping on M (n x n) defined by
%(P) := R — (BB'PA)'(Q + BB'PB) (BB'PA) + BA'PA

® Mp be the set of positive definite matricies in M (n x n)

Theorem. If (A, B) is controllable and (A, R) is observable, then

1. (Mp,Z) is globally stable
2. If P* is the unique fixed point of Z in Mp, then

u = —F*x where F*:=(Q+ BB'P*B) ' (BB'P*A)

is the unique optimal policy for the LQ model
(ﬁ/ A/ B/ CI Q/ R)
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Example: Profit Maximization with Adjustment Costs

A monopolist faces inverse demand function

pt = p(qs,zt) = ag — a1q: + z
where
® g; is output
® p; is price
® the demand shock z; follows

11D

Zt+1 = P2t + 0141, {m} ~ N(O,1)
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The monopolist chooses {g;} to maximize PDV of profits:

E Z IBt 7Tt
t=0

Current profits are given by

ﬂﬁ:(Pr—qu—7WHJ—QJ2

Here

® v(gi+1 — q:)* = adjustment costs

® v >0 is a parameter

® ¢ > (0 is unit cost of current production
e 0<p<1
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What would happen if v =07

Monopolist should choose output to maximize current profit,

implying
_ap—c+z

gt =4qr : 2

For other 7, we might expect that
e if ¥ =0, then g; will track §; closely

e if 7 is larger, then g; will be smoother than §;, as the
monopolist seeks to avoid adjustment costs

Let's see if this intuition is correct

39/73



Step 1: Formulate as a dynamic programming problem

e State is (g,z) € R?
e Control is ¢’ = next period output
Bellman equation is
v(q,2) = max {(p(q,2) —c)g—v(q' —q)* + BE-0(q,2)}

q

There's an easy way to solve this...

we can rephrase as an LQ model
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First we modify rewards of the firm to

[ee]

_ _ ag—Cc+ z;
E Loty — ayd@?)  where =
t;)ﬁ( ¢ — a1d;) qt 2
Changes lifetime value but
(e} [ee] [oe]
EY pm—mi)=E) pm—mE Y B3
t=0 t=0 t=0

Hence optimal production sequence {g;} will be identical

o Why?
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Next set
Up i=qt+1 — gt

Ex. Show that

M — mi; = —ar(qr — 31)* — yuf

® Note this is quadratic in (g¢, G, u¢)

Switching to a minimization problem, current loss is

= ay(qe — Ge)* + yui
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Next we set up dynamics as linear in state and control

With mg := (ap — ¢)/2a; and my := 1/2ay, we have

q: = mo + mqz;

Ex. Show that

Grv1 = mo(1 — p) + pdr + m10gs 1

By our definition of u;, the dynamics of g; are

Je+1 = q¢ + Ut
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With these observations we can write the dynamic component of
the LQ system as

Xi41 = Axp + Buy + C8rq

when
gt
Xt 1= C]t
1
and
p 0 my(l—p) 0 myo
A=10 1 0 , B=11 and C = 0
00 1 0 0
Ex. Check it
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Recall our intuition:

if ¥ =0, then monopolist should set

gy = g for all t

For other , we expect that

® if v close to zero = g; will track g; closel
Y q q Yy

e if 7 is larger, then g; will be smoother
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Figure: Output with adjustment costs when ¢ = 2

46/73



375

350

200

dynamics with y =10

Figure: Output with adjustment costs when ¢ = 10
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Finite State Markov Decision Processes

Let X and A be finite, I'(x) C A at each x € X
A stochastic kernel from
G:={(x,a) eXxA:aeT(x)}
to X is a family of distributions I'l(x,a,-) over X, one for each
(x,a) in G
Example.

