ECON-GA 1025 Macroeconomic Theory |

Lecture 1

John Stachurski

Fall Semester 2018

1/52



Introduction

The first half of ECON-GA 1025 — Macroeconomic Theory |

Lecturer: John Stachurski

® Email: john.stachurski@gmail.com
e Office: 625 in 19 W 4th

® Office hours: 4—-5pm Mondays or by appointment

TA: Fernando Cirelli

® Email: £gc235@nyu.edu

2/52



Contact hours

Lectures:

® Times: Monday & Wednesday, 9:30-11:30
® | ocation: Room 517, 19 West 4th

Recitation:

® Times: Friday 12:30-2:30

® | ocation: Room 517

3/52



Resources

Course notes:

® [ectures in Quantitative Economics: Theory and Foundations
by John Stachurski and Thomas J. Sargent

® Permanently available at
https://github.com/jstac/nyu_macro_fall 2018

® Will change! Don't print!

® Related: https://lectures.quantecon.org/

4/52


https://github.com/jstac/nyu_macro_fall_2018
https://lectures.quantecon.org/

Supplementary reading:

® Recursive Macroeconomic Theory by Lars Ljungqvist and
Thomas J. Sargent, MIT Press, fourth edition, 2018, chapters
1-7

® Due out Sept 11 (according to MIT Press)

® Recursive Methods in Dynamic Economics by Nancy Stokey
and Robert E. Lucas, Harvard University Press, 1989

Other favorites

® Analysis for Applied Mathematics by Ward Cheney, Springer
Science, 2013

® [ntroduction to Real Analysis by Robert Bartle and Donald
Sherbert, Wiley, 2011

5/52



Assessment

Assessment = assignments 4 exam

Assignments

® Compulsory but not graded
® Must be of reasonable quality

® Work together but submit alone!

All assignments independently written

Posted each Sunday, due following Friday before recitation

Exam is on Oct 22nd, more details later...

6/52



Topics

Determinstic dynamics

Linear stochastic models

Markov chains

Search problems

LQ and discrete decision problems
Optimal savings and consumption

The theory of dynamic programming

7/52



Mathematics

Two strands

® Analysis

® Probability theory

8/52



We will use analysis for solving equations and optimization
problems

What is/are the solution/solutions to these equations?

1. x=ax+b
2. x=x+1
3. x2=1

Now let x ben x1 and A ben xn

When does this vector equation have a solution ?

Ax=b

9/52



When does this vector equation in R" have a unique solution?

x=Ax+b

When does the method of successive approximations converge?

1. pick any xp € R"

2. set xy41 = Ax, +bforn=0,1,...

10/52



Now let's make it a bit curly:

x = (b+ (Ax)7)7, v>0

When does this have a solution?
Is it unique?

How would we compute it?

11/52



Probability

This sequence is 11D

Xr

-2 A

3

PR

STy



Does it follow that, for some function &, we have

h(xt) — Eh(xt) ?

|-
[\1:

,h
Il
—_

If so this is good:

® [eft hand side is data
® Right hand side is model

® Now we can compare. ..

13/52



This sequence is not 11D

0.75 4 b
050
0.25
0.00 {
—0.25 4
—0.50 1

—0.75 1

=1.00 1

0 25 s 75 100 125 150 175 200

14/52



Does it follow that, for some function 4, we have

h(xt) — Eh(xt) ? (2)

|-
[j~'] =

,h
Il
—_

15/52



Programming

Most of the weekly assignments will require programming

Acceptable languages

® Python
° MATLAB

You should try both

16/52



Programming Background

A common classification:

° level languages (assembly, C, Fortran)

. level languages (Python, Ruby, Haskell)

Low level languages give us fine grained control

17/52



Example. 1+ 1 in assembly

pushq
movq
movl
movl
movl
movl
addl
movl
movl

popq

%rbp

%rsp, hrbp

$1, -12(%rbp)
$1, -8(%rbp)
-12(%rbp), %edx
-8(%rbp), ’eax
Jhedx, ‘eax
heax, —4(%rbp)
-4 (%rbp), ’eax
%rbp

18/52



High level languages give us abstraction, automation, etc.

19/52



Example. Reading from a file in Python

data_file = open("data.txt")
for line in data_file:

print (line.capitalize())
data_file.close()

20/52



Jane Street on readability:
There is no faster way for a trading firm to destroy itself

than to deploy a piece of trading software that makes a
bad decision over and over in a tight loop.

Part of Jane Street’s reaction to these technological risks
was to put a very strong focus on building software that
was easily understood—software that was readable.

— Yaron Minsky, Jane Street

21/52



Productivity

Trade-Offs

Python

@
Ruby

C
) assembly

Fortran
@

Machine speed

22/52



But what about scientific computing?

Requirements

® Productive — easy to read, write, debug, explore

® Fast computations

23/52



Trade-Offs

Productivity Python

@

[

@ MATLAB
@
Ruby
@
€]
P C
) assembly
Fortran
@
Machine speed

24/52



Productivity

Trade-Offs

Python
@
[
@ MATLAB
@
Ruby
@
€]
P C
&)
Fortran

Julia

assembly

Machine speed

25/52



Productivity

Trade-Offs

Python Python + NumPy + Numba
@ C
[ ]
e MATLAB
(] )
Ruby Julia
(]
(]
® Cc
@ assembly
Fortran
(4]

Machine speed

26/52



Key Takeaways

Don't write in C / C++ / Fortran, no matter what your
professor says

JIT compilation is changing scientific computing
Same with parallelization

New algorithms, new techniques — and opportunities

27/52



Programming Background — Hardware

CPU frequency (clock speed) growth is slowing

Historical growth of CPU clock speed

Lo
» ."
16 .
(2
B
R P
Fegs
- H P
e e,
£ R
10°
10
Toe 7 R = o o o Jores 0 IS
Date of CPU Release

28/52



Chip makers have responded by developing multi-core processors

4 )
CPU Core CPU Core
and and
L1 Caches L1 Caches

Back side

Bus Interface
and
L2 Caches

Front side

Source: Wikipedia

29/52



Exploiting multiple cores / threads is nontrivial
Sometimes we need to redesign algorithms

Sometimes we can use tools that automate exploitation of multiple
cores

30/52



Why Recursive Methods?

