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Abstract. Eisenbern and Noe (2001) analyze systemic risk for financial institu-
tions linked by a network of liabilities. They show that the solution to their model
is unique when the financial system is satisfies a regularity condition involving risk
orbits. We show that this condition is not needed: a unique solution always exists.
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1. Introduction

Eisenberg and Noe (2001) analyzed systemic risk for institutions linked by a complex
network of liabilities. The fundamental importance of their work was brought to the
fore by the financial crisis of 2007–2008, where the solvency of individual firms became
unclear due to interlocking financial obligations. In such settings, defaults can trigger
negative feedback loops, where restructuring compromises the balance sheets of other
firms in the network, restricting their ability to make payments to debt holders, and
forces more rounds of restructuring.

Because of these cyclical interactions in the networks, obtaining a system of payments
that clears the market is a fixed point problem. While existence of a fixed point is easy
to show, uniqueness is challenging. Eisenberg and Noe (2001) show that uniqueness
holds when the financial system is “regular.” This condition has become common in
the literature (see, e.g., Cifuentes et al. (2005) or Feinstein et al. (2018)). We prove
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it is not needed: the limited liability and priority conditions in Eisenberg and Noe
(2001) are themselves enough to uniquely identify an equilibrium clearing vector.1

2. Results

If a = (a(i))ni=1 and b = (b(i))ni=1 are vectors in Rn, then a ⩽ b means a(i) ⩽ b(i) for
all i. We write a � b if a(i) < b(i) for all i. The symbol [a, b] represents the order
interval {x ∈ Rn : a ⩽ x ⩽ b}. A Markov matrix is a nonnegative square matrix with
unit row sums. For a given Markov matrix Π, we call j accessible from i under Π if
either j = i or Πk(i, j) > 0 for some k ∈ N.

As in Eisenberg and Noe (2001), a financial system is a set of nodes I := {1, 2, . . . , n},
an n×n matrix Π = (Π(i, j)) of relative liabilities, a vector p̄ = (p̄(i)) ∈ Rn

+ of nominal
obligations (p̄(i) is the sum of all nominal obligations held by node i) and a vector
e = (e(i)) ∈ Rn

+ of external cash flows. The matrix of relative liabilities is a Markov
matrix. Following Eisenberg and Noe (2001), we assume that p̄ � 0, so that, for any
given node, the total sum of liabilities to other nodes is not zero.2

A clearing vector for a financial system (I,Π, p̄, e) is a vector of payments p ∈ [0, p̄]

satisfying the limited liability restriction

p(j) ⩽
∑
i∈I

p(i)Π(i, j) + e(j) (1)

and the absolute priority condition

p(j) =
∑
i∈I

p(i)Π(i, j) + e(j) or p(j) = p̄(j) (2)

for all j ∈ I. Combining these two restrictions and writing them in vector form (cf.
Eisenberg and Noe (2001), p. 240), the set of clearing payment vectors is seen to
coincide with the set of fixed points of the mapping p 7→ Φp on [0, p̄] defined by

Φp := (pΠ+ e) ∧ p̄. (3)

In (3) and below, all n-vectors are treated as row vectors.

1The only exception is an extreme case where no firm in the entire network has any cash at all.
This case is discussed in Remark 2.1 below.

2This is required for Π to have unit row sums. See p. 239 of Eisenberg and Noe (2001).
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Remark 2.1. Limited liability and absolute priority cannot by themselves pin down
outcomes for the extreme case where every firm in the network has zero operating
cash.3 In what follows, we adopt the convention p = 0 when e = 0. This is natural
if firms cannot raise new loans to meet their liabilities when e = 0, since a payment
sequence cannot be initiated without outside capital.

