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TRADE CLUSTERING AND POWER LAWS IN FINANCIAL MARKETS

Makoto Nirei∗, John Stachurski, and Tsutomu Watanabe
This study provides an explanation for the emergence of power laws in

asset trading volume and returns. We consider a two-state model with bi-
nary actions, where traders infer other traders’ private signals regarding the
value of an asset from their actions and adjust their own behavior accordingly.
We prove that this leads to power laws for equilibrium volume and returns
whenever the number of traders is large and the signals for asset value are
sufficiently noisy. We also provide numerical results showing that the model
reproduces observed distributions of daily stock volume and returns.

Keywords: Herd behavior; trading volume; stock returns; fat tail; power
law.

1. INTRODUCTION

Recently, the literature on empirical finance has converged on a broad consensus: Daily
returns on equities, foreign exchange and commodities obey a power law. This striking
property of high frequency returns has been found across both space and time through a
variety of statistical procedures, from conditional likelihood methods and nonparametric
tail decay estimation to straightforward log-log regression.1 A power law has also been
found for trading volume by Gopikrishnan et al. [23] and Plerou et al. [51].

These power law findings are highly consequential, mainly because extreme outcomes are
by definition rare, so attempts to estimate prices or quantities with tail risk sensitivity
through nonparametric methods are deeply problematic (Salhi et al. [53]). Thus, informa-
tion on the specific functional form of the tails of these distributions has great value for
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1See, for example, Jansen and de Vries [30], Lux [39], Cont et al. [17], Gopikrishnan et al. [22], Ibragimov
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econometricians and practitioners. In addition, even elementary concepts from financial
and economic theory—such as the benefits of diversification in the presence of risk—are
sensitive to the precise nature of the tail properties of returns (see, e.g., Ibragimov [29]).

In this paper, we respond to the developing empirical consensus by building a model of asset
markets that generates a power law in both volume and price. The underlying driver of this
power law is private asymmetric information on the value of assets, dispersed among many
traders. Suppose that traders choose between buying and not buying. The action of buying
suggests a positive private signal. As a result, a single trader’s action can cause clustering
of similar actions by other traders. This trade clustering leads to power laws in volume
and returns. In particular, we consider a series of markets in which the number of traders
increases and the informativeness of signals diminishes, and show that the equilibrium size
of trade clustering asymptotically exhibits power-law fluctuations.

To further understand our power law result, suppose that, for each realization of private
signals, informed traders are sorted in descending order according to their signals and
then classified as follows: The first group of traders buys regardless of the actions of other
traders. The second group buys if there is at least one trader buying. The third group buys
if there are at least two other traders buying, and so forth. Now consider a fictitious best
response dynamic where traders choose whether to buy or not after viewing the decisions
of previous traders. We show that, under reasonable assumptions on the informativeness
of the private signal, the decision to buy on the part of one trader induces on average one
new trader to buy. An analogy can be made with Keynes’ beauty contest, where a voter’s
decision is affected by the average actions of n other voters. As a consequence, one vote
has an impact of size 1/n on the decisions of others. In our model, when an investor has
an incentive to imitate the average behavior of n traders, the act of buying by one trader
has an impact of size 1/n on the other traders’ behavior.

To understand the implications of this property, we view excess demand as a stochastic
process, indexed by the number of buyers (rather than time) and generated by the fictitious
best response dynamic discussed above. The first passage to zero for this process produces
an equilibrium number of buying traders. Because the decision to buy by one trader induces
on average one new trader to buy, this excess demand process is a martingale. As is well
known, the first passage time to zero for a martingale follows a power law distribution.2

2For example, the first passage time of a Brownian motion with no drift follows a particular inverse
Gaussian distribution, which has an asymptotic power law tail with exponent 0.5. Further examples can be
found in Redner [52].
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In this way, we derive a power-law distribution for the number of buying traders, which
translates to the equilibrium trading volume.

The market environment of our model draws on Minehart and Scotchmer [43], where a
large number of informed traders receive private signals on a binary state of the world,
and simultaneously choose between buying one unit of an asset or not buying at all. In-
formed traders submit demand schedules conditional on all possible prices, rather than
choosing an action unconditionally. This type of market competition was formulated as
Nash equilibria in supply functions by Grossman [24] and Klemperer and Meyer [35], and
has been introduced to the analysis of asset markets with private signals by Kyle [36],
Vives [58], and Attar, Mariotti and Salanié [4]. However, none of these models lead to a
power law.

Herd behavior models, which connect asymmetric information to excess fluctuations in
asset pricing, have also served as inspiration for our research. The models of herding and
information cascades proposed by Banerjee [7] and Bikhchandani, Hirshleifer and Welch
[8] have been employed to examine financial market fluctuations.3 Gul and Lundholm
[26] demonstrated the emergence of stochastic clustering by endogenizing traders’ choice
of waiting time. Signal properties leading to herding behavior in sequential trading were
identified by Smith and Sørensen [54] and Park and Sabourian [50]. While none of these
models generate a power law of financial fluctuations specifically, we inherit the spirit of
these models, in which asymmetric information among traders results in trade clustering.

There are other models that generate a power law of returns. For example, models of
critical phenomena in statistical physics have been applied to herding behavior in financial
markets,4 in which a power law emerges if traders’ connectivity parameter falls at criticality.
Unlike the present study, these papers do not address why trader connectivity should
exhibit criticality.5

In another strand of the literature, Lux and Sornette [41] show that a stochastic rational
bubble can produce a power law. Gabaix et al. [21] generate power laws for trading volume

3See also Caplin and Leahy [11], Lee [37], Chari and Kehoe [13], and Cipriani and Guarino [14]. For
extensive surveys, see Brunnermeier [9], Chamley [12], and Vives [57].

4Studies in this literature include Bak, Paczuski and Shubik [6]; Cont and Bouchaud [16]; Stauffer and
Sornette [56].

5In a similar vein, Nirei [46] sketched out the basic idea that herd behavior can generate power-law sized
cascades in an environment similar to Orléan [49], but fell short of substantiating his claim with rigorous
analysis. This paper generates a power law in a standard market microstructure model, which allows us to
relate the conditions necessary for generating power laws to a broad range of studies in financial economics.
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and price changes when the amount of funds managed by traders follows a power law. In
contrast to these explanations, we focus on the role of asymmetric information that results
in clustering behavior by investors. This is in line with many previous studies that have
linked asymmetric information in financial markets to phenomena such as crises, cascades
and herding. These studies range from a historical account of crises by Mishkin [44] to the
estimation of information content of trading volume on prices by Hasbrouck [27]. The latter
noted, “Central to the analysis of market microstructure is the notion that, in a market
with asymmetrically informed agents, trades convey information and therefore cause a
persistent impact on the security price.” The present study seeks to link this impact to the
ubiquitously observed power-law fluctuations.

The remainder of the study is organized as follows. Section 2 presents the model. Section
3.1 analytically shows that a power-law distribution emerges for trading volume when the
number of traders tends to infinity and provides intuition for the mechanism behind it.
Section 3.2 elaborates on the power-law exponent for volume. Section 3.3 shows that a
power law holds for returns. Section 3.4 numerically confirms that the equilibrium volumes
follow a power law with a finite number of traders, and that the equilibrium return dis-
tribution matches its empirical counterpart. Section 3.5 discusses some extensions of the
model and Section 4 concludes. Long proofs are deferred to the appendix.

2. MODEL

In this section we describe the basic features of the model, including the nature of the asset
market and the definition of equilibrium.

2.1. Market

The asset market consists of n informed traders, a continuum of uninformed traders and
an auctioneer. Uninformed traders supply a single asset and informed traders demand it.6

Informed traders are risk neutral and indexed by i ∈ {1, . . . , n}. There is an underlying
state s that affects the value of the asset and takes values in {H,L}. We assume in particular
that the asset has common intrinsic value 1 in state H and 0 in state L. While the true
state is not known to any market participant, all agents hold a common prior for s given

6We later discuss the case where both uninformed and informed traders can buy and sell. The informa-
tional asymmetry between informed and uninformed traders in this model is similar to event uncertainty,
as introduced by Avery and Zemsky [5] as a condition for herding to occur in financial markets.
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by Pr(H) = Pr(L) = 1/2. Moreover, informed traders receive a private signal Xi drawn
independently from a common distribution F s with finite support [xa, xb]. This signal is
used to make inferences about the value of s, as described below.

Let S(p) denote aggregate supply by uninformed traders at price p. We assume that S

is continuously differentiable and strictly increasing with S(1/2) = 0, so that aggregate
supply is zero at the price level that reflects the common prior. We also assume that
p̄ := S−1(1) < 1, implying an upper bound on equilibrium price below the maximum value
of the asset.

Each informed trader chooses whether or not to buy a single trading unit, set to 1/n so as
to normalize maximum total demand to unity. Hence aggregate demand takes values in the
discrete set {0, 1/n, . . . , 1}. The equilibrium price p∗ takes values in {p0, p1, . . . , pn}, where
each pm is determined by the market-clearing condition S(pm) = m/n. Since S(1/2) = 0,
we have p0 = 1/2.

The demand function di of an informed trader describes his action for each realization
of price, given his private signal. In particular, trader i buys at p when di(p | xi) = 1

and refrains when di(p | xi) = 0. Let D be the set of all such (binary) functions on
[xa, xb]× {p1, p2, . . . , pn}.7 Aggregate demand expressed in terms of trade volume is

D(p | X) :=

n∑
i=1

di(p | Xi),

where X = (Xi)
n
i=1 denotes a profile of private signals.

