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Abstract

The paper considers random economic systems generating nonlinear time series on
the positive half-ray R+. Using Lyapunov techniques, new conditions for existence,
uniqueness and stability of stationary equilibria are obtained. The conditions gener-
alize earlier results from the mathematical literature, and extend to models outside
the scope of existing economic methodology. Applications to growth models with
productive capital are given. JEL classifications: C61; C62; O40.
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1 Introduction

Increasingly, modern economics is implemented within the framework of stochas-
tic dynamic systems. Physical laws, equilibrium constraints and restrictions on
the behavior of agents jointly determine evolution of endogenous state variable
x ∈ X according to some transition rule

xt+1 = h(xt, zt, εt), t = 0, 1, . . . , (1)

where h is an arbitrary function, (zt) is a sequence of exogenous forcing vari-
ables and (εt) is uncorrelated noise.
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For some models, either zt is constant or the endogenous variables can be
conveniently redefined such that the system is autonomous:

xt+1 = h(xt, εt), t = 0, 1, . . . (2)

Assume that this is the case.

Of primary concern is whether the autonomous system (2) is in some sense
stationary, in which case one can anticipate convergence of the sequence of
distributions (ϕt) associated with the sequence of random variables (xt) to
some unique limiting distribution ϕ∗. The latter is then interpreted as the
long-run equilibrium of the economy (2). Typically, comparative dynamics
(policy simulation) will be performed by analyzing the relationship between its
moments and the underlying structural parameters contained in the function
h and the distribution of the shock ε.

When h is linear on real vector space, (2) is the standard autoregression (AR)
model. Conditions for stationarity are familiar from elementary time series
analysis (Hamilton, 1994). When the map is nonlinear, dynamic behavior is
potentially more complicated. General conditions for existence of unique and
stable equilibria are not known.

In this case, a common approach is to linearize (2) using a first order Taylor
expansion or similar technique, and then examine the stability properties of
the resulting AR model. However, it is by no means clear that stability prop-
erties obtained for the AR model have any homeomorphic implications for the
behavior of the true model (2). In other words, it is not in general legitimate to
infer stability of (2) from stability of the corresponding linear form. Moreover,
linearization may eliminate important features of the model. 2

A more correct method is to examine the Markov chain generated by (2), and
determine whether appropriate conditions for stability of Markovian systems
are satisfied. An early example is Brock and Mirman (1972). An excellent
survey of sufficient conditions is provided by Futia (1982). Stokey, Lucas and
Prescott (1989, Chapter 13) outline ways to verify these and related condi-
tions for common economic models. Hopenhayn and Prescott (1992) develop
new sufficient conditions using only monotonicity and a mixing condition.
Bhattacharya and Majumdar (2001) obtain exponential convergence in the
Kolmogorov metric for real-valued systems that satisfy a “splitting” condi-
tion.

2 For example, Durlauf and Quah (1999) find evidence to the effect that standard
linearization procedures applied to Solow-Ramsey growth models fail to extract
nonlinear local increasing returns dynamics that are critical to understanding the
evolution of the cross-country income distribution.
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In this paper we focus on a specific class of models that arise naturally in
economics. In particular, we assume that the shock ε is multiplicative, and
that the state space for the endogenous variable xt is the positive half-ray
R+ = [0,∞). That is,

xt+1 = g(xt)εt, t = 0, 1, . . . , (3)

where g : R+ → R+, and εt ∈ R+. The importance of these models within
economics stems from inherently nonnegative state variables, such as prices or
physical quantities. A case in point is stochastic growth theory (e.g., Stokey,
Lucas and Prescott, 1989, Section 13.3), which in turn provides foundations
for the real business cycle and other macroeconomic literature.

While (3) excludes a larger model architecture than previous studies, it is
demonstrated that the additional structure can be exploited to obtain results
that have considerable generality within this class. For example, stability re-
sults are obtained for models that may satisfy none of the sufficient conditions
used in the well-known framework of Stokey, Lucas and Prescott (1989, Sec-
tion 12.4). Further, the approach leads naturally to sufficient conditions stated
directly in terms of the primitives g and ε; such conditions are easy to verify in
applications. Third, the temptation to compactify the state space is resisted,
permitting incorporation of standard econometric shocks. Fourth, equilibria
are realized as fixed points of a contractive linear operator, and are therefore
amenable to approximation by numerical methods.

The stability of (3) has previously been studied in the mathematical literature.
In particular, there exists a well-known set of sufficient conditions due to
K. Horbacz (1989, Theorem 1). The results obtained here provide a general
principle which yields the conditions of Horbacz as a special case. 3

Our arguments are based on the framework for studying integral Markov
semigroups in the function space L1 proposed by Lasota (1994). Previously,
Stachurski (2002) has applied Lasota’s method to the stochastic neoclassical
growth problem.

The paper proceeds as follows. Section 2 provides background on the formal
structure. Section 3 states our results. Section 4 gives applications. Section 5
gives proofs.

