ECON-GA 1025 Macroeconomic Theory I Lecture 1

John Stachurski

Fall Semester 2018

Introduction

The first half of ECON-GA 1025 - Macroeconomic Theory I

Lecturer: John Stachurski

Email: john.stachurski@gmail.com

• Office: 625 in 19 W 4th

Office hours: 4–5pm Mondays or by appointment

TA: Fernando Cirelli

• Email: fgc235@nyu.edu

Contact hours

Lectures:

• Times: Monday & Wednesday, 9:30–11:30

Location: Room 517, 19 West 4th

Recitation:

• Times: Friday 12:30–2:30

• Location: Room 517

Resources

Course notes:

- Lectures in Quantitative Economics: Theory and Foundations by John Stachurski and Thomas J. Sargent
- Permanently available at https://github.com/jstac/nyu_macro_fall_2018
- Will change! Don't print!
- Related: https://lectures.quantecon.org/

Supplementary reading:

- Recursive Macroeconomic Theory by Lars Ljungqvist and Thomas J. Sargent, MIT Press, fourth edition, 2018, chapters 1-7
 - Due out Sept 11 (according to MIT Press)
- Recursive Methods in Dynamic Economics by Nancy Stokey and Robert E. Lucas, Harvard University Press, 1989

Other favorites

- Analysis for Applied Mathematics by Ward Cheney, Springer Science, 2013
- Introduction to Real Analysis by Robert Bartle and Donald Sherbert, Wiley, 2011

Assessment

 $\mathsf{Assessment} = \mathsf{assignments} + \mathsf{exam}$

Assignments

- Compulsory but not graded
- Must be of reasonable quality
- Work together but submit alone!
- All assignments independently written
- Posted each Sunday, due following Friday <u>before</u> recitation

Exam is on Oct 22nd, more details later...

Topics

- Determinstic dynamics
- Linear stochastic models
- Markov chains
- Search problems
- LQ and discrete decision problems
- Optimal savings and consumption
- The theory of dynamic programming

Mathematics

Two strands

- Analysis
- Probability theory

We will use analysis for solving equations and optimization problems

What is/are the solution/solutions to these equations?

1.
$$x = ax + b$$

2.
$$x = x + 1$$

3.
$$x^2 = 1$$

Now let x be $n \times 1$ and A be $n \times n$

When does this vector equation have a solution ?

$$Ax = b$$

When does this vector equation in \mathbb{R}^n have a unique solution?

$$x = Ax + b$$

When does the method of successive approximations converge?

- 1. pick any $x_0 \in \mathbb{R}^n$
- 2. set $x_{n+1} = Ax_n + b$ for n = 0, 1, ...

Now let's make it a bit curly:

$$x = (b + (Ax)^{1/\gamma})^{\gamma}, \qquad \gamma > 0$$

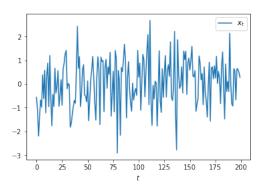
When does this have a solution?

Is it unique?

How would we compute it?

Probability

This sequence is IID



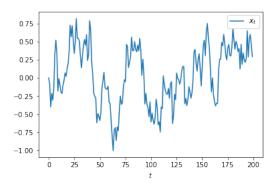
Does it follow that, for some function h, we have

$$\frac{1}{n}\sum_{t=1}^{n}h(x_t)\to \mathbb{E}\,h(x_t) ? \tag{1}$$

If so this is good:

- Left hand side is data
- Right hand side is model
- Now we can compare...

This sequence is **not** IID



Does it follow that, for some function h, we have

$$\frac{1}{n}\sum_{t=1}^{n}h(x_t)\to \mathbb{E}\,h(x_t) ? \tag{2}$$

Programming

Most of the weekly assignments will require programming

Acceptable languages

- Python
- MATLAB

You should try both

Programming Background

A common classification:

- low level languages (assembly, C, Fortran)
- high level languages (Python, Ruby, Haskell)

Low level languages give us fine grained control

Example. 1+1 in assembly

```
%rbp
pushq
movq %rsp, %rbp
movl $1, -12(%rbp)
       1, -8(\%rbp)
movl
       -12(\%rbp), %edx
movl
       -8(\%rbp), \%eax
movl
       %edx, %eax
addl
movl
       \%eax, -4(\%rbp)
       -4(\%rbp), \%eax
movl
       %rbp
popq
```

High level languages give us abstraction, automation, etc.