Outcomes evolve as follows:

1. Nature selects the state s ∈ {H,L}.
2. A signal profile X is drawn from the joint distribution

∏n
i=1 F

s.
3. Informed traders submit their demand functions to the auctioneer.
4. The auctioneer determines the equilibrium price p∗.
5. Transactions take place, with a unit of the asset delivered to each trader i with

di(p
∗ | Xi) = 1.

6. Equilibrium trading volume is realized as m∗ := D(p∗ | X).

In step 4, the auctioneer obeys the following protocol: If D(p1 | X) = 0, then the auctioneer
sets p∗ = p0, since no informed trader is willing to buy given that all other traders do not

7Here p0 is excluded because p0 cannot be realized in equilibrium if any trader, including i, chooses
buying at p0.
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buy. If D(p1 | X) > 0, then the auctioneer determines p∗ > p0 such that

S(p∗) =
D(p∗ | X)

n
.

Since the asset has common value 1{s = H} and its purchase cost is p, a trader who buys
obtains payoff 1{s = H}−p. Therefore, the expected payoff of a trader who buys at signal
Xi is ri(p,Xi)− p, where ri(p,Xi) denotes the probability of s = H, conditional on signal
Xi and equilibrium price p. A trader who refrains from buying obtains zero in either state.

Given Xi and di(pm | Xi) = 1, pm is an equilibrium price if and only if there are m − 1

other traders buying at pm. Let Ωm,i denote such an event. Since Xi is independent of
other traders’ decisions dj given m, we have

(1) ri(pm, Xi) =
Pr(Ωm,i, Xi,H)

Pr(Ωm,i, Xi)
=

Pr(Ωm,i | H)

Pr(Ωm,i, Xi)
Pr(Xi | H)Pr(H).

Our equilibrium concept is defined as follows.

Definition (Equilibrium) A Bayesian Nash equilibrium consists of a profile of informed
traders’ demand functions di ∈ D, a profile of conditional probabilities ri obeying (1),
and an equilibrium price correspondence p∗ such that (i) for any i = 1, 2, . . . , n and at
each information set (p, xi), di maximizes expected payoff given dj for j ̸= i, (ii) for
any i = 1, 2, . . . , n, ri is consistent with demand functions {dj} and equilibrium price
correspondence p∗, and (iii) p∗ clears the market. That is, nS(p∗) = D(p∗ | x) for all
x ∈ [xa, xb]

n.

2.2. The Signal

To consider outcomes when the number of traders becomes large, we consider a sequence
of markets indexed by the number of informed traders n. The supply function S is held
constant as n changes but the distribution of the private signal varies. At fixed n and state
s, the private signal distribution is denoted by F s

n, with density function fs
n. Each fs

n is
continuously differentiable and strictly positive on [xa, xb]. We also define the functions

(2) ℓn :=
fH
n

fL
n

, Λn :=
1− FH

n

1− FL
n

and λn :=
FH
n

FL
n

.

The likelihood ratio ℓn is taken to be strictly increasing on [xa, xb] for each n. This monotone
likelihood ratio property (MLRP) means that larger xi is evidence in favor of s = H. The
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value Λn(x) expresses the likelihood when the signal is greater than x. Thus, a trader’s
bidding action reveals the information Λn(x) to observers of the action under a decision
rule that a trader buys only if the signal is greater than x. Similarly, λn(x) is the likelihood
when the signal is smaller than x, and it is the information revealed by inaction of the
trader.

Purchases by informed traders reveal signals in favor of H, further encouraging informed
traders to buy. The resulting aggregate demand curve will be upward sloping if the signal
effect dominates the scarcity effect of price. To implement this scenario, we assume the
following property on the sequence of likelihood ratio functions, which guarantees that
aggregate information for the informed traders increases without bound as n → ∞.

Assumption 1 There is an n1 ∈ N, a ξ ∈ (0, 1) and a δ > 0 such that

nξ log
(
Λn(x)

λn(x)

)
> δ

for all x ∈ [xa, xb] whenever n > n1.

As we are concerned with high-frequency fluctuations in volume and price, we work in an
environment where the informativeness of the signal is vanishingly small. We formalize this
idea by requiring that the signal tends to pure noise:

Assumption 2 The likelihood ratio ℓn converges to 1 uniformly on [xa, xb] as n → ∞.

Assumption 2 holds in short time intervals when the signal received by traders tends to
be noisy. Along with Assumption 1, this produces an asymptotic setting where the signal
contains vanishingly small information on the fundamental value of an asset, and yet the
informativeness is larger than the impact of increasing purchasing costs.

Assumption 3 There is an xc < xb such that, for each n ∈ N, the signal satisfies
λ′′
n(x)λn(x) ⩽ λ′

n(x)
2 whenever x ∈ [xc, xb].

Assumption 3 is a regularity condition on behavior of the signal around the boundary of
its domain. It is also possible to obtain heavy-tailed outcomes that replicate power laws in
finite samples without this assumption, as discussed in the appendix.8

8See, in particular, the discussion after the proof of Proposition 3.
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Assumptions 1–3 are satisfied by a variety of signals. Examples include the linear distri-
bution pair

fH
n (x) =

1

2
+ ϵnx and fL(x) =

1

2
, −1 ⩽ x ⩽ 1,

where ϵn = n−ξ/3 and 0 < ξ < 1, as well as the exponential distribution pair

fH(x) =
µe−µx

1− e−µ
and fL

n (x) =
(µ+ ϵn)e

−(µ+ϵn)x

1− e−(µ+ϵn)
, 0 ⩽ x ⩽ 1,

where ϵn = δϵn
−ξ, δϵ > 0, µ > 2, and 0 < ξ < 1. The supplementary Technical Appendix

verifies these claims.

2.3. Strategies and Equilibria

We saw in Section 2.1 that trader i chooses di(p,Xi) = 1 if and only if ri(p,Xi) ⩾ p. This
condition is equivalent to

(3) ρi(p,Xi) ⩾
p

1− p
,

where ρi(p,Xi) := ri(p,Xi)/(1−ri(p,Xi)) is a conditional likelihood ratio for i with private
signal Xi and decision di(p,Xi) = 1. Using (1) and Pr(H) = Pr(L) = 1/2, we obtain

(4) ρi(p,Xi) =
Pr(Ωm,i | H)

Pr(Ωm,i | L)
ℓn(Xi).

Since ℓn(x) is continuous and strictly increasing, ρi(pm, x) is continuous and strictly in-
creasing in x for any pm. Therefore, for each pm ∈ {p1, p2, . . . , pn}, there exists threshold
σ ∈ [xa, xb] such that it is optimal for trader i to buy if and only if Xi ⩾ σ. The threshold
σ = σ(m) indicates either an indifference level of signal ρi(pm, σ) = pm/(1 − pm) or a
corner solution. With this notation, trader i’s demand function follows the rule

di(pm, xi) = 1{Xi ⩾ σ(m)}.

A trader who buys at price pm can infer that there are m − 1 other buying traders at
pm under the stipulated rule for the auctioneer. Moreover, the threshold function σ(m) is
common for all informed traders. Thus, a buying trader can infer that, for pm to occur,
there must be m−1 other traders who receive signals greater than σ(m) and n−m traders
who receive signals smaller than σ(m). Such an event occurs with probability

Pr(Ωm,i | s) =
(
n− 1

m− 1

)
(1− F s

n(σ(m)))m−1F s
n(σ(m))n−m.
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Combining this expression with the definitions in (2), the likelihood ratio for pm to occur
can be expressed as

Pr(Ωm,i | H)

Pr(Ωm,i | L)
= Λn(σ(m))m−1λn(σ(m))n−m.

Substituting into (4) and using equality in the decision rule (3), we find that the threshold
σ(m) at which a trader is indifferent between buying and not-buying given pm is implicitly
determined by

(5) pm
1− pm

= λn(σ)
n−mΛn(σ)

m−1ℓn(σ)

if an interior solution σ exists.

Equation (5) is the key to the subsequent analysis. The right-hand side shows the likelihood
ratio of the posterior belief of a trader who receives signal xi = σ(m) and buys at pm.
Aggregate demand D(pm | x) can be obtained by counting the number of informed traders
with xi ⩾ σ(m).

Proposition 1 (Properties of demand) Under Assumption 1, there exists an no ∈ N such
that, for any n ⩾ no and any x ∈ [xa, xb]

n, the threshold signal level σ(m) is decreasing in
m and aggregate demand D(pm | x) is increasing in m.

Figure 1 depicts aggregate demand D(p | x) as a function of m. Upward-sloping aggregate
demand indicates the presence of strategic complementarity in informed traders’ buying
decisions through the information revealed by price: a higher price indicates that there are
more informed traders who receive high signals.9 The increment in price pm+1/pm along
the supply curve is of order 1/n because each informed trader demands quantity 1/n of
the asset.

Proposition 2 (Existence of equilibrium) Under Assumption 1, for any n > no, there
exists an equilibrium (p∗,m∗) for each realization of x.

The proof of Proposition 2 involves a straightforward application of Tarski’s fixed point
theorem. While multiple equilibria may exist for each realization of x, we focus on the
case where the auctioneer selects the minimum number of buying traders among possible

9The mechanism in which demand feeds on itself is reminiscent of Bulow and Klemperer [10]’s “rational
frenzies.”
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Figure 1.— An equilibrium outcome for signal profile realization x

equilibria, m†, for each x.10 This equilibrium selection uniquely maps each realization of x
to m†, rendering m† a realization of a well-defined random variable. This random variable,
denoted henceforth by M †

n, represents equilibrium volume, the probability distribution of
which is determined by the distribution of X and the equilibrium selection mapping.

3. POWER LAW RESULTS

Next we turn to our main analytical results, including a power law for volume and re-
turns. In addition to these results, which are asymptotic, we provide quantitative analysis
investigating the case of finite n.