3 A proof of this statement is available from the author.
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2 Formulation of the problem

In this section a more formal treatment of the model (3) is given. To begin,
let R be the real numbers, let B be the Borel sets of R, let R+ = [0,∞), and
let B+ = B ∩R+. The Lebesgue measure is denoted by µ. Integration where
the measure is not made explicit is taken with respect to µ; integration using
the symbol

∫
without subscript is taken over R+.

Let M be the vector lattice of finite signed measures on (R+,B+) with total
variation norm. Let P be the elements ν ∈M such that ν ≥ 0 and ν(R+) =
‖ν‖ = 1. The subset P will be called the distributions on R+.

Further, let L1(µ) be the space of µ-integrable real functions on the measur-
able space (R+,B+). As usual, L1(µ) is interpreted as a Banach lattice of
equivalence classes; functions equal off a µ-null set are identified. The sets M
and L1(µ) are related in that L1(µ) is isometrically and lattice isomorphic to
a subset of M under Radon-Nikodým (RN) differentiation with respect to µ.

A density function on R+ is an element ϕ ∈ L1(µ) such that ϕ ≥ 0 and∫
ϕ = ‖ϕ‖ = 1. The set of all density functions is denoted D(µ).

In the model, random outcomes are implemented as follows. For some mea-
surable space (Ω,F ), and for some fixed probability measure P on (Ω,F ), a
state of nature is selected from Ω according to P, and mapped into R+ by ran-
dom variable ε : Ω→ R+. The random variable defines a distribution Ψ ∈P
associating event B ∈ B+ with the real number P[ε−1(B)] ∈ [0, 1].

Two basic assumptions on the structure of (3) are required. First,

Assumption 1 The shocks (εt) are uncorrelated and identically distributed
by density function ψ on R+.

Second,

Assumption 2 The map g is strictly positive almost everywhere on R+. 4

Assumption 1 states that Ψ can be represented by a density function. In other
words, there exists a unique density ψ ∈ D(µ) satisfying

∫
B ψ = Ψ(B) for all

B ∈ B+; ψ is the Radon-Nikodým (RN) derivative of Ψ with respect to µ.

Definition 1 Let g : R+ → R+ be a B+-measurable function. In what follows,
a perturbed dynamical system on R+ is defined by a pair (g, ψ), where, given

4 Thus we accommodate the possibility that g may be zero at a finite number of
points.
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current state value xt ∈ R+, a shock εt ∈ R+ is selected independently from
density ψ ∈ D(µ), and the next period state is realized as in (3).

2.1 The standard model

Dynamics of perturbed dynamical systems are usually described in terms of
transition kernels (Futia, 1982, Definition 1.1). Let 1B : R+ → {0, 1} be the
characteristic function for B ∈ B+. The pair (g, ψ) determines a Markov
process on R+ with transition kernel N,

N : R+ ×B+ 3 (x,B) 7→
∫

1B[g(x)z]ψ(z)dz ∈ [0, 1].

The value N(x,B) should be interpreted as the conditional probability that
the next period state is in Borel set B, given that the current state is equal
to x. A Markov process is fully characterized by its transition kernel.

We seek to derive using N a recursion that links successive marginal distri-
butions of the state variables. Let B be any Borel set, and let νt ∈ P be
the marginal distribution for the random variable xt.

5 By the law of total
probability, if νt+1 is the distribution for xt+1, then

νt+1(B) =
∫

N(x,B)νt(dx). (4)

Intuitively, the probability that the state variable is in B next period is the
sum of the probabilities that it travels to B from x across all x ∈ R+, weighted
by the probability νt(dx) that x occurs as the current state.

Following Futia (1982), Stokey et al. (1989) and other authors, the relationship
(4) is redefined in terms of operators. Suppose we define an operator P : M 3
ν 7→ Pν ∈M by

Pν(B) =
∫

N(x,B)ν(dx). (5)

It follows from (4) and (5) that if νt is the distribution for the current state
xt, then Pνt is the distribution for the next period state xt+1.

Evidently PP ⊂ P. A linear self-mapping on M satisfying PP ⊂ P is
called a Markov operator. 6

5 The distribution for the entire stochastic process (xt)t≥0 can be constructed
uniquely from the transition kernel and an initial value x0 (Shiryaev, 1996, Theorem
II.9.2). The real number νt(B) is the probability that this distribution assigns to
the event xt ∈ B and xs ∈ R+ for all other s 6= t.
6 The operator P corresponds to, for example, T ∗ in Futia (1982, p. 380). Markov
operators are called stochastic operators by some authors. Our terminology follows
the literature on Markov processes in L1.
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Repeated iteration of P on a fixed distribution ν is equivalent to moving
forward in time. If P t is defined inductively by P t = P ◦ P t−1 and P 1 = P ,
and if ν is the current marginal distribution for the state variable, then P tν
is the distribution t periods hence.

