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Stochastic Growth with Increasing

Returns: Stability and Path Dependence

Abstract

The paper demonstrates global stability in a class of stochastic overlapping
generations economies with increasing returns. These results are applied to
the study of path dependent dynamics. In particular, for nonlinear stochastic
models it is seen that persistence of the historical state and formal ergodicity
may easily coincide. A new definition of path dependence is proposed that
incorporates such dynamics.



1 Introduction

It is well-known that externalities can generate multiple long-run equilibria in
models of economic development. 1 In such models, outcomes are not uniquely
determined by the fundamental structure, and so may depend on the historical
state. Low level equilibria have the interpretation of a poverty trap.

In this paper it is shown that shocks may induce uniqueness of stochastic
steady state and global asymptotic stability for developing economies typically
associated with persistence and sensitivity to initial conditions. (The notion of
stochastic steady state is the standard one of Brock and Mirman, 1972.) The
model is that of Azariadis and Drazen (1990), with a stochastic component
included in production.

Our results are applied to the study of path dependence. Since the work of
Arthur (1994) and David (1997) in particular, interest in the notion of path
dependent evolution has been strong. These and subsequent authors consider
models with positive feedback due to increasing returns. Contrary to the home-
ostasis encountered when returns diminish, positive feedback generates local
persistence, phase transitions and switching behavior, all of which appear use-
ful to replicate macroeconomic time series.

The basic idea behind path dependence is that long-run outcomes depend on
initial conditions; a plurality of local attractors serve to lock in the attributes
of the historical state. In this connection, Arthur (1994, p. 13) defines a model
to be path dependent whenever it is not ergodic. Alternatively, David (1997, p.
14) defines a path dependent process to be one “whose asymptotic distribution
evolves as a consequence of the processes’ own history.” He cites “multiplicity
of absorbing states” as a source of this outcome.

In this paper we exhibit standard increasing returns models that are both
arbitrarily persistent (in a sense made precise) and formally ergodic. There
is only one (minimal) absorbing state. Thus none of the above definitions
for path dependence are satisfied. These findings indicate that the standard
definitions may be too narrow.

The central problem is that long-run behavior of a nonlinear random system
can be counterintuitive when one passes to the infinite limit. In this connec-
tion, we propose an alternative definition based on finite statistical properties.
In short, an economic process is called path dependent if there are multiple
disjoint “metastable” sets. A second advantage of this approach is that the
statement concerns model primitives rather than the ergodic distribution, the

1 See, for example, Azariadis and Drazen (1990), Matsuyama (1991), Galor and
Ziera (1993), Quah (1996), David (1997) and Acemoglu and Zilibotti (1997).
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properties of which are often difficult to verify.

2 A Stochastic Model with Externalities

Consider the following overlapping generations economy. There is a single,
perishable good which can be either consumed or used as capital input for
production. Agents live for two periods, working in the first and living off
savings in the second. Savings in the first period forms capital stock, which in
the following period is combined with the labor of a new generation of young
agents for production under the technology yt = AtF (kt, �t)ε

σ
t .

Here y is aggregate output, k is the stock of physical capital, � is labor input,
F is a homogenous-of-degree-one function and ε is a stochastic component.
For convenience, we set �t = 1 for all t, and define f(k) := F (k, 1).

The exponent σ ≥ 0 parameterizes the amplitude of the shock. We admit the
possibility that σ = 0, in which case the model is deterministic. Note also that
the scale parameter At is nonstationary.

In period zero there is a generation of already old, with total savings k0. At the
start of each period the shock ε is selected by nature and revealed. Production
then takes place.

All of the following conditions on production technology are standard.

Assumption 2.1 The function f satisfies f(0) = 0; is twice differentiable on
(0,∞), f ′ > 0, f ′′ < 0; and limx↓0 f ′(x) = ∞, limx↑∞ f ′(x) = 0.

In the overlapping generations model, additional assumptions are required
to prevent the economy collapsing to zero output. Assumption 2.1 implies
that competitive factor payments to capital kf ′(k) are strictly less than total
income f(k). Assume this bound is uniform:

Assumption 2.2 There exists a λ < 1 such that kf ′(k) ≤ λf(k), ∀k > 0.

Regarding the shock, which is common to all producers,

Assumption 2.3 The sequence (εt) is uncorrelated, and ln εt ∼ N(0, 1).

Let c (resp. c′) denote consumption while young (resp. old). All consumer
preferences have the specification

U(ct, c
′
t+1) = ln ct + β E ln c′t+1, (1)
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which agents maximize subject to

c′t+1 ≤ (wt − ct)(1 + rt+1). (2)

Here β ∈ (0, 1) is a discount factor, and wt and rt are the wage and interest
rates at t respectively.