® X = inventory levels for a firm, A = {order stock,don’t order}

® TI(x,a,-) is a distribution for next period inventory given
current state and action
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A finite state Markov decision process (MDP) consists of

1. a nonempty finite set X called the state space,

2. a nonempty finite set A called the action space,
3. a feasible correspondence I' from X — A,
4

. a reward function r: G — R, where
G:={(x,a) eXxA:ael(x)}

5. a discount factor B € (0,1) and
6. a stochastic kernel IT from G to X

The set G is called the set of feasible state-action pairs
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An informal algorithm illustrating dynamics and reward flow:

set t <— 0 and take input xq ;
while t < oo do
controller observes x; ;
chooses action a; ;
receives r(xy, at) ;
nature draws x;.1 from TT(x¢, a¢, ) ;
t+—t+1;
end
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Objective: choose a state-contingent action path {a;} that

maximizes
E Z IBtT(Xt, ﬂt)
>0

® State contingency means that a; is a function of x;

The set of feasible policies is

Y:={ce AN:0o(x) €T(x) for all x € X}

Interpretation: Choosing o from X means

e respond to state x; with action a; := o(x;) at every f
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If we commit to ¢ in X then x;41 is drawn from I1(x;, 0(x;),-) at
every t

Given xp = x, this is an (x,I1y)-chain for I, defined by

M (xy) == TI(x,0(x)y)  (xyeX)

Rewards at each point in time are r(x;, a;) = r(x;, 0(x;))

Let
re(x) :=r(x,0(x))

Now

E[r(xs, ;) | x0 = x] = E[ro(x;) | x0 = x] = IT 7, (x)
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The lifetime value of following ¢ starting from state x can now be
written as

Vo (x) =E | Y Br(x,o(xy)) | xo=x

t=0
—tgoﬁE (xr, 0 (x1)) [ X0 = ]
_Z,B (7717
>0

In vector notation with v, and r, viewed as column vectors, this is

Ug' = Z ﬁtné-rg'

t>0
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Optimality

The value function is defined as

v (x) 1= sup vy (x) (x € X)

(4>

® The maximal lifetime value we can extract from each state

® consistent with previous usage of the term “value function”

A policy 0 € X is called optimal if v, = v*

® Attains the supremum at all states
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Theorem. v* satisfies the Bellman equation

v*(x) = max {r(x,a) +pB Z v (y)I1(x, a,y)}

ael(x) yex
at every x € X

Moreover, o € ¥ is optimal if and only

o(x) € argmax {r(x,a) +B Y ot (y)I(x, a,y)}

acl (x) yeX

at every x € X and at least one such policy exists

Proof: Coming soon
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The statement that a feasible policy ¢ is optimal if and only

o(x) € argmax {r(x,a) +B Y v (y)I(x, a,y)}

ael(x) yeX

at every x € X is called Bellman’s principle of optimality

Given arbitrary v € RX, we say that ¢ is v-greedy if

o(x) € argmax {r(x,a) +B ) o(y)I(x, a,y)} VxeX

a€l(x) yeX

For o € X, Bellman’s principle of optimality becomes:

0 is optimal <= 0 is v"-greedy
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If we can compute v* then the rest is easy

To do so we use the Bellman operator

To(x) = max {r(x,a) +B ) o(y)I(x, a,y)}

ael(x) yex

Proposition. Under the stated assumptions,

1. T is a contraction of modulus B on (R, d)

2. The unique fixed point of T in R is v*
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To prove that T is a contraction we can use the following

Lemma. If E is any set and f,g € DE, then

| sup f(a) —sup g(a)| < sup |f(a) - g(a)]

acE acE acE

Proof: If f and g have the stated properties, then

f=f-g+g<I|f—-gl+g

sup f <sup |f —g|+supg

sup f —supg <sup|f —g|
Reversing the roles of f and g completes the proof
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Now we show that T is a contraction of modulus g on RX

For any v, w in R* and x € X we have

| To(x) — Tw(x)| < B max ZH x,a,y)[o(y) —w(y)]

ael(x
< Y T(x,a,y)B [o(y) — w(y)|
Y
< Bllv — wlle

Taking the supremum over all x € X yields the desired result
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Algorithm 3: Value function iteration (finite state space)

input g € RX, an initial guess of v* ;
input T, a tolerance level for error ;
ce+—1+1;
n<+0;
while € > T do
for x € X do
| v (x) < Toa(x) ;
end
€ <— ||Un _Un+l||oo ;
n<n+1;
end
return v,
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An alternative algorithm:

Algorithm 4: Howard's policy iteration algorithm

input 0p € X, an initial guess of 0™ ;
n+0;
e+ 1;
while € > 0 do
Uy < the oy-value function Y50 B'TIL 70,
Op+1 < the v, greedy policy ;
€+ [low — outlleo
n+<n+1;
end
return o,
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Fact. When X is finite, {0}, } converges to the exact optimal
policy in a finite number of steps