2.2 The L1 method

The above framework essentially follows Futia (1982), Stokey et al. (1989) and
subsequent authors. However, in this paper we diverge slightly, approaching
Markov chains generated by (g, ψ) using the L1 method (Hopf, 1954); stochas-
tic processes are studied by analyzing evolution of density functions which
represent the marginal distributions of current and future state variables. The
advantage is that we can exploit a very useful technique for studying Markov
chains in L1 due to Lasota (1994).

Embedding the Markov problem in L1 requires that the transition probabilities
can be represented by density functions. This was the purpose of Assumption
2. It can be verified under this assumption that for almost all x, the dis-
tribution B 7→ N(x,B) is absolutely continuous with respect to µ, and can
therefore be represented by density y 7→ p(x, y). Heuristically, the number
p(x, y)dy is the probability of traveling from state x to state y in one step. In
this paper, p is called the density kernel corresponding to (g, ψ).

For x such that g(x) > 0,

p(x, y) = ψ

(
y

g(x)

)
1

g(x)
, (6)

because changing variables shows that for any B ∈ B+ and any such x,∫
B
p(x, y)dy =

∫
1B[g(x)z]ψ(z)dz = N(x,B).

Hence p represents N as claimed. For other x set p(x, ·) equal to any density. 7

Using p, the Markov operator P corresponding to (g, ψ) can now be reinter-
preted as a linear self-mapping on the function space L1(µ). Specifically, if
h ∈ L1(µ), then

Ph(y) =
∫
p(x, y)h(x)dx. (7)

7 Density kernels need be defined only up to the complement of a null set—systems
with kernels equal µ × µ-a.e. have identical dynamics and we do not distinguish
between them in what follows.
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It can be verified that the two definitions (5) and (7) of P are equivalent for
the absolutely continuous measures in M when these measures and their RN
derivatives in L1(µ) are identified. 8

Note that PD(µ) ⊂ D(µ), as can be shown directly using Fubini’s theorem.
As before, if ϕ is the current marginal density for the state variable, then P tϕ
is that of the state t periods hence.

Definition 2 Let (g, ψ) be a perturbed dynamical system satisfying Assump-
tions 1–2. Let P be the corresponding Markov operator. An equilibrium or
steady state for (g, ψ) is a density ϕ∗ on R+ such that Pϕ∗ = ϕ∗. An equilib-
rium ϕ∗ is called unique if there exists no other fixed point of P in the space
D(µ), and globally stable if P tϕ → ϕ∗ in the L1(µ) metric as t → ∞ for
every ϕ ∈ D(µ).

This equilibrium concept is standard (see, e.g., Stokey, Lucas and Prescott,
1989, pp. 317–8). Note that stability is defined in terms of the norm topol-
ogy on L1(µ). Thus distributions corresponding to the density functions in
Definition 2 converge in the strong (total variation) topology on M . Existing
techniques typically obtain only weak or weak-star stability. 9

3 Results

In this section the main results are stated. Models are required to satisfy some
combination of the following four conditions.

The first uses the notion of a Lyapunov function on R+, which we define to
be a continuous, nonnegative function V from R+ into R+ ∪ {∞} such that
V (0) =∞, V (x) <∞ for x > 0 and limx→∞ V (x) =∞.

Condition 1 Corresponding to (g, ψ), there exists a Lyapunov function V on
R+ and constants α, C ≥ 0, α < 1, such that∫

V [g(x)z]ψ(z)dz ≤ αV (x) + C, ∀x ∈ R+.

The function V in Condition 1 is large at 0 and +∞. The condition should be
interpreted as a restriction on the probability that the state variable moves

8 For further discussion see Lasota and Mackey (1994, Chapter 12).
9 Using coarser topologies is not a free lunch. For example, in every infinite di-
mensional normed vector space U , there exists a net of points all with norm one
converging to the zero element in the weak topology induced by the norm dual of
U .
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toward these limits without bound.

Condition 2 The density ψ is strictly positive almost everywhere on R+. 10

Most “named” densities on R+ have this property, such as the lognormal,
exponential, χ-squared, gamma, and Weibull densities.

Condition 3 For some M <∞, ψ satisfies ψ(z)z ≤M , ∀z ∈ R+.

Condition 3 also holds for the lognormal, exponential, χ-squared, gamma and
Weibull distributions. The condition is used here to bound the probability
that ψ assigns to closed intervals in R+ \ {0}.

Theorem 3 Let (g, ψ) be an economy on R+ satisfying Assumptions 1 and
2. If g and ψ also satisfy Conditions 1, 2 and 3, then (g, ψ) has a unique,
globally stable equilibrium.

Alternatively, suppose that

Condition 4 The map g is weakly monotone increasing on the nonempty
interval [0, r), and g(x) ≥ b > 0 on [r,∞).

Theorem 4 Let (g, ψ) be an economy on R+ satisfying Assumptions 1 and
2. If g and ψ also satisfy Conditions 1, 2 and 4, then (g, ψ) has a unique,
globally stable equilibrium.