Assume that depreciation is total, in which case savings, investment and next
period capital stock are all equal. A competitive equilibrium for the economy
is a nonnegative sequence (kt, ct, c

′
t, rt, wt)t≥0 such that k0 is initial savings,

and for t = 0, 1, . . .,

1. ct + c′t + kt+1 = Atf(kt)ε
σ
t ,

2. 1 + rt = Atf
′(kt)ε

σ
t ,

3. wt = Atf(kt)ε
σ
t − ktAtf

′(kt)ε
σ
t , and

4. (ct, c
′
t+1) maximizes (1) subject to (2).

The first condition is one of material balance; 2–3 dictate competitive factor
payments under profit maximization. The last—utility maximization—implies
a savings rate from wage income of β/(1 + β).

It remains to specify the process (At). In the tradition of endogenous growth,
it is supposed that technology depends on economy-wide aggregates; in this
case the capital stock k. Thus At = A(kt). The influence of these spillovers on
the economy may be highly nonlinear. In this paper we require only that

Assumption 2.4 The function k �→ A(k) is Borel-measurable and takes val-
ues in a compact subset of (0,∞).

The equilibrium law of motion for capital is easily shown to be

kt+1 = S(kt)ε
σ
t , (3)

where S(k) := DA(k)[f(k) − kf ′(k)], and D := β/(1 + β).

Example 1 Let f(k) = kα, α ∈ (0, 1). Following Azariadis and Drazen
(1990), assume that k �→ A(k) is a step function with discontinuity at a
critical “threshold” value of capital per head kb. Specifically,

A(k) = A1 · 1[0,kb)(k) + A2 · 1[kb,∞)(k),

where 1B denotes the indicator function of set B. The idea is that at some
value kb, physical or human capital infrastructure achieves a critical mass,
allowing rapid increase in social returns to scale.

Let k∗i be the unique solution to k = DAi(1 − α)kα for i = 1, 2. Assume
further that k∗1 < kb < k∗2. A plot of the deterministic part S(k) of (3) is given
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Fig. 1. Threshold Externalities.

in Figure 1. The two fixed points k∗1 and k∗2 act as local attractors for disjoint
open neighborhoods.

3 Long-Run Dynamics

The sequence (kt) is a Markov process on the state space (0,∞). 2 Let ϕt

denote the marginal distribution of kt.
3 A sequence (ϕt) such that kt obeys

(3) is called a trajectory for the economy. Each initial condition k0 ∈ (0,∞)
determines a well-defined trajectory.

A long-run equilibrium or stochastic steady state is a distribution ϕ∗ such that
if kt ∼ ϕ∗ then kt+j ∼ ϕ∗ for all j ≥ 0. A stochastic steady state is called
globally stable or ergodic if the trajectory (ϕt) converges to ϕ∗ in a suitable
topology, for every initial condition k0 > 0. In this paper the topology of
convergence is the strong topology induced by the total variation norm.

Since the model assumptions incorporate highly nonlinear dynamics and mul-
tiple local attractors in the deterministic case, it is somewhat surprising that

Theorem 1 For every σ > 0, the stochastic process (3) has a unique stochas-
tic steady state. The steady state is globally stable in the norm topology.

Uniqueness is completely trivial, given that the support of the shock ε is equal
to the entire state space. Such Markov chains always have at most one steady
state distribution. Existence and global stability are not trivial. For exam-
ple, none of the 3 conditions—compactness, continuity and monotonicity—in

2 Here zero is excluded from the state space to eliminate the trivial steady state
where all variables are zero in each period.
3 The distribution ϕt is a probabilistic measure on the Borel sets of (0,∞).
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Fig. 2. Convergence to Equilibrium

the familiar technique of Stokey, Lucas and Prescott (1989, Section 12.4) is
satisfied. However, it turns out that the absolute continuity of the shock has
strong regularizing properties that compensate for the weakness of Assump-
tion 2.4, which admits highly irregular behavior. In addition, Assumption 2.2
on f , combined with the small left tail of the shock, mean that the economy
will not collapse to zero, while the boundedness of k �→ A(k) and the usual
decreasing returns on f—combined with a small right tail on the shock—are
enough to ensure that the economy does not grow without bounds. The details
are in Section 5.

Incidentally, Theorem 1 is certainly not the first result to show that noise is
potentially stabilizing. For example, in physical systems Mackey et al. (1990)
demonstrate global stability when additive or multiplicative Gaussian white
noise is added to the Fokker-Planck differential equation.