3.1. Power Law for Volume

The right tail of a random variable Y is said to obey a power law with exponent α if
Pr(Y ⩾ y) ∝ y−α for sufficiently large y. Our first step is to show that equilibrium aggregate
trading volume M †

n follows a power law asymptotically in n.
10An interpretation of the selection rule is that the auctioneer is mandated by the exchange to minimize

the impact of transaction on prices (Hasbrouck [27]). By assuming that the auctioneer selects the minimum
number of buying traders, we exclude fluctuations that arise purely from informational coordination such
as in sunspot equilibria. Even with this rule of selecting minimum volume, we show that the equilibrium
volume and price in the model exhibit large fluctuations.
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Proposition 3 (Power law for volume) If Assumptions 1–3 hold, then M †
n converges in

distribution as n → ∞, with

lim
n→∞

Pr(M †
n = m) =

e−m(m− 1)m−1

m!

for each integer m ⩾ 1 and limn→∞ Pr(M †
n = 0) = e−1. In particular, the right tail of the

asymptotic distribution obeys a power law with exponent 1/2.

That the second claim in Proposition 3 follows from the first can be shown via Stirling’s
formula m! ∼ (2πm)1/2(m/e)m, which yields

Pr(M †
n ⩾ m) ∝ m−1/2 for large m.

Note that, under the stated assumptions, the power-law exponent does not depend on the
parametric specifications of signals.

The key to the proof of Proposition 3 is that Em := D(pm,X) − nS(pm) is a martingale
when considered as a stochastic process indexed by m. The reason this matters is twofold.
First, recall that equilibrium trade volume M †

n is, by definition, the smallest m such that
D(pm,X) = nS(pm). In other words, M †

n is the first passage time to zero for the excess
demand process {Em}. Second, it is well known that, for at least some kinds of martingales,
the first passage time to zero follows a power law. We show that this result extends to the
martingale {Em} under the stated assumptions.11

But why is {Em} a martingale in our model? The underlying reason is that the mean
number of traders induced to buy by a trader who buys is 1. This one-for-one response
is analogous to actions in Keynes’ beauty contest, in which the average action of a single
trader responds one-to-one to the average actions of traders. The beauty contest leads to
indeterminate equilibria if there is a continuum of traders, or if the traders’ actions are
continuous. This type of local indeterminacy is avoided in our model with finitely many

11Feller [19] treats the cases of Brownian motion and random walks. Our proof extends this power law
finding to a class of Poisson processes. To give some intuition as to when first passage times follow power
laws, suppose that {Ym} is a stochastic process indexed by m and starting at Y0 = 1, say. If {Ym} drifts
down, then first passage times to zero will typically be small, with large values having very low probability.
If {Ym} drifts up, then the first passage times to zero will typically be infinite. If {Ym} is a martingale,
however, we will observe both small first passage times, which occur by chance, and also very long first
passage times, as paths that initially deviated upwards eventually return. This is the source of the heavy
right tail.
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traders and binary actions. However, the indeterminacy described above provides intuition
as to why our model can generate equilibrium trading volumes at any order of magnitude,
as demonstrated by the power law.12

The one-for-one response causes excess demand to obey the martingale property. To see
this, suppose that Em > 0. The auctioneer then bids up by 1, and thereby finds one
more supplier. By observing this bidding up process, traders act so that aggregate demand
increases. Since the mean increase is 1, the increased supply is equal to the mean increased
demand. Hence {Em} is a martingale.

A power law implies non-trivial aggregate fluctuations even for large n. In general, a power
law with exponent α implies that any k-th moment for k ⩾ α is infinite. Thus, with
exponent 0.5, M †

n does not have a finite asymptotic mean or variance as n → ∞. This
implies that the variance of the fraction of buying traders, M †

n/n, can be quite large even
when n is large. By integrating (M †

n/n)2 up to M †
n = n with a power-law tail exponent

0.5, we find that the variance of M †/n decreases as n−0.5 when n becomes large. This
contrasts with the case when the traders act independently. If traders’ choices (dn,i)

n
i=1

were independent with probability δn−ξ of dn,i = 1, the central limit theorem predicts
that M †

n/n would asymptotically follow a normal distribution, where the tail is thin and
variance declines as fast as n−1−ξ. Thus, the variance of M †

n/n differs by factor n0.5+ξ

between our model and the model with independent choices. This signifies the effect of
stochastic clustering that amplifies the small fluctuations in the received signals Xi.13

Even if traders’ actions are correlated, it requires a particular structure in this correlation
for the amplification effect to cause the variance to decline more slowly than n−1, i.e.,
the speed that the central limit theorem predicts. Mathematically, the amplification effect

12A deeper understanding of the one-for-one response by traders can be gained from examining the
optimal threshold condition (5), which reduces to the simple form (1−µ) logλn(σ)+µ logΛn(σ) = 0 when
µ := m/n, if we take the limit n→ ∞ while fixing µ. The condition indicates that the geometric average of
λ and Λ evaluated at σ, which can be regarded as revealed likelihood on the true state revealed by traders’
actions, does not change with µ. If a trader switches to buying, this increases µ, which leads to an increase
in the revealed likelihood that traders observe, and lowers the optimal threshold. This in turn decreases the
revealed likelihood, because traders learn that the signals received by non-buying traders must have been
below the decreased level of threshold. As a result, the impact of an increase in µ on the geometric average
of λ and Λ is counteracted by a decrease in σ. These effects cancel each other out when the signal is small
(i.e., logΛn ≈ logλn) and m is finite (µ ≈ 0). An increase in m by one will lower σ so that D is increased
by one.

13On the implications of a tail distribution on aggregate fluctuations, see, for example, Acemoglu,
Ozdaglar and Tahbaz-Salehi [1] and Nirei [48].
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in our model is analogous to a long memory process in which a large deviation from the
long-run mean is caused by long-range autocorrelation. In our static model, the long-range
correlation of traders’ actions is captured by the martingale property of excess demand
D(pm,X)− nS(pm).

Proposition 3 has an implication relevant to the information aggregation literature (see,
e.g., Vives [57]). Our model depicts the situation where a large number of informed traders
try to learn the true state of the world by gleaning information from other traders’ actions
under noisy signals. Traders as a group have likelihood

∏n
i=1 ℓn(xi). Since the values of

|ℓn(xi)−1| near bounds {xa, xb} are bounded from below by δn−ξ, the collective likelihood
diverges at the bounds. Hence, if all traders reveal their private signals, they can learn
the true state asymptotically. In our model, traders learn the state only partially due
to information asymmetry. Moreover, the extent of partial learning is determined by the
number of buying traders, which follows a power law. To see the implication of the power
law, we can extend our model to a dynamic setting where traders draw private signals
repeatedly and eventually learn the true state.14 A power law in this setup implies that
collective learning does not occur smoothly over time. The noisy signal generates few
transactions and is hoarded privately most of the time. However, once in a while, a large
cluster of trades occurs and accumulated private information is revealed. Thus, the power
law for volume implies that the revelation happens at once in the collective learning of
traders in our setup.

3.2. Comments on the Power Law Exponent

At 0.5, the power-law exponent obtained in Proposition 3 is smaller than most empirical
estimates for volume, which are summarized by Gabaix et al. [21] as the half-cubic law
(i.e., a power-law exponent of 1.5). However, our model can be modified to generate the
half-cubic law, as we now describe.

The exponent 0.5 from Propositions 3 is obtained asymptotically when the number of
traders n tends to infinity and the informativeness of the signal vanishes. In an economy
with finite n, however, Em may deviate from a martingale. Let ϕ denote the mean number
of traders induced to buy by a trader who buys. The analysis in the appendix shows that
Pr(M † = m | D(p1,x)) for ϕ < 1 is proportional to e−(ϕ−1−logϕ)mm−1.5 for large m. With
ω := ϕ− 1− logϕ, we observe that Pr(M † = m | D(p1,x)) is approximately a power law

14See the working paper version [47] for the extension.
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with exponent 0.5 for m < 1/ω and exponentially truncated for m > 1/ω. This distribution
includes the pure power law result as the limiting case ω = 0, which corresponds to ϕ = 1.

Now consider an extended model in which ω exhibits uniform variation within (0, ϵ) for
some ϵ > 0. Then, the asymptotic tail distribution is an integral of the above probability
distributions across ω:

(6)
∫ ϵ

0

Pr(M † = m | D(p1,x), ω)

ϵ
dω ∝

∫ ϵ

0

e−ωmm−1.5

ϵ
dω =

1− e−ϵm

ϵ
m−2.5

for large m. Note that the power-law exponent is now 1.5 (in the cumulative distribution),
exactly matching the half-cubic law.

The property that the power-law exponent increases when the underlying parameter fluc-
tuates around the critical value (ϕ = 1 in our case) is known as sweeping of a control
parameter towards an instability (see, e.g., Sornette [55]). Although the uniform variation
argument used in (6) to obtain the half-cubic law was ad hoc, we return to this idea in Sec-
tion 3.4, where we use Monte Carlo methods to show that the same property can explain
the empirical power-law exponent for volume when n takes a finite value.