The proofs of Theorems 3 and 4 are given in Section 5.

Corollary 5 Let (g, ψ) be an economy on R+ satisfying Assumptions 1 and 2.
If g is weakly monotone increasing and, in addition, g and ψ together satisfy
Conditions 1 and 2, then (g, ψ) has a unique, globally stable equilibrium.

Proof Evidently Condition 4 is also satisfied if Assumption 2 holds and g is
weakly monotone increasing on R+. Theorem 4 then implies the stated result.

4 Applications

We analyze the dynamics of two capital accumulation models using these
results. One is a standard overlapping generations model, while the other is
of growth with state-dependent shocks.

10 When this is the case, the same distribution for ε can be represented by a density
which is positive everywhere on R+. Hence we can assume without loss of generality
that ψ(z) > 0, ∀z ∈ R+.
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4.1 Overlapping generations

In the deterministic case, dynamics of the overlapping generations model with
productive capital were extensively studied by Galor and Ryder (1989). They
establish convergence to a unique, nontrivial equilibrium under a strengthened
Inada condition. Here the same result is extended to the stochastic case. 11

The framework is as follows. Agents live for two periods, working in the first
and living off savings in the second. Savings in the first period forms capital
stock, which in the following period will be combined with the labor of a
new generation of young agents for production under the technology yt =
F (kt, `t)εt. Here yt is income, kt is capital and `t is the number of young
agents, all of whom supply inelastically one unit of labor. For convenience we
assume that population is constant (`t = `), and set f(k) = F (k, `). Following
Galor and Ryder (1989, p. 362), we assume that f : R+ → R+ has the usual
properties f(0) = 0, f ∈ C2, f ′ > 0, f ′′ < 0, and

lim
k↓0

f ′(k) =∞, lim
k↑∞

f ′(k) = 0.

In addition, Galor and Ryder (1989, Proposition 5, Corollary 1) introduce the
extended Inada condition

lim
k↓0

[−kf ′′(k)] > 1. (GR)

The shocks (εt) are uncorrelated and identically distributed on R+ according
to density ψ. We assume that ψ is strictly positive on R+.

As Galor and Ryder point out (1989, Lemma 1, p. 365), restrictions on the
utility function are necessary to obtain unique self-fulfilling expectations. Here
we assume that young agents maximize utility

U(ct, c
′
t+1) = ln ct + βE(ln c′t+1), β ∈ (0, 1), (8)

subject to the budget constraint

st = (wt − ct), c′t+1 = stRt+1,

where s is savings from wage income, c (respectively, c′) is consumption while
young (respectively, old), w is the wage rate and R is the gross rate of return
on savings. Competitive markets imply that firms pay inputs their marginal

11 Previously Wang (1993) studied the stochastic overlapping generations model
under the assumption that productivity shocks have compact support.
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factor product. That is,

Rt(kt, εt) = f ′(kt)εt, wt(kt, εt) = [f(kt)− ktf ′(kt)]εt. (9)

Thus at time t, households choose st to maximize

ln(wt(kt, εt)− st) + βE ln[stRt+1(kt+1, εt+1)], (10)

using their knowledge of the distribution ψ of εt to evaluate the expectations
operator, as well as their current belief that next period capital stock will be
kt+1. In self-fulfilling expectations equilibrium their beliefs are realized, with

kt+1 = st =
β

1 + β
h(kt)εt, (11)

where h(k) = [f(k)− kf ′(k)]. We have set ` = 1 for convenience.

Proposition 6 Assume that the Galor-Ryder condition (GR) holds. If, in
addition, E(ε) < ∞ and E(1/ε) < β/(1 + β), then the economy (11) has a
unique and globally stable stochastic equilibrium.

Remark 1 The bound E(1/ε) < β/(1 + β) is needed to restrict weight in the
left-hand tail of ψ, preventing the economy from collapsing to zero as a result
of adverse shocks.

Proof We verify that (11) satisfies the conditions of Corollary 5. To this end,
let D = β/(1+β), and let g(k) = Dh(k). It follows from our assumptions on f
that the function k 7→ h(k) is zero at zero, continuously differentiable, strictly
increasing and satisfies limk↓0 h

′(k) > 1. This last fact—which is equivalent to
(GR)—implies (via the mean value theorem) that

∃ δ > 0 s.t. h(k) ≥ k, ∀k ∈ [0, δ). (12)

Evidently Assuptions 1 and 2 are satisfied. Regarding Condition 1, consider
the Lyapunov function defined by V (k) = 1/k + k. We have

∫
V [g(k)z]ψ(z)dz = E(1/ε)

1

g(k)
+ E(ε)g(k). (13)

Consider the first term in the right hand side of (13). By (12),

E(1/ε)
1

g(k)
≤ α1

1

k
, ∀k ∈ [0, δ), (14)

10



where α1 = E(1/ε)D−1 < 1. In addition, monotonicity of g yields

E(1/ε)
1

g(k)
≤ E(1/ε)

1

g(δ)
, ∀k ∈ [δ,∞). (15)

Combining (14) and (15) gives

E(1/ε)
1

g(k)
≤ α1

1

k
+ C1, ∀k ∈ R+, (16)

where C1 is a finite constant.