Theorem 1 is illustrated in Figure 2, which shows a sequence of probability
distributions (densities) generated by the economy described in Example 1.
The figure can be interpreted as follows. The horizontal axis is (the log of)
capital per head. The density ϕ0, which is the left-most density in the figure,
is an arbitrary starting point. The sequence of distributions moving forward in
time is generated by Monte Carlo simulation on (3), and fitted with nonpara-
metric smoothing kernels. 4 For this particular initial distribution, probability
mass shifts rightwards, indicating that income grows on average.

The maxima of the two modes of the approximate limit ϕ2000 correspond to the
(log of the) two local attractors k∗1 and k∗2 in the deterministic case (see Figure
1). Thus economies still tend on average to one of the deterministic attractors.
Occasionally they make the transition between modes. In physics these regime
shifts are referred to as “phase transitions,” while in growth theory they are

4 The parameters are α = 0.5, β = 0.5, A1 = 0.5, A2 = 2, kb = 0.69, σ2 = 0.5.
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called “take-offs,” “growth miracles” and “growth disasters.”

4 Path Dependence

Given that Theorem 1 holds for any σ > 0, even arbitrarily small amounts of
noise induce global stability; in the infinite limit, only one long run outcome
is consistent with a given set of economic fundamentals. In particular, no
economy in this class is path dependent according to the definitions of Arthur
and David (see Section 1). On the other hand, the deterministic version (i.e.,
σ = 0) may have multiple, history-dependent steady states, as in Figure 1. It
appears likely, then, that when σ is almost zero, high degrees of persistence
may be observed.

Indeed this is the case. Consider the Azariadis-Drazen economy of Example 1.
A simulated run is given in Figure 3. The horizontal axis is time, and the
vertical axis is the state variable k. This simulation run spends nearly 300
generations in the poverty trap before making the transition to the higher
equilibrium. The transition takes place as the result of a particularly fortuitous
shock. 5

The point is not whether the parameters that generate such a run are realistic.
The point is a logical one: Given any η > 0 and any finite time horizon T , it is
possible to reduce the amplitude of the noise so that the probability of leaving
the poverty trap prior to time T is less than η. In our view, any model with
this property should be classified as path dependent, regardless of ergodicity
in the infinite limit. Indeed, this property might be used to characterize path
dependence.

5 The parameters are α = 0.5, β = 0.9, A1 = 20, A2 = 24, σ = 0.05, kb = 3.23. The
output is displayed in logs.
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To formalize the problem, define a function (k,B) �→ Mσ(k,B) from (0,∞)×
B, where B is the Borel sets, to [0, 1] by

Mσ(k,B) :=
∫

1B[S(k)zσ]ψ(z)dz, (4)

where, as before, 1B is the indicator function, S is the function in (3), and
ψ is the density of the shock ε (i.e., the lognormal distribution). In this case,
Mσ(k,B) is interpreted as the probability that the capital stock takes values
in B next period, given that it is currently equal to k.

A set Λ ∈ B is called absorbing for the process (3) whenever

Mσ(k,Λc) = 0, ∀k ∈ Λ, (5)

where Λc := (0,∞) \ Λ. Absorbing sets have the property that, once entered,
the probability of exit next period—or, indeed, at any future time—is zero. 6

David (1997) mentions both multiplicity of absorbing states and lack of ergod-
icity in defining path dependence (see above). Before going on let us clarify
the relationship between these concepts.

Proposition 2 If multiple disjoint absorbing sets exist, then (3) is not er-
godic.

A proof is given in Section 5.

The objective of this section is to develop a more inclusive definition of path
dependence that captures highly persistent models such as the ones inves-
tigated in this paper. Following Huisinga (2001), and by analogy with the
definition of absorbing sets,

Definition 3 Set Λ ∈ B is called metastable for the economy (3) if

Mσ(k,Λc) → 0 uniformly in k as σ → 0.

A subset of the state space is metastable if the maximum probability of exit
in one step becomes arbitrarily small at low levels of noise. Using the concept
of metastability, the following definition of path dependence suggests itself.

Definition 4 The economy (3) is defined to be path dependent whenever
there exist multiple nonempty closed intervals that are disjoint and metastable.

This definition of path dependence includes the stochastic Azariadis-Drazen
model:

6 Absorbing sets are also referred to as self-supporting (Futia, 1982, Definition 2.18)
or ergodic (Stokey et al., 1989, p. 321).
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Proposition 5 The Azariadis-Drazen economy in Example 1 is path depen-
dent in the sense of Definition 4.

Proof Two disjoint metastable states are exhibited, each containing one of
the deterministic local attractors in Figure 1. To this end, define intervals [a, b]
and [c, d] such that

0 < a < k∗1 < b < kb < c < k∗2 < d.