Example. Reading from a file in Python

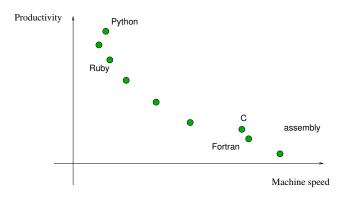
```
data_file = open("data.txt")
for line in data_file:
    print(line.capitalize())
data_file.close()
```

Jane Street on readability:

There is no faster way for a trading firm to destroy itself than to deploy a piece of trading software that makes a bad decision over and over in a tight loop.

Part of Jane Street's reaction to these technological risks was to put a very strong focus on building software that was easily understood—software that was readable.

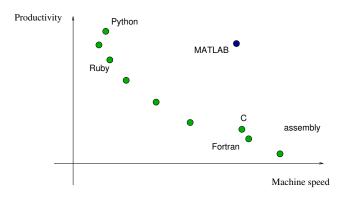
- Yaron Minsky, Jane Street

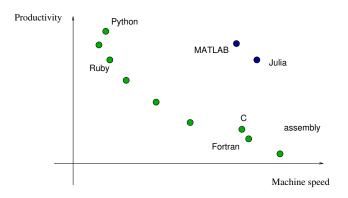


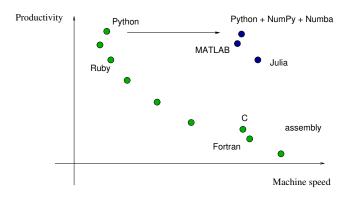
But what about scientific computing?

Requirements

- <u>Productive</u> easy to read, write, debug, explore
- Fast computations





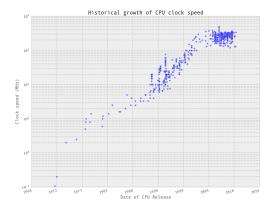


Key Takeaways

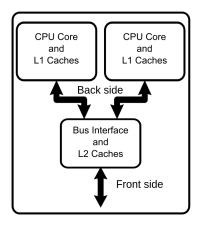
- <u>Don't</u> write in C / C++ / Fortran, no matter what your professor says
- JIT compilation is changing scientific computing
- Same with parallelization
- New algorithms, new techniques and opportunities

Programming Background — Hardware

CPU frequency (clock speed) growth is slowing



Chip makers have responded by developing multi-core processors



Source: Wikipedia

Exploiting multiple cores / threads is nontrivial

Sometimes we need to redesign algorithms

Sometimes we can use tools that automate exploitation of multiple cores

Why Recursive Methods?

This course is an introduction to **recursive** methods for economic analysis

Example.

- Recursive Macroeconomic Theory by LL and TJS
- Recursive Methods in Dynamic Economics by NS and REL

Recursive methods are used to solve high dimensional optimization and equilibrium problems

Breaks the problem down into smaller steps

Helps tackle the curse of dimensionality

Example. A typical problem from undergraduate choice theory:

Choose consumption at time 0 and 1 to solve

$$u(c_0) + \beta u(c_1) \tag{3}$$

subject to

$$c_1 \leqslant R(y_0 - c_0) \tag{4}$$

If u is concave, strictly increasing and differentiable, then the unique solution is found by taking the c_0 that satisfies

$$u'(c_0) = \beta R u'(R(y_0 - c_0))$$
 (5)

In general, undergraduate style optimization problems are relatively easy

- All functions are differentiable
- Few choice variables (low dimensional)
- Concave (for max) or convex (for min)
- First order / tangency conditions relatively simple

But PhD macro / PhD research problems are harder...