Consider now the second term in the right hand side of (13). By the assump-
tions on f it is clear that the function k 7→ E(ε)Df(k) can be majorized on
R+ by an affine function k 7→ α2k + C2, where α2 and C2 are nonnegative
constants, α2 < 1. That is,

E(ε)g(k) ≤ E(ε)Df(k) ≤ α2k + C2, ∀k ∈ R+. (17)

Let α = max(α1, α2), and let C = C1 + C2. Substituting (16) and (17) into
(13) gives ∫

V [g(k)z]ψ(z)dz ≤ α(1/k + k) + C = αV (k) + C. (18)

Since α < 1, Condition 1 is satisfied.

In addition, Condition 2 is satisfied by hypothesis, and k 7→ g(k) is monotone
increasing on R+. Thus all of the conditions of Corollary 5 are verified.

4.2 Growth with state-dependent shocks

Recently, several authors have argued that the probability of adverse shocks
decreases as economies develop (Acemoglu and Zilibotti, 1997; Cetorelli, 2002).
These models have interesting implications for income dynamics. In particular,
they may help explain the emergence of bimodality in the cross-country income
distribution (Cetorelli, 2002).

To date, the analysis has focused on the case where shocks are discrete—
either by assumption or construction. Discrete shocks are simple to analyze
mathematically, but inhibit econometric implementation, the theory of which
is usually cast in the standard statistical framework of continuous shocks de-
fined by density functions. In this section we analyze the dynamics of a model
with continuous, state-dependent shocks.
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Consider again the model of the previous section, this time with the following
modifications. The production function is assumed to be Cobb-Douglas. That
is,

yt = kαt `
1−α
t εt, 0 < α < 1.

Also, shocks are not identically distributed. Instead, the probability of ad-
verse shocks decreases in the aggregate stock of capital. Formally, if Fk is the
cumulative distribution of ε when kt = k, then, ∀x ∈ R+,

Fk′(x) ≤ Fk(x) whenever k′ ≥ k. (19)

A convenient way to represent this situation is to set

Fk(x) =
∫ x

γ(k)

0
ψ(z)dz, (20)

where ψ is a fixed density function on R+, and γ is some strictly positive
function. If γ is nondecreasing, then (19) holds.

The model can be solved along similar lines as the previous section. Firms do
not take into account the external affect of aggregate capital deepening on the
likelihood of adverse shocks, and again offer wage and interest rates as in (9).
Young agents again fix a belief for next period capital stock kt+1 and solve
(10), using (20) to evaluate expectations. In equilibrium, kt+1 = st (normalize
` = 1), yielding the law of motion

kt+1 =
β

1 + β
(1− α)kαt εt. (21)

Dynamic analysis is considerably complicated by the dependence of probabil-
ities on the state variable. Never the less,

Proposition 7 If the function γ satisfies 0 < γ′ ≤ γ(k) ≤ γ′′ <∞ for all k,
then for any ψ from a class of distributions that includes the lognormal distri-
butions, the economy (21) has a unique, globally stable stochastic equilibrium.

Proof Since the sequence of shocks (εt) is not identically distributed, Theo-
rems 3 and 4 do not immediately apply. Note, however, that the influence of
k on the shock can be decoupled as follows. If η is a random variable on R+

distributed according to ψ, then ηtγ(kt) = εt, as can be deduced from (20).
Setting g(k) = (β/(1 + β))(1− α)kαγ(k), we have

kt+1 = g(kt)ηt, (22)

which is in the form of (3). We verify that (22) satisfies the conditions of
Theorem 3. By construction, Assumption 1 holds, as does Assumption 2. By
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the hypotheses of the proposition, we may assume that ψ satisfies Conditions
2 and 3, and that E | ln η| <∞. Regarding Condition 1, let V (k) = | ln k|. The
function V so constructed is a Lyapunov function on R+. Moreover,∫

V [g(k)z]ψ(z)dz =
∫
| lnD + α ln k + ln γ(k) + ln z|ψ(z)dz

≤ α| ln k|+ C

= αV (k) + C,

where D is a positive constant, C = | lnD| + supk | ln γ(k)| + E | ln η|. Since
α < 1 and C <∞, Condition 1 also holds, completing the proof.

5 Proofs

Verification of Theorems 3 and 4 proceeds by outlining a framework for ob-
taining existence, uniqueness and stability of equilibria, and then establishing
the required lemmas. The framework for studying integral Markov operators
used here is due to Lasota (1994). Our exposition of Lasota’s method draws
on Stachurski (2002).