In Eisenberg and Noe (2001), the risk orbit of a given node i is the set of all nodes that
are accessible from i. The financial system is called regular if the risk orbit of every
node contains at least one j with e(j) > 0. A system where regularity fails is shown
below. Suppose e(1) = 1 and e(2) = e(3) = 0. Arrows represent nonzero liabilities.
The risk orbit from node 2 is {2, 3}. Regularity fails because e(2) = e(3) = 0.

1 2 3

Fortunately, regularity is irrelevant for uniqueness, as the next theorem shows.

Theorem 2.1. Every financial system has exactly one clearing payment vector.

To prove Theorem 2.1, we begin with a lemma. In the lemma, we say that node j

in a financial system (I,Π, p̄, e), is cash accessible if there exists an i ∈ I such that
e(i) > 0 and j is accessible from i.

Lemma 2.2. If every node in S = (I,Π, p̄, e) is cash accessible, then S has a unique
clearing vector p∗. Moreover, p∗ � 0 and Φkp → p∗ as k → ∞ when 0 ⩽ p ⩽ p̄.

Proof. Let S be as described. By the fixed point theorem in the appendix (Theo-
rem A.1), it suffices to show that Φ is an increasing concave self-map on [0, p̄] with
Φk0 � 0 for some k ∈ N. As confirmed in Eisenberg and Noe (2001), Φ is increasing
and concave, so only the last statement needs to be verified. To this end, we set

δ :=
1

n2
·min {{p̄(i) : i ∈ I} ∪ {e(i) : i ∈ I s.t. e(i) > 0}} .

3For example, if ψ is a stationary distribution for Π, λ is a constant in [0, 1], p = λψ and p̄ = ψ,
then e = 0 implies Φp = (λψΠ+ e) ∧ p̄ = (λψ) ∧ ψ = λψ = p. Since λ was arbitrary in [0, 1], there
is a continuum of equilibria.
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Let ê be defined by ê(i) = 1 if e(i) > 0 and zero otherwise. We claim that, for all
m ⩽ n,

Φm0 ⩾ δ(ê+ êΠ+ · · ·+ êΠm−1). (4)

This holds at m = 1 because Φ0 = e ∧ p̄ ⩾ δê. Now suppose (4) holds at some
m ⩽ n− 1. Then, since Φ is increasing, we obtain

Φm+10 ⩾ (δ(ê+ êΠ+ · · ·+ êΠm−1)Π + e) ∧ p̄

⩾ (δ(ê+ êΠ+ · · ·+ êΠm)) ∧ p̄

Since ê+ êΠ+ · · ·+ êΠm ⩽ n2
1, where 1 is a vector of ones, and since (δn2

1) ⩽ p̄ by
the definition of δ, we have Φm+10 ⩾ δ(ê+ êΠ+ · · ·+ êΠm). This argument confirms
that (4) holds for all m ⩽ n.

We now claim that Φn0 � 0. In view of (4), it suffices to show that, for any j ∈ I,
there exists a k < n with (êΠk)(j) =

∑
i∈I ê(i)Π

k(i, j) > 0. Since every node in S is
cash accessible, we know there exists an i ∈ I with e(i) > 0 and j is accessible from
i. For this i we can choose k ∈ N with k < n and Πk(i, j) = ê(i)Πk(i, j) > 0. We
conclude that Φn0 � 0, as claimed. □

In what follows, a subset J of I is called absorbing if no element of its complement
J
c := {i ∈ I : i /∈ J} is accessible from J. Also, for a given vector v on I and some
J ⊂ I, we write v |J for the restriction of v to J. For matrix M on I × I we write
M |J for the restriction of M to J× J.

Proof of Theorem 2.1. As pointed out by Eisenberg and Noe (2001), the operator Φ is
increasing and concave on [0, p̄]. It follows from the increasing property and Tarski’s
fixed point theorem that at least one clearing vector always exists.4 The remainder
of the proof focuses on uniqueness.

Let P be the set of all nodes in I that are cash accessible. Let A be all i in P c such
that P is accessible from i. Let N be all i in P c such that P is not accessible from i.
Note that I = P ∪ A ∪N and that these sets are disjoint.