3.3. Power Law for Returns

Having established the power law for volume, we now turn to the power law for returns. An
important facet of the model to be specified is the supply function S(p), which determines
how fluctuation of volume is translated into fluctuation of returns. In our model, informed
traders’ demands are absorbed by uninformed traders’ supply. Thus, the supply function
of uninformed traders m∗/n = S(p∗) determines the impact of volume m∗ on the return
q := log p∗ − log p0.15

The relation between an exogenous shift in trading volume and the resulting shift in asset
price, i.e. S−1, is called the price impact function. Empirical studies suggest that the
price impact function is concave (see, e.g., Hasbrouck [27] and Lillo et al. [38]). Keim

15We define q as the logarithmic return of the asset under the interpretation that p0 is the price that
prevailed in the previous period −1. In this setup, p0 reflects the prior belief Pr(H) under an extended
model where informed traders can both buy and sell. In the extended model, there are uninformed traders
on both supply and demand sides. An informed trader submits a demand function d that can take values
1, 0, or −1. The auctioneer stipulates that the informed traders are matched with uninformed traders only
when either the informed traders buying at p1 or selling at p−1 is zero and the other is strictly positive. In
this way, informed traders always transact with uninformed traders, as in the original model.
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and Madhavan [33] proposed a model for concave price impact functions in which market
makers incur search costs to find counterparty traders. In the model, an increase in volume
does not lead to a linear increase in price impact, because the market maker reaches out
to more traders who absorb the demand. In line with this research, we specify the price
impact function as q = β(m/n)γ for m = 1, 2, . . . , n, where β is a positive constant and
0 < γ < 1.

The following proposition establishes that our model generates a power law for the returns
distribution when the price impact is specified as above:

Proposition 4 (Power law for returns) If volume m/n follows a power law of the form
Pr(m/n) ∝ (m/n)−α−1 and the supply function S satisfies

(7) log(S−1(m/n))− log(S−1(0)) = β(m/n)γ

for β, γ > 0, then returns q follow a power law with exponent α/γ.

Proof: By applying the change of variable for m/n and using the specified monotone
supply function, we obtain

Pr(q) = Pr(m/n)|d(m/n)/dq| ∝ ((q/β)1/γ)−α−1(1/γ)q1/γ−1 ∝ q−α/γ−1.

Hence q follows a power law with exponent α/γ. Q.E.D.

There is a growing consensus among empiricists that stock returns generally obey a cubic
law, in which the return distribution follows a power law with exponent 3 (see, e.g., Gabaix
et al. [21]; Lux and Alfarano [40]; Gu and Ibragimov [25]). The cubic law corresponds to
α/γ = 3 in the above equation. The analysis in the previous section established that
α = 0.5 asymptotically. Hence, the cubic law holds in our asymptotic case if γ = 1/6. This
value is consistent with empirical estimates for γ, which range between 0.1 and 0.5 (see,
e.g., Lillo et al. [38]).

3.4. Quantitative Analysis with Finite Agents

In this section we conduct numerical analysis of the model with a finite number of informed
traders n. One aim of this exercise is to confirm that, even with finite n, the number
of buying traders M †

n exhibits a power law, complementing the asymptotic result from
Proposition 3. A second aim is to show that the model is in fact capable of generating
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a more empirically relevant power law exponent when n is taken to be finite. Finally, we
show that the fluctuation of equilibrium asset returns q = log p∗n − log p0 exhibits a power
law that matches the returns distribution observed in the data.

The model is specified as follows. The signal distribution F s for s ∈ {H,L} is normal with
common standard deviation ς and different means µH = 1 and µL = 0. We set ς at between
30 and 50. This large standard deviation relative to the difference in mean captures the
situation where the informativeness of signal Xi is small. We set the number of informed
traders n at a finite but large value between 500 and 2000. The supply function of unin-
formed traders is specified as in (7), and its parameters are set at our estimates γ = 0.4642

and β = 0.768, as explained below. With these parameter values, the optimal threshold
function σ(·) is computed. Using the threshold function, we conduct Monte Carlo simula-
tions by randomly drawing a profile of private signals (xi)ni=1 106 times and computing m†

n

and p∗n for each draw.

The top panel of Figure 2 plots the histograms of M †
n for various parameter values of n

and ς. Since the histogram is plotted in log-log scale, a linear line indicates a power law
Pr(M †

n = m) ∝ m−α−1, where the slope of the linear line reflects −α− 1. As can be seen,
the simulated log-log histograms appear linear for a wide range of M †

n. This conforms to
the model prediction that M †

n follows a power law distribution. Note that the simulated
histogram decays exponentially when M †

n/n is close to 1, due to the finiteness of n.

The asymptotic results in Proposition 3 predicted the exponent of the power law α to be
0.5. The top panel of Figure 2 confirms this pattern for finite n, when (n, ς) = (800, 30)

or (2000, 50). We also observe that the power law exponent can take larger values when
the parameter alignment differs, as observed in the case when n is decreased (the circle-
line compared to the cross-line) or when ς is increased (the cross-line compared to the
triangular-line). This deviation of the exponent from the asymptotic case α = 0.5 can
result from finite n, as we discussed previously. In this way, our model has flexibility in
fitting various empirically observed exponents for trading volume.

Using this flexibility, we fit our model to the empirical distributions of daily volume and
returns. We intend this exercise to be a proof of concept for the capacity of our model as an
explanation of the observed power laws. Our direct target for comparison is the time-series
fluctuations of a single stock volume and returns in daily frequency. We use the Nikkei
Financial Quest dataset, which includes daily volume and prices for the firms listed in the
first section of the Tokyo Stock Exchange (TSE) from March 1988 to March 2018.
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Figure 2.— Histograms of volume normalized by its time-series average. Top: Histograms
of equilibrium volume M†

n for various parameter values, where n is the number of traders and ς

is the standard deviation of private information. Bottom: Daily volume histograms for individual
stocks and a pooled sample, plus simulated histograms. Data for individual firms cover 1988–2018.
Data for the pooled sample is for 2016. Individual firms are selected at the quintiles of market
capitalization size in the TSE. The circle-line shows the histogram of pooled data for all listed
firms. The cross-line shows a simulated histogram with n = 800 and ς = 50. The plus-line shows
the case with a higher β.
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The bottom panel of Figure 2 shows histograms of daily trading volumes for four single
stocks. The volume is divided by the daily average volume for each stock. The four firms
are selected at the quintiles of market capitalization size among all manufacturing firms
listed in the first section of the TSE. The plotted histogram exhibits a fat tail for each
stock. However, the number of observations (7401) for each stock is not sufficiently large
to investigate the tail in detail, and the sample period (30 years) is too long to assure
invariance of the daily volume distribution. To deal with these limitations, we prepare a
pooled dataset of a large number of stocks for a shorter sample period. We collect daily
trading volume for all (2250) listed firms for the year 2016, and divide volume by average
volume for each firm during that year. The circle-line in the plot shows the histogram of the
normalized volume for the pooled sample. We now observe a longer tail, whose exponent
is similar to the tails for individual stocks. The pooled data shows that the exponent for
volume is about 2 (the slope of the histogram in log-log scale is 3). We then superimpose
the volume histogram generated by our model for the case (n, ς) = (800, 50), shown as
the cross-line. As can be seen, the simulated histogram effectively matches the empirical
histogram.

The power-law exponent can be estimated using the Hill estimator. Since the power law
applies only for the tail distribution, we augment the Hill estimator with an estimated
lower threshold for the tail region, following the methodology proposed by Clauset et al.
[15]. The estimated power law exponents for volume for the first to fourth quintile stocks
and for the pooled data are 1.73 (0.04), 1.31 (0.04), 2.50 (0.08), 3.68 (0.25), and 1.89 (0.02)
respectively (standard errors in parentheses). The Hill estimate of the power-law exponent
for simulated volume is within the above range at 2.03.

The top panel of Figure 3 shows the histograms of daily returns for the same samples. We
define the daily return as the logarithmic difference from the opening to closing price. The
open-close difference is used rather than a business day return so that the time horizon of
each observed return is homogenized. We subtract time-series average returns and divide
by standard error of the returns for each stock, and take an absolute value for returns,
pooling both positive and negative returns across stocks. The empirical histograms for the
individual stocks and the pooled sample show a power law with exponent about 3, which
is consistent with the literature (Lux and Alfarano [40]). The model-generated histogram
also shows a fat tail, which is slightly thinner than data but clearly exhibits a power law.
The Hill estimates of the power-law exponent for returns for the quintile stocks and the
pooled data are 4.52 (0.72), 2.49 (0.11), 3.26 (0.16), 2.83 (0.13), and 3.62 (0.03), whereas
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that for the simulated returns is 4.38.

The bottom panel of Figure 3 shows a scatter plot of daily volume and absolute returns for
all listed firms, along with the price-impact function specified in the simulated model. The
parameter values (γ = 0.4642, β = 0.768) are estimated by fitting (7) to the pooled sample
by non-linear least squares.16 In sum, Figures 2 and 3 indicate that our model is capable of
generating power laws for volume and absolute returns while using a price-impact function
consistently estimated via the high-frequency sample observed in the TSE.

3.5. An Extension

In this section we consider two extensions to the baseline model.

3.5.1. Learning by uninformed traders

Our benchmark model assumes uninformed traders are unaware of the fact that price
movements are driven by informed traders. This assumption can be relaxed. Suppose, for
instance, that the uninformed traders know that some price movements contain information
on the value of assets but cannot distinguish such movements from purely random ones.
Thus, uninformed traders perceive that the price movements reflect revealed information of
informed traders with some probability π. Let plm denote the price the uninformed traders
accept for supplying m in this environment, while they are willing to accept the price
pm (defined in our benchmark model) in order to fill their liquidity need for supplying
m even if there is no information contained in the transaction. The price then satisfies
plm−p0 = (plm−p0+pm−p0)π+(pm−p0)(1−π), implying (plm−p0) = (pm−p0)/(1−π).

This result implies that the supply function S(p) becomes steeper by 1/(1 − π) when
uninformed traders can learn with probability π. Since supply elasticity does not affect
our asymptotic results, the power laws obtained from Section 3.1 continue to hold in this
environment.