By the definition of equilibrium, the proof requires a fixed point argument for
a mapping T : U → U on a metric space (U, %), where in the present case T
corresponds to the Markov operator P defined in (7), U is the space of density
functions D(µ), and % is the distance in D(µ) induced by the L1 norm.

A standard result which gives existence, uniqueness and stability of equilib-
rium in the form desired here is the Banach contraction theorem. However, the
contraction condition of Banach is not always satisfied under Conditions 1–4.
Here we pursue an alternative contraction-based argument, using a slightly
weaker condition.

Definition 8 Let U be a metric space, and let T : U → U . The map T is
called contracting on U if

%(Tx, Tx′) < %(x, x′), ∀x, x′ ∈ U, x 6= x′. (23)

Remark 2 Contracting maps have at most one fixed point: If x and x′ are
any two fixed points of T in U , then %(Tx, Tx′) = %(x, x′), and hence x = x′

by (23).

Lemma 9 Let (g, ψ) be a perturbed dynamical system satisfying Assumptions
1 and 2. If Condition 2 holds, then the associated Markov operator P is con-
tracting on D(µ) with respect to the metric induced by the L1(µ) norm.
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By Remark 2, Lemma 9 establishes the uniqueness component of Theorems
3 and 4. The result of Lemma 9 is already known. For completeness, a short
proof is given in the appendix.

Consider the remaining problems of existence and stability. It is known that
when T : U → U is contracting on a compact metric space (U, %), then T
has a unique fixed point x∗ ∈ U . 12 Uniqueness is by Remark 2. To prove
existence, define r : U → R by r(x) = %(Tx, x). Evidently r is continuous.
Since U is compact, r has a minimizer x∗. But then Tx∗ = x∗ must hold,
because otherwise

r(Tx∗) = %(TTx∗, Tx∗) < %(Tx∗, x∗) = r(x∗),

contradicting the definition of x∗.

It is less well-known but also true that T nx → x∗ as n → ∞ for all x ∈ U .
To see this, pick any x ∈ U . Consider the real sequence %(T nx, x∗). Since T
is contracting, the sequence is monotone decreasing, and therefore has limit
α ≥ 0. It is clear that every limit point x′ ∈ U of the trajectory (T nx) satisfies
%(x′, x∗) = α. By compactness of U , the trajectory has at least one limit point
x′ ∈ U (∃T n(k)x → x′). As T is a contraction and therefore continuous, Tx′

must also be a limit point (T n(k)+1x → Tx′). If α = 0, then we are done.
Suppose otherwise. Then x′ and x∗ are distinct, in which case

α = %(x′, x∗) > %(Tx′, Tx∗) = %(Tx′, x∗) = α.

Contradiction.

We have proved that contractiveness of the operator and compactness of the
space together imply existence, uniqueness and global stability of equilibrium.
In the case of the perturbed dynamical system (g, ψ), while P is contracting
on the metric space D(µ) with L1 distance by Lemma 9, D(µ) is not compact
in the L1 topology. Some weakening of the compactness condition is required.
Consider the following approach. Suppose that, in addition to contractiveness
of P on D(µ), the set of iterates {P tϕ : t ≥ 0} is precompact (i.e., has
compact closure) for any initial distribution ϕ ∈ D(µ). 13 Such a property is
called Lagrange stability. Let Γ(ϕ) denote the closure of {P tϕ : t ≥ 0}. It is
straightforward to check that PΓ(ϕ) ⊂ Γ(ϕ). 14 In this case, P is a contracting
self-mapping on the compact set Γ(ϕ). By the prior discussion, P has a fixed
point ϕ∗ in Γ(ϕ) ⊂ D(µ), and P tϕ → ϕ∗ in L1 norm. Finally, since P is a

12 Strictness of the inequality in (23) is necessary for both uniqueness and existence.
For example, existence fails if U is the boundary of the unit sphere in R2, and
Tx = −x.
13 We use the convention that P 0 is the identity map.
14 Note that P is a contraction and therefore continuous.
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contraction on the whole space D(µ), the fixed point ϕ∗ is unique and does
not depend on ϕ.

Thus it remains only to establish Lagrange stability of the Markov operator
P associated with (g, ψ) on the density space D(µ). Lasota (1994) has made
the important insight that in the case of integral Markov operators such as
(7), it is sufficient to prove that {P tϕ : t ≥ 0} is weakly precompact for
every ϕ ∈ D(µ). The reason is that integral Markov operators map weakly
precompact subsets of L1(µ) into strongly precompact subsets. 15 Therefore,
if {P tϕ : t ≥ 0} is weakly precompact, then {P tϕ : t ≥ 1} is strongly
precompact. But then {P tϕ : t ≥ 0} is also strongly precompact.