The set N is an absorbing set, since, by definition, P is not accessible from N , and A

cannot be accessible because otherwise P would also be accessible. The set P is also
4In fact Φ is a continuous self-map on the convex compact set [0, p̄], so Brouwer’s fixed point

theorem gives the same conclusion.
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absorbing because, if j ∈ P c is accessible from some i ∈ P , then j is cash accessible.
But then j ∈ P , which is a contradiction.

Iterating k times on (1) gives

p ⩽ e+ eΠ+ eΠ2 + · · ·+ eΠk−1 + pΠk. (5)

If j is in A, then j is not cash accessible, so e(j) = 0 and (eΠm)(j) = 0 for all m.
Hence (5) reduces to

p(j) ⩽ (pΠk)(j) ⩽ (p̄Πk)(j) =
∑
i∈I

p̄(i)Πk(i, j) =
∑
i∈A

p̄(i)Πk(i, j). (6)

The last equality uses the fact that both P and N are absorbing sets. Since P is
accessible from every element of A, when i, j ∈ A we have Πk(i, j) → 0 as k → ∞.5

By taking k large in (6), we see that p(j) = 0 for all j ∈ A.

Since N is absorbing, Π |N is a Markov matrix and (N,Π |N, p̄ |N, e |N) is itself an
independent financial system.6 Moreover, P contains all cash accessible nodes so no
element of N is cash accessible and, in particular, e |N = 0. Hence p |N = 0 by the
convention in Remark 2.1.

It remains only to treat nodes in P . Since P is absorbing, Π |P is a Markov matrix
and (P,Π |P, p̄ |P, e |P ) is also an independent financial system.7 Moreover, every
node in P is cash accessible, so, by Lemma 2.2, a unique clearing vector p∗ � 0 exists
on P . After extending to all nodes by setting p∗(i) = 0 for all i /∈ P , we have a unique
clearing vector. □

Appendix A. Remaining Proofs

In what follows, a self-map F from a subset Y of Rd to itself is called globally stable
if F has a unique fixed point ȳ in Y and Fmy → ȳ as m → ∞ for all y ∈ Y . We use
the following fixed point theorem, which slightly modifies Theorem 3.1 of Du (1990).
(See also Corollary 2.1.1. of Zhang (2012).)

5A Markov chain started at i ∈ A leaves for P with ε > 0 probability every n = |I| periods. Since
P is absorbing it never returns. Hence the probability that the chain hits j ∈ A after k periods
converges to zero with k.

6Although nodes in N may have inbound links from A, we have just shown that payments from
A are zero. At the same time, there are no inbound links from P , since P is aborbing.

7Again, while nodes in P may have inbound links from A, we have just shown that payments
from A are zero.
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Theorem A.1. Let A be an increasing self-map on [0, b] ⊂ R
d. If A is concave and

there exists an n ∈ N such that An0 � 0, then A is globally stable on [0, b].

Proof. Theorem 3.1 of Du (1990) implies that any increasing concave self-map F on
[0, b] satisfying F0 � 0 is globally stable. Since compositions of increasing concave
operators are increasing and concave, this implies that An is globally stable on [0, b].
Denote its fixed point by v̄. Since {Am0}m∈N is monotone increasing and since the
subsequence {Amn0}m∈N converges up to v̄ as m → ∞, we must have Am0 → v̄. A
similar argument gives Amb → v̄. For any v ∈ [0, b] we have Am0 ⩽ Amv ⩽ Amb, so
Amv → v̄ as m → ∞.

The last step is to show that v̄ is the unique fixed point of A. From Tarski’s fixed
point theorem we know that at least one fixed point exists. Now suppose v ∈ [0, b] is
such a point. Then v = Amv for all m. At the same time, Amv → v̄ by the results
just established. Hence v = v̄. The proof is now complete. □
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