Numerical results under a finite number of traders may be affected by the possibility of
learning. In fact, Figures 2 and 3 show this to be the case. The steeper supply function
corresponds to the higher β in the price-impact function (7). We specify that π = 1/3,
which means that β is increased by 50%. The power laws for volume and returns under

16The plotted sample is truncated at the volume divided by mean being 50, in order to enhance visibility,
while all the data are used for the parameter estimation.
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Figure 3.— Top: Histograms of the absolute values of daily returns. The horizontal axis
shows the daily return, which is the difference in logarithm of opening and closing prices
for each business day. The samples are the same as in Figure 2. Bottom: A scatter plot
of daily volume and absolute returns for all listed firms in 2016. The red line shows the
price-impact function fitted by non-linear least squares.
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the high β are shown in the bottom panel of Figure 2 and the top panel of Figure 3. We
observe that exponents for both cases become greater than the benchmark case.

3.5.2. Variable transaction size

In actual markets, trading is not a binary choice. It is possible to extend our model to more
general settings for trading size. For example, the fixed trading size can be heterogeneous
across informed traders. Suppose that the distribution of heterogeneous trading size has
a tail thinner than the power law with exponent 0.5. Also suppose that informed traders
can observe the number of buying informed traders. In this case, the information inferred
by informed traders through price will be the same as in the benchmark model. Since the
size heterogeneity has a thinner tail than the number of buying traders, the same power
law of aggregate volume as in the benchmark model continues to hold.17

We can also consider the case where traders can choose trading size depending on the
signal they receive. Suppose that informed traders are risk averse. Then, the trader has
an incentive to buy a large amount when receiving a favorable signal. Thus, the optimal
trading strategy is to buy when the belief surpasses a threshold, and the purchasing amount
is increasing in the belief. If the purchasing amount is chosen from a continuous set, the
exact private signal ℓn(x) is revealed by the amount if a trader buys at all, in contrast to
the benchmark model where only Λn(x)/λn(x) is revealed by a buying action. Nonetheless,
these two revealed informations are asymptotically the same, and our power-law result still
holds. However, we need to note that the revealed information is shared by all traders in
a rational expectations equilibrium. This implies that the beliefs of all the buying traders
will be equalized, while the beliefs of non-buying traders remain heterogeneous. Thus,
equilibrium trading size is constant across buying traders. In order to extend the rational
expectations model to heterogeneous trading size correlated to signals, one would need to
incorporate some noise which prevents the signal from being exactly revealed. This would
be the case if, say, the choice set is discrete with more than binary choices. While analytical
characterization in this setup is complex, numerical investigation should be feasible.

4. CONCLUSION

This study analyzes aggregate fluctuations of trading volume and prices that arise from
asymmetric information among traders in financial markets. In an asset market model in

17For a mathematical reference, see Jessen and Mikosch [31].
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which each trader infers the private information of other traders only by observing their
actions, we find that the number of traders taking the same action in equilibrium exhibits
large volatility with a particular statistical regularity: a power-law distribution. We also
show that the model is capable of generating a power-law distribution of asset returns. The
simulated distributions of equilibrium returns and volume are demonstrated to match the
distributions of observed stock returns and volume. In this way, we explicitly link the large
and growing literature on asymmetric information and clustering with a well documented
statistical regularity for volume and return distributions.

This study suggests several directions for future work. One would be to develop a dynamic
model that accounts for time-series properties as pursued by, for example, Alfarano et
al. [2]. Another direction would be to extend the model by incorporating more realistic
market structure. Some extensions, such as learning by uninformed traders or variable
transaction size, would seem to be easily incorporated. Other extensions, such as the case
where the signal and trading size are correlated, where both public and private signals
exist, and where informed traders can take both buying and selling sides, appear to be
more involved. While some steps have been taken in these directions (see, e.g., Kamada
and Miura [32]), we leave such explorations for future work.

APPENDIX

Properties of λn and Λn

We note for future reference that the likelihood ratios satisfy Λn(xa) = λn(xb) = 1, limx→xa λn(x) = ℓn(xa),
and limx→xb Λn(x) = ℓn(xb) (obtained using l’Hôpital’s rule). Also, the MLRP implies that 0 < λn(x) <

ℓn(x) < Λn(x) for any x interior to [xa, xb], as in Smith and Sørensen [54], as well as strictly increasing
likelihood ratios as shown below.

Taking derivatives of λn and Λn, we have

dλn(x)

dx
=
fHn (x)

FLn (x)
− FHn (x)fLn (x)

(FLn (x))2
=
fLn (x)

FLn (x)
(ℓn(x)− λn(x)) ,(8)

dΛn(x)

dx
= − fHn (x)

1− FLn (x)
+

(1− FHn (x))fLn (x)

(1− FLn (x))2
=

fLn (x)

1− FLn (x)
(Λn(x)− ℓn(x)) .(9)

Thus, inequality λn(x) < ℓn(x) < Λn(x) implies that λ′
n(x) > 0 for x ∈ (xa, xb] and Λ′

n(x) > 0 for
x ∈ [xa, xb). At x = xa, we obtain λ′

n(xa) = ℓ′n(xa)/2 > 0 by applying l’Hôpital’s rule for (8) and
rearranging terms. Similarly, we obtain Λ′

n(xb) = ℓ′n(xb)/2 > 0 by evaluating (9) at x = xb. Hence, we
obtain λ′

n(x) > 0 and Λ′
n(x) > 0 for any x ∈ [xa, xb].
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Proof of Proposition 1

The market-clearing condition, S(pm) = m/n, implicitly determines pm not only for integers but also for
any real number m. Thus, (5) implicitly determines σ(m) for real m. In this proof, we extend pm and σ(m)

to real numbers. To be precise, we define real variables t ∈ [1, n], pt and σ(t), such that pt is determined
by the market-clearing condition S(pt) = t/n and σ(t) is implicitly determined by

(10) 0 = Φ(σ, t) := (n− t) logλn(σ) + (t− 1) logΛn(σ) + log ℓn(σ)− log pt
1− pt

,

which is a logarithmic transformation of (5) with m being replaced by t.

We first show that an interior solution σ of Φ(σ, t) = 0 exists at the boundaries t = 1 and t = n. Φ(σ, t)
is increasing in σ, since λn, Λn, and ℓn are increasing functions. It achieves minimum at σ = xa, and
the minimum value is Φ(xa, t) = (n − t + 1) logλn(xa) − log(pt/(1 − pt)), where we used Λn(xa) = 1 and
λn(xa) = ℓn(xa). Noting that λn(xa) < 1 and log(pt/(1−pt)) > 0, we obtain Φ(xa, t) < 0 for any t ∈ [1, n].

Φ(σ, t) achieves maximum at xb, and the maximum value is obtained as Φ(xb, t) = t logΛn(xb)− log(pt/(1−
pt)), using λn(xb) = 1 and Λn(xb) = ℓn(xb). When t = 1, the maximum is Φ(xb, 1) = logΛn(xb) −
log(p1/(1 − p1)). Since λn(xb) = 1, Assumption 1 implies logΛn(xb) > δ/nξ for sufficiently large n. In
contrast, log(p1/(1 − p1)) declines to 0 as fast as 1/n, as shown below. The market-clearing condition
implies that S′(pt)dpt = dt/n. Using this, we obtain

d log(pt/(1− pt))

dpt

dpt
dt

=
1

pt(1− pt)

1

nS′(pt)
.

Then, there exists some c1 > 0 such that log(p1/(1− p1)) < c1/n, because

log p1
1− p1

= log p0
1− p0

+

∫ 1

0

1

pt(1− pt)

1

nS′(pt)
dt,

where 1/S′ is bounded since S(·) is strictly increasing. Thus, we obtain Φ(xb, 1) > δ/nξ − c1/n, which is
strictly positive for sufficiently large n since ξ < 1.

When t = n, the maximum of Φ(σ, n) is n logΛn(xb)−log(pn/(1−pn)). The second term is bounded, because
pn/(1 − pn) < p̄/(1 − p̄). The first term tends to positive infinity as n → ∞, since n logΛn(xb) > δn1−ξ.
Thus, Φ(xb, n) > 0 for sufficiently large n. Since Φ(xa, t) < 0 and Φ(xb, t) > 0 for t = 1 and t = n and since
Φ is continuous in σ, an interior solution σ exists for both t ∈ {1, n} when n is sufficiently large.

Next, we show that the interior solution σ is decreasing in t. The total derivative of Φ(σ, t) = 0 is

1

pt(1− pt)

1

nS′(pt)
dt

= log Λn(σ)

λn(σ)
dt+

(
(n− t)

λ′
n(σ)

λn(σ)
+ (t− 1)

Λ′
n(σ)

Λn(σ)
+
ℓ′n(σ)

ℓn(σ)

)
dσ.

This determines the derivative of σ with respect to t as

(11) dσ

dt
=

− log (Λn(x)/λn(x)) + {pt(1− pt)S
′(pt)n}−1

(n− t)λ′
n(x)/λn(x) + (t− 1)Λ′

n(x)/Λn(x) + ℓ′n(x)/ℓn(x)

∣∣∣∣
x=σ(t)

.

The denominator is strictly positive, since λn, Λn, and ℓn are strictly positive and strictly increasing. In
the numerator, the first term is strictly negative, and − log(Λn(x)/λn(x)) < −δ/nξ by Assumption 1. The
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second term in the numerator is positive and of order 1/n, as shown above. Thus, the numerator is negative
for large n. Hence, there exists some no such that for any n > no, inequality dσ/dt ⩽ 0 holds.

Since an interior solution σ for Φ(σ, t) exists for both t ∈ {1, n} and since an interior solution σ is decreasing
in t, an interior solution of (5) exists for any m ∈ {1, 2, . . . , n}.

Finally, since D(pm,x) is the number of traders with xi ⩾ σ(m) for m = 1, 2, . . . , n, the decreasing function
σ(m) implies that D(pm,x) is increasing in m for any realization of x.