In fact Lasota (1994, Proposition 3.4) has used a Cantor diagonal argument to
show that weak precompactness of {P tϕ : t ≥ 0} need only be established for
a collection of ϕ such that the norm-closure of the collection contains D(µ).
In summary, then, both Theorem 3 and Theorem 4 will be verified if we are
able to show that under the hypotheses of either theorem there exists a set
D such that D is dense in D(µ) and {P tϕ : t ≥ 0} is weakly precompact for
each ϕ ∈ D :

Proposition 10 Let (g, ψ) be a perturbed dynamical system on R+ satisfy-
ing Assumptions 1 and 2, and let P be the associated Markov operator. If
Condition 1 and either one of Condition 3 or 4 holds, then there exists a set
D ⊂ L1(µ) such that D is norm-dense in D(µ) and {P tϕ : t ≥ 0} is weakly
precompact for each ϕ ∈ D .

Proof The proof is broken down into a series of lemmata. Lemma 11 exhibits
a suitable set D that is dense in D(µ). Lemma 12 gives a general condition
for weak precompactness in L1. The condition consists of parts (i) and (ii).
Lemma 13 establishes part (i) for the set {P tϕ : t ≥ 0} when ϕ ∈ D . Lemma
14 establishes part (ii) for the same collection. This completes the proof of the
proposition.

Lemma 11 Let the conditions of Proposition 10 hold. Let V be the Lyapunov
function in Condition 1. Let D be the set of all ϕ in D(µ) such that∫

V (x)ϕ(x)dx <∞. (24)

The set D is norm-dense in D(µ).

Proof The function V is bounded on compact subsets of R+ \ {0} by conti-
nuity. The set of densities with compact support in R+ \ {0} therefore resides

15 For a proof see, for example, Lasota (1994, Theorem 4.1).
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in D , and is easily seen to be norm-dense in D(µ).

Lemma 12 A collection {ϕλ} in D(µ) is weakly precompact whenever

(i) ∀ε > 0, ∃ δ > 0 such that

A ∈ B+ and µ(A) < δ =⇒
{∫

A
ϕλ < ε, ∀λ

}
; and

(ii) ∀ε > 0, ∃G ∈ B+ such that

µ(G) <∞ and

{∫
R+\G

ϕλ < ε, ∀λ
}
.

Proof This is a version of the famous Dunford-Pettis Theorem (Dunford and
Pettis, 1940).

The next lemma establishes part (i) of the Dunford-Pettis condition for an
arbitrary trajectory starting in D .

Lemma 13 Assume the conditions of Proposition 10. Let D be as in Lemma
11. Given any ϕ ∈ D and any ε > 0, there exists a δ > 0 such that

A ∈ B+ and µ(A) < δ =⇒
{∫

A
P tϕ < ε, ∀ t ≥ 0

}
. (25)

Proof Let V be the Lyapunov function of Condition 1. Define E(V |g) =
∫
V g.

By (7) and Fubini’s theorem,

E(V |P tϕ) =
∫
V (y)P tϕ(y)dy

=
∫
V (y)

[∫
p(x, y)P t−1ϕ(x)dx

]
dy

=
∫ [∫

V (y)p(x, y)dy
]
P t−1ϕ(x)dx.

But ∫
V (y)p(x, y)dy =

∫
V [g(x)z]ψ(z)dz ≤ αV (x) + C

for all x by hypothesis. Therefore,

E(V |P tϕ) ≤
∫

[αV (x) + C]P t−1ϕ(x)dx = αE(V |P t−1ϕ) + C.

Repeating this argument obtains

E(V |P tϕ) ≤ αtE(V |ϕ) +
C

1− α
≤ E(V |ϕ) +

C

1− α
, ∀ t ≥ 0.
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The right hand side of this inequality is finite by (24).

On the other hand, it can be verified that for arbitrary positive a,

a
∫
R+\Ga

P tϕ ≤ E(V |P tϕ),

when Ga is defined as the set of x ∈ R+ with V (x) ≤ a. Therefore,∫
R+\Ga

P tϕ ≤ 1

a

(
E(V |ϕ) +

C

1− α

)
, ∀ t ≥ 0, ∀ a > 0. (26)

Choose a so large that

1

a

(
E(V |ϕ) +

C

1− α

)
<
ε

2
. (27)

Consider now the decomposition∫
A
P tϕ =

∫
A∩Ga

P tϕ+
∫
A∩[R+\Ga]

P tϕ.

Using (26) and (27) gives∫
A
P tϕ ≤

∫
A∩Ga

P tϕ+
ε

2
, ∀ t ≥ 0. (28)

It remains to bound the first term in the sum on the right hand side of (28),
taking the constant a as given—determined in (27)—and assuming that at
least one of Condition 3 or Condition 4 holds. We break the argument down
into three separate cases.

Case I Assume first that Condition 3 holds. Using the expression for the
density kernel given in (6), for any y > 0,

P tϕ(y) =
∫
p(x, y)P t−1ϕ(x)dx

=
∫
ψ

(
y

g(x)

)
1

g(x)
P t−1ϕ(x)dx

=
∫
ψ

(
y

g(x)

)
y

g(x)

1

y
P t−1ϕ(x)dx

≤ M

y
,

where M is the constant in Condition 3. Therefore,∫
A∩Ga

P tϕ(y)dy ≤
∫
A∩Ga

M

y
dy ≤

∫
A
J(a)dy = J(a)µ(A),
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where J(a) <∞ is the maximum of M/y over compact interval Ga ⊂ R+\{0}.