Proofs can be found in

® “Markov Decision Processes.” Puterman (Wiley, 2005)

e “EDTC.” Stachurski (MIT Press, 2009)

Intuition:
® v,11(x) —v,(x) > 0 at some x € X when 0, is not optimal
e Hence {0, } does not cycle

® Since X is finite, eventual convergence is guaranteed
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One step in Howard's Pl algorithm is computing v, given o

We could do this by truncating: With T large,
T
vy = Y BIILrs
=0

Another way to compute v, is by making use of the operator T,
defined at v € RX by

Too(x) =r(x,0(x)) + B} v(y)I(x,0(x),y)

yeX

or, in vector notation,

TUU = rg + ﬁHgU
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Lemma. For any given ¢ in X,

1. the o-value function v, is the unique fixed point of T, in R*

2. Moreover, T"v — v, as n — oo for all v € R*

Proof: For fixed ¢ in 2 we have

TO'UU — rg' + ﬁng' <Z IBtH(tTrU>

t>0

=71, + (Z ,BtHf,rg> = Z B'II 7,

t>1 t>0

In other words, T,v, = v,
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Moreover, T; is a contraction of modulus 8 on RX

Indeed, for any v, w in RX we have

| Tov(x) — Tow(x ZH x,0(x),y)[v(y) — w(y)]
ZHXU y)B lo(y) —w(y)|

< Bllo —wlle

Taking the supremum over all x € X yields the desired result
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Alternatively, we can use the Neumann series theorem

In particular, the linear system
v=r,+BIlv

has the unique solution

ve =Y BIre = (I—BIL,) 'rs

t>0
whenever the spectral radius of I is less than one
® This is always true (why?)

® matrix inversion approach which works well when X is not
large
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An Inventory Problem

Previously we studied a firm whose inventory behavior followed
(s,S) dynamics

® large, infrequent orders

Can we replicate this in an optimizing model?

Inventory for the firm obeys

i1 = (it — Dyy1)4 + Say

Here

e {D;} is a demand shock and ¢t := max{t,0}
® action a; € {0,1}
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State is x = i = level of inventory

The firm can stock at most kS items at one time, so

({01} ifx<(k—1)S
I = {{0} otherwise

® feasible choices for a; when current state is x

Assume 11D demand shocks with common PMF ¢ on {0,1,...}
The stochastic kernel IT is given by
I1(x,a,y) = P{(x — Dt11)+ + Sa = y}

= Y 1{(x—d)s +5a = yho(d)

d=0
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Assuming a unit markup, profits are

E Z ﬁtTCt where T 1= it A Dt+l — Cag
t=0

® (s a fixed cost of ordering inventory

® orders in excess of inventory are lost rather than backfilled

Bellman equation:

v(x) = max {Z(x ANd)p(d) —ca+ ﬁgv((x —d)y + Sa)q)(d)}

ael(x) | 7

Here x in X:={0,1,...kS}
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Finite state MDP theory implies that v* satisfies the Bellman
equation

v*(x) = max {;(x/\d)go( —ca—l—ﬁZv +—|—Sa)(p(d)}

aeT (x)

at every x € X
Moreover, a feasible policy ¢ is optimal if and only

o(x) € argmax
aeT (x)

{Z(x/\d)go( —ca+,BZv —|—Sa)(p(d)}

d

at every x € X and at least one such policy exists
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We can solve this problem by value function iteration

The Bellman operator in this context is

Tov(x) = max {Z(x/\d)qo(d) —ca —|—[3;v((x —d)4 —|—Sa)qo(d)}

ael(x) | 3

From the theory of finite state MDPs we know that

® T is a contraction of modulus 8 on (R, d)

® |ts unique fixed point in RX is v*
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Ex. Using the bound

| sup f(a) —sup g(a)| < sup |f(a) —g(a)]

aeD aeD aeD

show directly that, for any v, w in RX,
| To(x)| — Tw(x)| <

ﬁarg%x Yo x—d)++5a)qv(d)—;w((x—d)++5a)(p(d)

Ex. Use the last bound to show that

ITo — Twlle < Bllv — wlleo
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Implementation, experiments:

® See the notebook inventory_dp.ipynb
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inventory_dp.ipynb