Proof of Proposition 2

We define an aggregate reaction function as a mapping from the number of buying traders m to the
number of buying traders determined by traders’ choices given pm and their private signals. Specifically, the
aggregate reaction function is given by Γx : {0, 1, . . . , n} 7→ {0, 1, . . . , n} for each realization of x. It coincides
with D for m > 0, i.e., Γx(m) := D(pm,x) for m ∈ {1, 2, . . . , n}. For m = 0, we let Γx(0) = D(p1,x).
Then, Γx is an increasing mapping of {0, 1, . . . , n} onto itself for n > no. Moreover, {0, 1, . . . , n} is a finite
totally ordered set, and hence a complete lattice. Therefore, by Tarski’s fixed point theorem, there exists a
non-empty closed set of fixed points of Γx.

The auctioneer chooses m∗ = 0 if D(p1,x) = 0, and chooses m∗ > 0 such that D(pm∗ ,x)/n = S(pm∗) =

m∗/n if D(p1,x) > 0. Hence, the fixed points of Γx coincide with a set of equilibrium outcome m∗. This
establishes the existence of m∗ and equilibrium price p∗ = pm∗ .

Preparation for the Proof of Proposition 3

In order to characterize M†
n, we introduce a stochastic process that counts the number of traders who

receive signal greater than x. Such a process is expressed as
∑n
i=1 1{Xi ⩾ x}. As x travels from maximum

xb to minimum xa, this process generates an increasing number of buying traders. Now, we replace x with
the threshold level of signal, σ(m). Then,

∑n
i=1 1{Xi ⩾ σ(m)} indicates the number of traders with private

information greater than threshold σ(m). For each realization of x,
∑n
i=1 1{xi ⩾ σ(m)} is increasing in

m because σ(m) is decreasing in m by Proposition 1. Equilibrium m† is determined as the point where
this counting process achieves m† for the level of signal σ(m†) for the first time. Namely, by appropriately
defining the counting process, M†

n can be formulated as a first passage time for the process to cut through
the diagonal where time and counts coincide.

We construct such a counting process below. Equation (5) implicitly determines threshold σ continuously
when m is a real variable. By using the continuous threshold function, we define a change of variable
as t = σ−1(x). Note that t = m for m ∈ {1, 2, . . . , n}. Using t = σ−1(x) and fθn(x), where θ denotes
the true state, the probability density function defined over t is obtained as fθn(σ(t))|σ′(t)| for sufficiently
large n > no, because σ(t) is monotone in t for such n. Then, we construct a counting process Γ(t) :=∑n
i=1 1{σ

−1(Xi) ⩾ t}.18 Since our model is static, the “time” t is fictitiously introduced here in order to

18Γ(t) differs from Γx(m) defined in the previous section (Proof of Proposition 2) in two regards. First,
Γ(t) is not conditional on x. Thus, Γ(t) is a random variable. Second, Γ(t) is defined over a transformed
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define a stochastic process Γ(t). The fictitious notion of time turns out to be useful, as we employ analysis
of first passage times below.

When t increases from t to t+ dt, the threshold σ(t) decreases. Thus, a trader who chooses to buy before
t continues to buy at t + dt, whereas a trader who chooses not to buy before t might switch to buying at
t + dt. The conditional probability of a non-buying trader switching to buying between t and t + dt for
small dt is equal to πn(t)dt := fθn(σ(t))|σ′(t)|dt/F θn(σ(t)). Thus, the number of traders who buy between t

and t+ dt for the first time, conditional on Γ(t), follows a binomial distribution with population parameter
n−Γ(t) and probability parameter πn(t)dt. Γ(1) indicates the number of traders with xi ⩾ σ(1). Thus, the
distribution of Γ(1) follows a binomial distribution with population n and probability 1 − F θn(σ(1)). This
completes the definition of the stochastic process Γ(t) for t ∈ [1, n].

Let ϕn(t)dt denote the mean of Γ(t + dt) − Γ(t) for small dt. Thus, ϕn(t) := πn(t)(n − Γ(t)). For a finite
Γ(t), the binomial distribution of Γ(t+ dt)−Γ(t) converges to a Poisson distribution with mean ϕn(t)dt as
n → ∞. Hence, for sufficiently large n, Γ(t) asymptotically follows a Poisson process with time-dependent
intensity ϕn(t).

Under Assumption 2, it turns out that the intensity function ϕn converges to 1 as n→ ∞:

Lemma 1 If Assumptions 1-2 hold, then Γ(t) asymptotically follows a Poisson process with intensity 1 as
n→ ∞.

The proof is shown in the next section. The intensity ϕn = 1 implies that the mean number of informed
traders who switch to buying from non-buying after observing an informed trader buying is equal to 1.

Since Γ(1) = 0 indicates that no trader receives private signal greater than σ(1), the equilibrium volume
in this case is m† = 0. When Γ(1) = 1, one trader is willing to buy at p1. Thus, the equilibrium volume
is m† = 1. When Γ(1) > 1, the minimum equilibrium volume m† is the minimum integer that satisfies
Γ(m†) = m†. Thus, when Γ(1) > 1, m† can be interpreted as the first passage time t at which Γ(t) achieves
the level t.

We focus on the first passage time conditional on Γ(1) > 1. It is convenient to shift the time variable so
that it starts from 0. We define G(t) := Γ(t+ 1) and φn(t) := ϕn(t+ 1) for t ∈ [0, n− 1]. Note that, when
Γ(m†) = m† is achieved, m†−Γ(1) = Γ(m†)−Γ(1) = G(m†−1)−G(0) holds. Thus, m†−1 corresponds to
the first passage time of G(t) reaching t with initial condition G(0) = Γ(1)− 1 > 0. Let a positive integer
co > 0 denote the initial value G(0).

G(t) asymptotically follows a Poisson process with intensity φn(t) and G(0) = co as n becomes large. Let
τφn(·) denote the first passage time of G(t) reaching t. Then τφn(·) is also the first passage time of G(t)−G(0)

reaching t − co. Let us define N(t) as the Poisson process with constant intensity 1 and N(0) = 0. Then
τ1 denotes the first passage time of N(t) reaching t− co. An inhomogeneous Poisson process with intensity
φn(t) for t ⩾ 0 can be transformed by a change of time to a homogeneous Poisson process as N(

∫ t
0
φn(u)du).

Thus, the first passage time we consider is

τφn(·) := inf
{
t ⩾ 0 | N

(∫ t

0

φn(u)du

)
⩽ t− co

}
,

variable of signal, t = σ−1(x). Despite these differences, both Γ(t) and Γx(m) share the property that they
count the number of traders with private signal greater than some threshold.
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where inf ∅ := ∞ by convention.

We consider the case where ℓn converges uniformly to 1 as n → ∞ (Assumption 2). With this setup, the
following lemma establishes that the first passage time of the inhomogeneous Poisson process G(t) converges
in distribution to the first passage time of the standard Poisson process N(t).

Lemma 2 If Assumptions 1–2 hold, τφn(·) converges in distribution to τ1 as n→ ∞.

The proof is shown in the subsequent section. We have shown that M†
n conditional on M†

n > 1 has the
same distribution as the first passage time: inf{t > 1 | Γ(t) = t}. M†

n corresponds to τφn + 1, reflecting
that G is shifted from Γ in time by 1. Lemma 2 then shows that τφn converges in distribution to τ1 for
large n. Hence, we have shown that the minimum equilibrium number of buying traders, M†

n, conditional
on M†

n > 1 has the same asymptotic distribution as τ1 + 1.

We show that τ1 follows the same distribution as the sum of a branching process
∑U
u=0 bu, where the initial

value for the branching process is G(0) = Γ(1) − 1. To do so, we consider a general Poisson process N(t)

with intensity parameter ϕ > 0 where N(0) = b0 is a positive integer. The first passage time of N(t)

reaching t− b0 must be greater than or equal to b0. Now we introduce a process bu for u = 0, 1, . . .. During
the time interval b0, the increment N(b0)−N(0), denoted as b1, follows a Poisson distribution with mean
ϕb0. Since a Poisson random variable is infinitely divisible, a Poisson random variable with mean ϕb0 is
equivalent to b0-fold convolution of the Poisson with mean ϕ. Thus, we can regard b1 as the number of
traders induced to buy by b0 traders, where each trader in b0 brings about a number of induced traders
following the Poisson with mean ϕ. If b1 = 0, the process bu stops, and the first passage time is b0. If
b1 > 0, the first passage time is greater than or equal to b0 + b1. During the time interval (b0, b0 + b1], new
increment b2 := N(b0 + b1) − N(b0) follows the Poisson distribution with mean ϕb1, which is equivalent
to b1-fold convolution of the Poisson with mean ϕ and regarded as the number of traders induced by b1

traders (note that the increment b1 of a Poisson process is always an integer). This process bu continues
for u = 1, 2, . . . , U , where U denotes the stopping time at which bU is equal to 0 for the first time. Thus,
the first passage time is equal to

∑U
u=0 bu, i.e., the total number of population generated in the so-called

Poisson branching process bu in which each trader bears a number of induced traders according to the
Poisson distribution with mean ϕ.

It is known that the sum of the Poisson branching process, cumulated over time until the process stops,
follows a Borel-Tanner distribution (Kingman [34]; see also Nirei [45]). When the Poisson mean of the
branching process bu is ϕ > 0, the Borel-Tanner distribution is written as

(12) Pr
(

U∑
u=0

bu = m | b0

)
=
b0
m

e−ϕm(ϕm)m−b0

(m− b0)!
,

for m = b0, b0 +1, . . . . Applying Stirling’s formula to the factorial term, we obtain the tail characterization

(13) Pr
(

U∑
u=0

bu = m | b0

)
∝ e−(ϕ−1−logϕ)mm−1.5 for sufficiently large m.