Now pick any positive δ satisfying δ ≤ ε/(J(a)2). For such a δ we have

µ(A) < δ =⇒
∫
A∩Ga

P tϕ <
ε

2
.

Combining this with (28) proves (25) when Condition 3 holds.

Case II We now establish (25) when Condition 4 holds—again by bounding
the first term in the sum (28)—supposing for the moment that there exists a
c with 0 < c ≤ g(x) for every x in R+. In this case,∫

A∩Ga
P tϕ(y)dy =

∫
A∩Ga

∫
p(x, y)P t−1ϕ(x)dxdy

=
∫ [∫

A∩Ga
p(x, y)dy

]
P t−1ϕ(x)dx

=
∫ [∫

A∩Ga
ψ

(
y

g(x)

)
1

g(x)
dy

]
P t−1ϕ(x)dx.

A change of variable now gives

∫
A∩Ga

P tϕ(y)dy =
∫ [∫

A∩Ga
g(x)

ψ(z)dz

]
P t−1ϕ(x)dx. (29)

Moreover, for integrable functions such as ψ it is well-know that

∃ δ′ > 0 s.t. µ(B) < δ′ =⇒
∫
B
ψ(z)dz <

ε

2
.

Therefore, setting δ ≡ δ′c gives

µ(A) < δ =⇒
{∫

A∩Ga
g(x)

ψ(z)dz <
ε

2
, ∀x ≥ 0

}
, (30)

because

µ

(
A ∩Ga

g(x)

)
=

1

g(x)
µ(A ∩Ga) ≤

1

c
µ(A) < δ′.

Together (29) and (30) yield

µ(A) < δ =⇒
∫
A∩Ga

P tϕ <
ε

2
.

Again, combining this with (28) gives (25).

Case III Finally, suppose to the contrary that while Condition 4 is satisfied,
there exists no c with 0 < c ≤ g(x) for all x ∈ R+. From Condition 4 it follows

18



then that g(x) ↓ 0 as x ↓ 0, and hence there exists a d > 0 with the property∫
A∩Ga
g(x)

ψ(z)dz <
ε

2
for almost all x ∈ [0, d), (31)

owing to the fact that inf A ∩Ga > 0.

Regarding x ≥ d, evidently g(x) ≥ c′ ≡ min[g(d), b] > 0, where b is the
positive constant in Condition 4. 16 In addition, by an argument similar to
that given above for Case II,

µ(A) < δ =⇒
{∫

A∩Ga
g(x)

ψ(z)dz <
ε

2
, ∀x ≥ d

}
, (32)

where in this case δ ≡ δ′c′. Combining (29), (31) and (32) yields

µ(A) < δ =⇒
∫
A∩Ga

P tϕ <
ε

2
.

Once again, combining this with (28) implies (25).

The final lemma in the proof of Proposition 10 establishes part (ii) of the
Dunford-Pettis condition.

Lemma 14 Let ϕ be as in Lemma 13. For all ε > 0, there exists a G ∈ B+

such that µ(G) <∞ and ∫
R+\G

P tϕ < ε, ∀ t ≥ 0.

Proof We have already shown that∫
R+\Ga

P tϕ ≤ 1

a

(
E(V |ϕ) +

C

1− α

)

for all positive a, all t ≥ 0. But this inequality is sufficient, because E(V |ϕ) is
finite and Ga is always bounded.

Appendix

Proof of Lemma 9 Pick any two densities ϕ 6= ϕ′. Evidently the function ϕ− ϕ′
is both strictly positive on a set of positive measure and strictly negative on a

16 Here g(d) > 0 by Condition 4 and the almost everywhere positivity of g.
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set of positive measure. Pick any y ∈ R+. By Condition 2 and the representation
(6), p(x, y) > 0 for almost all x. It follows that x 7→ p(x, y)[ϕ(x) − ϕ′(x)] is also
strictly positive on a set of positive measure and strictly negative on a set of positive
measure. Therefore, by the strict triangle inequality,

‖Pϕ− Pϕ′‖ = ‖P (ϕ− ϕ′)‖

=
∫ ∣∣∣∣∫ p(x, y)[ϕ(x)− ϕ′(x)]dx

∣∣∣∣ dy
<

∫ ∫ ∣∣ p(x, y)[ϕ(x)− ϕ′(x)]
∣∣ dx dy

=
∫ ∫

p(x, y)|ϕ(x)− ϕ′(x)|dx dy

=
∫ ∫

p(x, y)dy|ϕ(x)− ϕ′(x)|dx

= ‖ϕ− ϕ′‖,

as was to be proved.
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