This course is an introduction to methods for economic
analysis

Example.
® Recursive Macroeconomic Theory by LL and TJS

® Recursive Methods in Dynamic Economics by NS and REL

Recursive methods are used to solve high dimensional optimization
and equilibrium problems

Breaks the problem down into smaller steps

Helps tackle the

31/52



Example. A typical problem from undergraduate choice theory:

Choose consumption at time 0 and 1 to solve

u(co) + Bu(cr) (3)

subject to
c1 < R(yo — co) (4)

If u is concave, strictly increasing and differentiable, then the
unique solution is found by taking the ¢y that satisfies

u'(co) = BRu'(R(yo — co)) (5)

32/52



In general, undergraduate style optimization problems are relatively
easy

® All functions are differentiable
® Few choice variables (low dimensional)
® Concave (for max) or convex (for min)

® First order / tangency conditions relatively simple

But PhD macro / PhD research problems are harder...

33/52



Possibilities:
® High dimensions
® Can't take derivatives
® No analytical solution for FOCs

® Neither concave nor convex — local maxima and minima

Many interesting research problems have these features

34/52



Example. A typical problem from graduate macroeconomic theory:

Choose consumption at time t = 0,1,... to solve
E Zﬁtu(ct), (6)
t=0

subject to
w1 = Re(wr — cr) + e (7)

An infinite dimensional problem because we must choose cg,cq, ...

And stochastic!

35/52



Can Computers Save Us?

For any function we can always try brute force optimization

Here's an example for the following function

36/52



Figure: The function to maximize

oAt 37/852



Figure: Grid of points to evaluate the function at

A 3852



Figure: Evaluations

At 39/52



Grid size = 20 x 20 = 400

Outcomes

® Number of function evaluations = 400
® Time taken = almost zero
® Maximal value recorded = 1.951

® True maximum = 2

Not bad and we can easily do better

40/52



Figure: 502 = 2500 evaluations

Q>

41/52



Number of function evaluations = 502
Time taken = 400 us

Maximal value recorded = 1.992

True maximum = 2

So why even study optimization?

42/52



The problem is mainly with larger numbers of choice variables

® 3 vars: maXy, x,x, f (X1, %2, X3)

® 4 vars: MaXy, xyxsx, f (X1, X2, X3, X4)

If we have 50 grid points per variable and

® 2 variables then evaluations = 50 = 2500

® 3 variables then evaluations = 50% = 125,000

® 4 variables then evaluations = 50* = 6,250,000

® 5 variables then evaluations = 50° = 312,500, 000

43/52



Example. Recent study: Optimal placement of drinks across
vending machines in Tokyo

Approximate dimensions of problem:

® Number of choices for each variable = 2

® Number of choice variables = 1000

Hence number of possibilities = 21000

How big is that?

44/52



In [10]: 2%%1000

Qut [10] :
107150860718626732094842504906000181056140481170
553360744375038837035105112493612249319837881569
585812759467291755314682518714528569231404359845
775746985748039345677748242309854210746050623711
418779541821530464749835819412673987675591655439
460770629145711964776865421676604298316526243868
37205668069376

=] F = = = %0 45752



Let's say my machine can evaluate about 1 billion possibilities per
second

How long would that take?

46/52



In [16]: (2%x*1000 / 10%*9) / 31556926 # In years
OQut [16] :
3395478403651443492780079558636357072806783989995
899349462539661933596146571733926965255861364854
060286985707326991591901311029244639453805988092
045933072657455119924381235072941549332310199388
301571394569707026437986448403352049168514244509
939816790601568621661265174170019913588941596

=] F = = = 00 a7/52



What about high performance computing?

® more powerful hardware
e faster CPUs

® GPUs

® vector processors

® cloud computing

® massively parallel supercomputers

Let's say speed up is 1012 (wildly optimistic)

48/52



In [19]: (2%*x1000 / 10%*(9 + 12)) / 31556926

OQut [19] :
3395478403651443492780079558636357072806789899958
9934946253966193359614657173392696525586136485406
0286985707326991591901311029244639453805988092045
9330726574551199243812350729415493323101993883015
7139456970702643798644840335204916851424450993981
6790601568621661265174170019

For comparison:

In [20]: 5 * 10%*9 # Expected lifespan of sun
Out [20]: 5000000000

=] F = = = 080 49752



Message: There are serious limits to computation
What's required is clever analysis

Exploit what information we have

® without information (oracle) we're stuck

® with information / structure we can do clever things

50/52



Getting Started with Python

See https:
//lectures.quantecon.org/py/getting_started.html

Jupyter notebooks

® How to use
® Markdown
® [aTeX

® Getting help

51/52


https://lectures.quantecon.org/py/getting_started.html
https://lectures.quantecon.org/py/getting_started.html

Homework

Go to https://lectures.quantecon.org/py/index.html

Study the following lectures Friday's recitation

® Setting up your Python Environment

® An Introductory Example

Python Essentials
e OOP

NumPy
Matplotlib

® SciPy

Bring your laptop on Friday

52/52


https://lectures.quantecon.org/py/index.html

	Introduction
	Assessment
	Topics
	Mathematics
	Programming
	Recursive Methods
	Homework