Using ϕ = 1 in our asymptotic characterization of M†
n, we obtain the distribution of M†

n conditional on
Γ(1) = c > 1 for sufficiently large n as follows.
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Lemma 3 If Assumptions 1–2 hold, then, as n→ ∞,

(14) Pr
(
M†
n = m | D(p1,X) = c

)
→ (c− 1)(m− 1)m−c−1e−m+1

(m− c)!
,

for m = c, c + 1, . . . . In particular, the right tail of the asymptotic distribution obeys a power law with
exponent 1/2:

(c− 1)(m− 1)m−c−1e−m+1

(m− c)!
∼ c− 1√

2π
m−1.5 for large m.

Proof: As shown above, τ1 follows (12) with ϕ = 1. We change variables in (12) using τ1 =M†
n − 1 and

b0 = G(0) = Γ(1)− 1. With m′ := m+ 1, (12) is rewritten as

Pr(M†
n = m′ | Γ(1)) = Γ(1)− 1

m′ − 1

e−ϕ(m
′−1)(ϕ(m′ − 1))m

′−Γ(1)

(m′ − Γ(1))!
.

Using ϕ = 1, we obtain (14). Applying Stirling’s formula to the factorial term, we obtain,

(c− 1)(m− 1)m−c−1e−m+1√
2π(m− c)((m− c)/e)m−c

=
c− 1√
2π

e1−c
(
m− 1

m

)m−c−1(
m

m− c

)m−c+0.5

m−1.5 ∼ c− 1√
2π

m−1.5

for (14) for large m. Q.E.D.

Proof of Lemma 1

We transform ϕn using a change of variable for the density of t = σ−1(x):

(15) ϕn = πn(t)(n− Γ(t)) =

(
1− Γ(t)

n

)
n|σ′(t)| f

θ
n(x)

F θn(x)

∣∣∣∣
x=σ(t)

.

Using (8) and (11) for σ′(t), we obtain

n|σ′(t)| f
H
n (x)

FHn (x)
=

∣∣∣∣∣∣ log(Λn(x)/λn(x))− {pt(1− pt)S
′(pt)n}−1(

1− t
n

) (
1− λn(x)

ℓn(x)

)
+ 1

n

FH
n (x)

fHn (x)

(
(t−1)Λ′

n(x)

Λn(x)
+

ℓ′n(x)

ℓn(x)

)
∣∣∣∣∣∣ ,(16)

n|σ′(t)| f
L
n (x)

FLn (x)
=

∣∣∣∣∣∣ log(Λn(x)/λn(x))− {pt(1− pt)S
′(pt)n}−1(

1− t
n

) ( ℓn(x)
λn(x)

− 1
)
+ 1

n

FL
n (x)

fLn (x)

(
(t−1)Λ′

n(x)

Λn(x)
+

ℓ′n(x)

ℓn(x)

)
∣∣∣∣∣∣ .(17)

We examine the right-hand side of (16) and (17) evaluated at x = σ(t) as n→ ∞. Since {pt(1−pt)S′(pt)}−1

is bounded, the second term in the numerator is of order 1/n. The second term in the denominator is also
of order 1/n as can be shown below. First, Λn, ℓn, and fθn for θ ∈ {H,L} are strictly positive. Second,
F θn ⩽ 1, and ℓ′n is bounded because fsn is assumed to have a bounded derivative. Finally, Λ′

n(x) is bounded
for x ∈ [xa, xb], as shown in (9).

We next examine Λn(x)/λn(x) and λn(x)/ℓn(x) in the right-hand side of (16). To do so, we show that
σ(t) → xb as n→ ∞ for finite t. We note that

logΛn(σ) = log 1− FHn (σ)

1− FLn (σ)
= log 1/FLn (σ)− λn(σ)

1/FLn (σ)− 1
= log

(
1 +

1− λn(σ)

1/FLn (σ)− 1

)
.
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Since log(1 + y) ⩽ y and 1 + log y ⩽ y for any y ⩾ 0, we have, for σ < xb,

logΛn(σ) ⩽
1− λn(σ)

1/FLn (σ)− 1
⩽ − logλn(σ)

1/FLn (σ)− 1
.

Hence, we obtain

logΛn(σ)− logλn(σ) ⩽
− logλn(σ)
1− FLn (σ)

.

Assumption 1 implies logΛn − logλn > δn−ξ. Thus, for sufficiently large n,

(18) − logλn(σ) ⩾ (1− FLn (σ))δn−ξ.

Now (10) can be modified to

(19) n logλn(σ) = log pt
1− pt

+ t log λn(σ)
Λn(σ)

+ log Λn(σ)

ℓn(σ)
.

The right-hand side of (19) is finite for any finite t. The left-hand side of (19) would diverge toward negative
infinity as n → ∞ if FLn (σ) were bounded by a value strictly below 1, as implied by inequality (18) and
ξ < 1. Hence, (19) holds only if FLn (σ) tends to 1, which is equivalent to σ(t) → xb as n→ ∞ for any finite
t. This implies that Λn(σ(t))/λn(σ(t)) tends to ℓn(σ(t))/λn(σ(t)) as n→ ∞, since Λ(xb) = ℓ(xb).

Thus, using zn := log(Λn(σ(t))/λn(σ(t))), the limit of the right-hand side of (16) as n→ ∞ is expressed as

lim
n→∞

zn −O(1/n)

(1− t/n) (1− e−zn) +O(1/n)
= lim
n→∞

zn −O(1/n)

(1− t/n) (zn +O(z2n)) +O(1/n)
,

where we used limn→∞ zn = 0 and a Taylor expansion of ezn − 1 around zn = 0, as well as notation
yn = O(xn) if there exist c2 and n2 such that |yn| ⩽ c2xn for any n ⩾ n2. Dividing both the denominator
and numerator by zn and applying nzn > δn1−ξ with ξ < 1 (Assumption 1), we obtain

lim
n→∞

1−O(1/(nzn))

(1− t/n) (1 +O(zn)) +O(1/(nzn))
= 1.

Similarly, the limit of the right-hand side of (17) as n→ ∞ is

lim
n→∞

zn −O(1/n)

(1− t/n) (ezn − 1) +O(1/n)
= 1.

Substituting this into (15), we obtain plimn→∞ ϕn(t) = plimn→∞ 1−Γ(t)/n. This implies that plimn→∞ ϕn(t)

is bounded. Hence the asymptotic variance of Γ(t + dt) − Γ(t) is also bounded. Thus, as n → ∞, Γ(t)/n
converges to zero in L2-norm, and therefore in probability. In this way, we obtain plimn→∞ ϕn(t) = 1 for
finite t.

Proof of Lemma 2

We show that the random variable τφn(·) defined over [0,∞] converges in distribution to τ1 as n tends to
∞. We prove this by showing that the Laplace transform of τφn(·) converges to that of τ1 as n → ∞. In
other words, we show that, for any η > 0,

(20) lim
n→∞

E
[
exp(−ητφn(·))

]
= E [exp(−ητ1)] .
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Note that e−ητ is set at 0 for the events where τ = ∞ by convention.

In (15), we observe that ϕn(t) = φn(t − 1) is a product of (16) or (17) and a stochastic term 1 − Γ(t)/n.
The former term converges to 1 uniformly over any finite interval [0, T ], and the latter term converges in
probability to 1 as n→ ∞. Thus, the probability of events in which Γ(t)/n exceeds n−ν0 for some t ∈ [0, T ]

for a fixed ν0 ∈ (0, 1) declines to 0 as n→ ∞.19 Since e−ητ is bounded, such events have vanishingly small
contribution to the expectation in the left-hand side of (20). Combining this with the fact that (16) and
(17) are uniformly convergent to 1, there exists a sequence ϵn such that 1− ϵn < φn(t) < 1+ ϵn for finite t
excluding those events where Γ(t)/n exceeds n−ν0 .

Since an inhomogeneous Poisson process can be transformed to a homogeneous Poisson process with a
change of time, inequalities τ1−ϵn ⩽ τφn(·) ⩽ τ1+ϵn hold for each realization of x. Thus, in order to
establish (20), it is sufficient to show that E[exp(−ητχ)] is continuous with respect to χ > 0. We also note
that τχ = inf{t ⩾ 0 | N(χt) ⩽ t− co} is equal to

inf{t ⩾ 0 | t−N(χt) ⩾ co} =
1

χ
inf
{
t ⩾ 0 | t

χ
−N(t) ⩾ co

}
.

Thus, τχ = τ̃χ/χ, where τ̃χ := inf {t ⩾ 0 | N(t) ⩽ t/χ− co}.

Let ζ be a constant in (0, 1). Consider a stochastic differential equation:

dZ(t) = −ζZ(t-){dN(t)− dt}, Z(0) = 1,

where Z(t-) denotes the value of Z(t) before a jump occurs at t if any. The solution of the stochastic
differential equation is a martingale and satisfies

Z(t) = eζt(1− ζ)N(t) =

(
1

1− ζ

) t
χ
−N(t)

exp
{(

ζ +
log(1− ζ)

χ

)
t

}
,

where the second equation is obtained by multiplying and dividing by (1− ζ)t/χ.

Now, for fixed η and χ, there exists a unique ζ that satisfies an equation

ζχ+ log(1− ζ) = −η.

Let ζ(η, χ) denote the unique solution. Note that ζ(η, χ) is continuous and monotonically increasing with
respect to both η and χ. Then, Z is written as

Z(t) =

(
1

1− ζ(η, χ)

) t
χ
−N(t)

exp
(
− η

χ
t

)
.