Possibilities:

- High dimensions
- Can't take derivatives
- No analytical solution for FOCs
- Neither concave nor convex local maxima and minima

Many interesting research problems have these features

Example. A typical problem from graduate macroeconomic theory:

Choose consumption at time $t = 0, 1, \ldots$ to solve

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^{t}u(c_{t}),\tag{6}$$

subject to

$$w_{t+1} = R_t(w_t - c_t) + y_t (7)$$

An infinite dimensional problem because we must choose c_0, c_1, \ldots

And stochastic!

Can Computers Save Us?

For any function we can always try brute force optimization

Here's an example for the following function

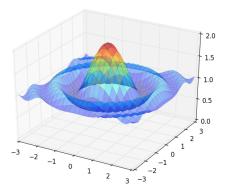


Figure: The function to maximize

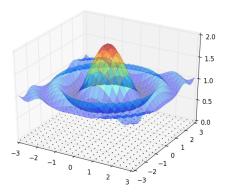


Figure: Grid of points to evaluate the function at

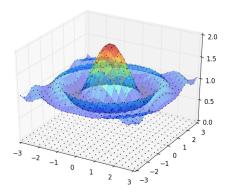


Figure: Evaluations

 $\mathsf{Grid}\ \mathsf{size} = 20 \times 20 = 400$

Outcomes

- Number of function evaluations = 400
- Time taken = almost zero
- Maximal value recorded = 1.951
- True maximum = 2

Not bad and we can easily do better

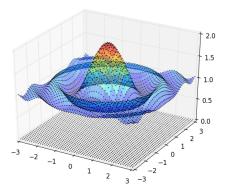


Figure: $50^2 = 2500$ evaluations

- Number of function evaluations = 50^2
- Time taken = $400~\mu s$
- Maximal value recorded = 1.992
- True maximum = 2

So why even study optimization?

The problem is mainly with larger numbers of choice variables

- 3 vars: $\max_{x_1, x_2, x_3} f(x_1, x_2, x_3)$
- 4 vars: $\max_{x_1, x_2, x_3, x_4} f(x_1, x_2, x_3, x_4)$
- . . .

If we have 50 grid points per variable and

- 2 variables then evaluations $= 50^2 = 2500$
- 3 variables then evaluations = $50^3 = 125,000$
- 4 variables then evaluations = $50^4 = 6,250,000$
- 5 variables then evaluations = $50^5 = 312,500,000$
- . . .

Example. Recent study: Optimal placement of drinks across vending machines in Tokyo

Approximate dimensions of problem:

- Number of choices for each variable = 2
- Number of choice variables = 1000

Hence number of possibilities = 2^{1000}

How big is that?

In [10]: 2**1000

Out[10]:

 Let's say my machine can evaluate about 1 billion possibilities per second

How long would that take?

In [16]: (2**1000 / 10**9) / 31556926 # In years
Out[16]:
339547840365144349278007955863635707280678989995
899349462539661933596146571733926965255861364854
060286985707326991591901311029244639453805988092
045933072657455119924381235072941549332310199388
301571394569707026437986448403352049168514244509
939816790601568621661265174170019913588941596

What about high performance computing?

- more powerful hardware
- faster CPUs
- GPUs
- vector processors
- cloud computing
- massively parallel supercomputers
- . . .

Let's say speed up is 10^{12} (wildly optimistic)

In [19]: (2**1000 / 10**(9 + 12)) / 31556926
Out[19]:

3395478403651443492780079558636357072806789899958 9934946253966193359614657173392696525586136485406 0286985707326991591901311029244639453805988092045 9330726574551199243812350729415493323101993883015 7139456970702643798644840335204916851424450993981 6790601568621661265174170019

For comparison:

In [20]: 5 * 10**9 # Expected lifespan of sun

Out[20]: 5000000000

Message: There are serious limits to computation

What's required is clever analysis

Exploit what information we have

- without information (oracle) we're stuck
- with information / structure we can do clever things

Getting Started with Python

See https: //lectures.quantecon.org/py/getting_started.html Jupyter notebooks

- How to use
- Markdown
- LaTeX
- Getting help

Homework

Go to https://lectures.quantecon.org/py/index.html

Study the following lectures before Friday's recitation

- Setting up your Python Environment
- An Introductory Example
- Python Essentials
- OOP
- NumPy
- Matplotlib
- SciPy

Bring your laptop on Friday