(See Figure 1.) These sets are metastable. Consider first [a, b]. By monotonicity
of S, k ≤ b implies

Mσ(k, (b,∞)) =
∫ ∞

0
1(b,∞)[S(k)zσ]ψ(z)dz ≤

∫ ∞

0
1(b,∞)[S(b)zσ]ψ(z)dz.

Applying a change of variable to the right hand side of this inequality, then,

k ≤ b =⇒ Mσ(k, (b,∞)) ≤
∫ ∞

p(σ)
ψ(z)dz, p(σ) := (b/S(b))1/σ. (6)

But S(b) < b, as can be seen from Figure 1. Hence p(σ) → ∞ as σ → 0. It can
now be deduced from (6) that Mσ(k, (b,∞)) converges to zero uniformly for
k ∈ [a, b] as σ → 0. A similar argument shows that, in addition, Mσ(k, (0, a))
converges to zero uniformly for k ∈ [a, b] as σ → 0. Now metastability of [a, b]
follows from the bound

sup
k∈[a,b]

Mσ(k, [a, b]c) = sup
k∈[a,b]

[Mσ(k, (0, a)) + Mσ(k, (b,∞))]

≤ sup
k∈[a,b]

Mσ(k, (0, a)) + sup
k∈[a,b]

Mσ(k, (b,∞)).

The proof of metastability for [c, d] is similar.

5 Remaining Proofs

Proof of Proposition 2 From the standard theory (Futia 1982, Stokey et al.
1989, Chapter 8), every trajectory (ϕt) generated by (3) satisfies the recursion

ϕt+1(B) =
∫

Mσ(k,B)ϕt(dk), ∀B ∈ B, t = 0, 1, . . . (7)

If t = 0, ϕ0 is interpreted as the degenerate probability concentrated at k0.

By way of contradiction, suppose that (3) is globally stable with equilibrium
ϕ∗, and let disjoint nonempty sets Λ1 and Λ2 be absorbing. In addition, take
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k1
0 ∈ Λ1 and k2

0 ∈ Λ2 as two different initial conditions, and let (ϕ1
t ) and (ϕ2

t )
be their respective trajectories. Using (5) and (7),

ϕi
1(Λi) =

∫
Mσ(k,Λi)ϕ

i
0(dk) = Mσ(ki

0,Λi) = 1, i = 1, 2.

In fact ϕi
t(Λi) = 1 is true for any t by induction, which is to say that an

economy that starts in Λi remains in Λi for all t with probability one. But
ϕi

t → ϕ∗ in total variation norm by hypothesis, and hence setwise (Stokey et
al. 1989, Theorem 11.6). Therefore, since Λ1 and Λ2 are disjoint,

1 ≥ ϕ∗(Λ1) + ϕ∗(Λ2) = lim
t→∞ϕ

1
t (Λ1) + lim

t→∞ϕ
2
t (Λ2) = 2.

Contradiction.

Proof of Theorem 1 Stachurski (2002, Theorem 3) shows that any system
with multiplicative, lognormal shock such as (3) will be ergodic whenever there
exist nonnegative constants α and C, α < 1, and nonnegative continuous
function V on (0,∞), limk↓0 V (k) = limk↑∞ V (k) = ∞, such that

EV [S(k)εσ] ≤ αV (k) + C, ∀k ∈ (0,∞). (8)

This bound holds for V (k) := 1/k + k. To see this, note that

EV [S(k)εσ] =
1

S(k)
E(1/εσ) + S(k)E(εσ). (9)

Consider the first term in the right hand side of (9). By Assumptions 2.2, 2.3
and 2.4, there exists a positive constant B such that

S(k) ≥ Bf(k)E(1/εσ). (10)

Since B > 0, Bf inherits all of the properties of f in Assumption 2.1. In
particular, given any a1 ∈ (0, 1), there exists a δ > 0 such that

Bf(k) ≥ k/a1, ∀k ∈ (0, δ). (11)

Also, by monotonicity,

Bf(k) ≥ Bf(δ), ∀k ∈ [δ,∞). (12)

Combining (10), (11) and (12) gives

1

S(k)
E(1/εσ) ≤ a1

1

k
+ C1, ∀k ∈ (0,∞), (13)

where a1 < 1 by construction and C1 is a finite constant.
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Consider now the second term in the right hand side of (9). As savings from
wage income is less than total income, and given the restrictions on f and
Assumption 2.4, there exist constants a2 and C2 such that

a2, C2 ≥ 0, a2 < 1, and S(k)E(εσ) ≤ a2k + C2, ∀k ∈ (0,∞). (14)

Now let α := max(α1, α2), and C := C1 + C2. Using (9), (13) and (14) gives

EV [S(k)εσ] ≤ α(1/k + k) + C = αV (k) + C. (15)

Since α < 1 and C is finite the condition (8) is satisfied.
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