Note that t/χ − N(t) = co at the stopping time t = τ̃χ. Thus, Z(t) is positive and takes a value less
than or equal to {1− ζ(η, χ)}−co at and before the stopping time τ̃χ. Hence Z(t) is bounded. Therefore,
E[Z(τ̃χ)] = 1 holds by the optional sampling theorem. (Note that Z = 0 for the events where τ̃χ = ∞.)
Moreover, noting that N(t) does not jump at the point of time τ̃χ, we obtain that

Z(τ̃χ) =

(
1

1− ζ(η, χ)

)co
exp

(
− η

χ
τ̃χ

)
,

for both cases of τ̃χ <∞ and τ̃χ = ∞. Thus,

E[exp(−ητχ)] = E
[
exp

(
− η

χ
τ̃χ

)]
= {1− ζ(η, χ)}co .

Since ζ(η, χ) is continuous with respect to χ, this completes the proof.
19See the technical appendix for the construction of ν0.
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Proof of Proposition 3

Let θ ∈ {H,L} denote the true state and ψθ := limn→∞ n (1 − F θn(σ(1))) denotes the asymptotic mean
number of traders with xi > σ(1). Under finite ψθ, Γ(1) asymptotically follows a Poisson distribution with
mean ψθ. Hence, for m = {0, 1}, Pr(M†

n = m) asymptotically follows Pr(Γ(1) = m) = ψmθ e
−ψθ/m!.

For m > 1, the unconditional distribution of M†
n is derived by combining the distribution (14) and the

Poisson distribution with mean ψθ for Γ(1) as follows.
m∑
c=2

Pr
(
M† = m | Γ(1) = c

)
Pr(Γ(1) = c)(21)

=

m∑
c=2

(c− 1)(m− 1)m−c−1e−m+1

(m− c)!

ψcθe
−ψθ

c!

=

m∑
c=1

(c− 1)(m− 1)m−c−1e−m+1

(m− c)!

ψcθe
−ψθ

c!

=
e−ψθ−m+1(m− 1)m−1

m!

[
m∑
c=1

(ψθ/(m− 1))cm!

(m− c)!(c− 1)!
−

m∑
c=1

(ψθ/(m− 1))cm!

(m− c)!c!

]
.

Using the binomial theorem, we obtain
m∑
c=1

(ψθ/(m− 1))cm!

(m− c)!(c− 1)!
=

ψθm

m− 1

m∑
c=1

(ψθ/(m− 1))c−1(m− 1)!

(m− c)!(c− 1)!

=
ψθm

m− 1

m−1∑
c′=0

(ψθ/(m− 1))c
′
(m− 1)!

(m− 1− c′)!c′!

=
ψθm

m− 1

(
1 +

ψθ
m− 1

)m−1

and
m∑
c=1

(ψθ/(m− 1))cm!

(m− c)!c!
=

m∑
c=0

(ψθ/(m− 1))cm!

(m− c)!c!
− 1 =

(
1 +

ψθ
m− 1

)m
− 1.

Substituting back to (21) yields

e−ψθ−m+1(m− 1)m−1

m!

[
ψθm

m− 1

(
1 +

ψθ
m− 1

)m−1

−
(
1 +

ψθ
m− 1

)m
+ 1

]

=
e−ψθ−m+1(m− 1)m−1

m!

[
(ψθ − 1)

(
1 +

ψθ
m− 1

)m−1

+ 1

]
.(22)

Applying Stirling’s formula for m! and using (1 + ψθ/(m − 1))m−1 → eψθ as m → ∞, we obtain the
power-law result in the cumulative distribution:

(23) Pr(M†
n ⩾ m) ≈

√
2

π
(e−ψθ + ψθ − 1)m−1/2 for large m.

Finally, we show that ψθ = 1 under Assumption 3 for any θ. By substituting ψθ = 1 into (22), (23), and
ψmθ e

−ψθ/m! for m = {0, 1}, we obtain Proposition 3. Recall ψθ = limn→∞ n (1−F θn(σ1)), where σ1 := σ(1)

is determined by (5) as

(24) 1

1/p1 − 1
= λn−1

n (σ1)ℓn(σ1)
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and p1 is determined by S(p1) = 1/n. Since S is continuously differentiable and strictly increasing and
satisfies S(0.5) = 0, we have p1 = 0.5 + O(1/n). Therefore, log(1/p1 − 1) is a negative term of order 1/n.
Moreover, we have shown that σ1 → xb as n → ∞ in the Proof of Lemma 1. Defining ϵn := xb − σ1, we
have ϵn ↘ 0 as n→ ∞. By using Tayler’s theorem for log ℓn(σ1) and logλn(σ1) around σ1 = xb, as well as
using λn(xb) = 1, we have a1n, a2n ∈ [σ1, xb] such that

log ℓn(σ1) = log ℓn(xb)−
ℓ′n(a1n)

ℓn(a1n)
ϵn(25)

logλn(σ1) = −λ′
n(xb)ϵn + ηn(a2n)ϵ

2
n(26)

where

ηn(x) :=
λ′′
n(x)λn(x)− λ′

n(x)
2

2λn(x)2
.

Applying these results to (24), we have

(n− 1)(−λ′
n(xb)ϵn + ηn(a2n)ϵ

2
n) + log ℓn(xb)−

ℓ′n(a1n)

ℓn(a1n)
ϵn = O(1/n).

Rearranging terms, we obtain

(27)
(
n− 1 +

ℓ′n(a1n)

λ′
n(xb)ℓn(a1n)

)
ϵn =

log ℓn(xb)
λ′
n(xb)

+
(n− 1)ηn(a2n)ϵ

2
n −O(1/n)

λ′
n(xb)

.

By using ℓn = fHn /fLn we have

log ℓn(xb)
λ′
n(xb)

=
log(fHn (xb)/f

L
n (xb))

fHn (xb)− fLn (xb)
,

where λ′
n(xb) = fHn (xb) − fLn (xb) obtains from λ′

n = (fHn F
L
n − FHn f

L
n )/(F

L
n )2 and FHn (xb) = FLn (xb) = 1.

By Assumption 2, limn→∞ fHn (xb)/f
L
n (xb) = limn→∞ ℓn(xb) = 1. Thus, l’Hôpital’s rule implies that

lim
n→∞

log ℓn(xb)
λ′
n(xb)

= lim
n→∞

log(fHn (xb)/f
L
n (xb))

fHn (xb)/fLn (xb)− 1

1

fLn (xb)
= lim
n→∞

1

fLn (xb)

which is a finite positive constant.

Note that Λn(xb) = ℓn(xb) and λn(xb) = 1. Hence, Assumption 1 implies that

fHn (xb)

fLn (xb)
= ℓn(xb) =

Λn(xb)

λn(xb)
> eδn

−ξ

.

Therefore,

1

λ′
n(xb)

=
1/fLn (xb)

fHn (xb)/fLn (xb)− 1
<

1/fLn (xb)

eδn−ξ − 1
= O(nξ).

We apply this result to terms in (27). First, O(1/n)/λ′
n(xb) < O(nξ−1). Thus this term is dominated by

log(ℓn(xb)/λ′
n(xb)) which is an O(1) term. Second, since |ℓ′n/ℓn| <∞, we have

ℓ′n(a1n)

λ′
n(xb)ℓn(a1n)

< O(nξ).

Since ξ < 1, this term is dominated by n − 1 for large n. Third, ηn(a2n) > −∞ since fsn is continuously
differentiable. Also, a2n → xb as n → ∞, since a2n ∈ [σ1, xb] and σ1 → xb as n → ∞. Hence, ηn(a2n) ⩽ 0

for sufficiently large n by Assumption 3.
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Collecting these results, (27) implies an asymptotic relation

(28) O(n)ϵn =
log ℓn(xb)
λ′
n(xb)

+
O(n)ηn(a2n)ϵ

2
n

λ′
n(xb)

.

On the one hand, if ϵn is dominated by O(n−1), then −O(n)ηn(a2n)ϵ
2
n/λ

′
n(xb) is dominated by O(nξ−1).

Hence, both O(n)ϵn and −O(n)ηn(a2n)ϵ
2
n/λ

′
n(xb) converge to 0 as n → ∞, which contradicts with that

(log ℓn(xb))/λ′
n(xb) converges to a positive constant in (28). On the other hand, if ϵn dominates O(n−1),

then O(n)ϵn − O(1) becomes positive for sufficiently large n. This contradicts with ηn(a2n) ⩽ 0 in (28).
Hence, ϵn = O(n−1). Substituting into (27), we obtain

lim
n→∞

(n− 1) (xb − σ1) = lim
n→∞

1

fLn (xb)
.

Applying this to

n(1− F θn(σ1)) = n(fθn(xb)(xb − σ1)−O(xb − σ1)
2),

we obtain, for any θ ∈ {H,L},

lim
n→∞

n(1− F θn(σ1)) = lim
n→∞

fθn(xb)

fLn (xb)
= 1.

This completes the proof.

Finally, we note that Assumption 3 is not essential for heavy-tailed outcomes that replicate power laws
in finite samples. Lemma 3 established a power-law tail for volume conditional on initial buying traders
D(p1,X). The proof of Lemma 3 showed that D(p1,X) follows the binomial distribution with probability
πθn := 1− F θn(σ1) and population n. The analysis in the previous paragraph implies that, if Assumption 3
fails, the mean of the binomial, nπθn, may diverge as n→ ∞. However, for finite n, the binomial distribution
for D(p1,X) is well defined. Combining it with (14), we obtain the unconditional probability of M†

n = m

for m = 2, 3, . . . as
∞∑
c=2

(
n

c

)
(πθn)

c(1− πθn)
n−c (c− 1)(m− 1)m−c−1e−m+1

(m− c)!
.

Note that πθn is determined independently of m. Hence, applying Stirling’s formula for (m−c)! as in Lemma
3, we obtain an approximate power law with exponent 1/2 for M†

n.
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