Solving Recursive Utility Models with Preference Shocks

John Stachurski (ANU) Ole Wilms (Hamburg) Junnan Zhang (Xiamen)

(with thanks to Chase Coleman and Pablo Levi)

Sun 28 Nov 2021 09:30:54 AEDT

Scope

- Focus entirely on Epstein-Zin preferences
- · Applications are all in asset pricing
- Seek conditions for existence and uniqueness of solutions
- · Conditions are necessary as well as sufficient
- Globally convergent solution methods
- Implementation on GPUs

Related Work

Pohl, Schmedders and Wilms (2018, JF)

- full solutions using projection methods
- shows value of treating original nonlinear models
- no existence / uniqueness / global convergence results

Bloise and Vailakis (2018, JET)

- valuable DP results in a recursive setting
- uses concave monotone operator methods
- no preference shocks
- sufficient but not necessary conditions

Related Work

See also

- Epstein and Zin (1989, ECMA)
- Le Van and Vailakis (2005, JET)
- Marinacci and Montrucchio (2010, JET)
- Hansen and Scheinkman (2012, PNAS)
- Christensen (2021, working paper)

Closest Related Work

Borovicka and Stachurski (2020, JF)

ignores preference shocks

Stachurski and Zhang (2021, JET)

- restricted parameter values
- restricted preference shocks
- sufficient but not necessary conditions
- no global convergence results

Asset Pricing Background

Pricing a claim to a cash flow $\{D_t\}$ via

$$P_{t} = \mathbb{E}_{t} M_{t+1} (D_{t+1} + P_{t+1}) \tag{1}$$

• $\{M_t\}$ = stochastic discount factor (SDF) process

Example. In Lucas (1978),

$$M_t = \beta \frac{u'(C_{t+1})}{u'(C_t)}$$

Example. Mehra and Prescott (1985) apply this SDF CRRA with u

Important: $\{M_t\}$ can be used to price a claim to any cash flow

- dividend stream from holding PepsiCo shares
- constant cash flow from risk-free bond
- cash flow from holding one Dogecoin?

A tough ask, which the Lucas SDF fails (e.g., risk premium puzzle)

We need some more free parameters!

One line of approach:

- Epstein–Zin preferences
- · with preference shocks!

Epstein–Zin preferences defined recursively by

$$V_{t} = \left[(1 - \beta) \lambda_{t} C_{t}^{1 - 1/\psi} + \beta \left\{ \mathcal{R}_{t, 1 - \gamma} \left(V_{t+1} \right) \right\}^{1 - 1/\psi} \right]^{1/(1 - 1/\psi)}$$

A popular specification in quantitative finance

- Albuquerque et al. (2016, JF)
- Schorfheide, Song and Yaron (2018, ECMA)
- Gomez-Cram and Yaron (2020, RFS)
- etc.

Before working through this, let's go back a few steps

- What's different about recursive preference models?
- How should we solve them?
- How does this change when we add preferences shocks?

Recursive Preferences Background

Let's value a Markov process $\{X_t\}$ with

$$\mathbb{P}\left\{X_{t+1} \in B \mid X_t = x\right\} = \int_B q(x, y) \,\mathrm{d}y$$

Current reward from state X_t is $r(X_t)$

Example. Valuing a consumption stream

- $C_t = g(X_t)$
- utility is $u(C_t)$

Set
$$r = u \circ g$$
, so that $r(X_t) = u(g(X_t)) = u(C_t)$

Examples

★ Classic linear aggregator

$$v(x) = r(x) + \beta \int v(y)q(x, y) \,dy$$
 (2)

- discount factor $\beta \in (0,1)$
- the value function v evaluates x given (r, β, q)

Sequential version is

$$v(x) = \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t r(X_t) \mid X_0 = x\right]$$

★ Linear aggregator with preference shocks

$$v(x) = r(x) + \beta(x) \int v(y)q(x, y) dy$$
 (3)

· now discounting is state dependent

Sequential version is

$$v(x) = \mathbb{E}\left\{\sum_{t=0}^{\infty} \left[\prod_{i=0}^{t-1} \beta(X_i)\right] r(X_t) \mid X_0 = x\right\}$$

★ CES aggregator

$$v(x) = \left\{ r(x)^{1-1/\psi} + \beta \left[\int v(y)q(x,y) \, \mathrm{d}y \right]^{1-1/\psi} \right\}^{\frac{1}{1-1/\psi}}$$

• $\psi \neq 1$ measures elasticity of substitution

Sequential version is

...?

★ Epstein–Zin preferences

$$v(x) = \left\{ r(x)^{1-1/\psi} + \beta \left[\int v(y)^{1-\gamma} q(x, y) \, \mathrm{d}y \right]^{\frac{1-1/\psi}{1-\gamma}} \right\}^{\frac{1}{1-1/\psi}}$$

- $\psi \neq 1$ measures elasticity of substitution
- $\gamma \neq 1$ measures risk aversion

Sequential version is

...?

Solving with Linear Aggregators

Consider again

$$v(x) = r(x) + \beta \int v(y)q(x, y) dy$$
 (4)

Fixed point problem is

$$Tv(x) = r(x) + \beta \int v(y)q(x, y) \,dy$$
 (5)

$$|Tv(x) - Tw(x)| \le \beta \int |v(y) - w(y)| q(x, y) dy$$

Bounded case: for all x,

$$|Tv(x) - Tw(x)| \le \beta \int |v(y) - w(y)| \ q(x, y) \, dy$$
$$\le \beta \int ||v - w||_{\infty} q(x, y) \, dy$$
$$= \beta ||v - w||_{\infty}$$

$$\therefore ||Tv - Tw||_{\infty} \leq \beta ||v - w||_{\infty}$$

Now use Banach

Unbounded case, where

$$\pi(y) = \int q(x, y)\pi(x) \, \mathrm{d}x$$

Integrate

$$|Tv(x) - Tw(x)| \le \beta \int |v(y) - w(y)| q(x, y) dy$$

to get

$$\int |Tv(x) - Tw(x)|\pi(x) dx \le \beta \int \int |v(y) - w(y)|q(x, y) dy \pi(x) dx$$
$$= \beta \int |v(y) - w(y)|\pi(y) dy$$

Now use Banach in $L_1(\pi)$

Linear aggregator with preference shocks, where

$$v(x) = r(x) + \beta(x) \int v(y)q(x, y) dy$$
 (6)

Not always a one-step contraction

For example, in the bounded case, we get

$$\|Tv-Tw\|_{\infty} \leqslant \sup_{x} \beta(x) \|v-w\|_{\infty}$$

But, in many applications,

$$\mathbb{P}\{\beta(X_t)>1\}>0$$

How else can we handle

$$v(x) = r(x) + \beta(x) \int v(y)q(x, y) \, \mathrm{d}y? \tag{7}$$

Actually, it's easy: define K via

$$Kg(x) = \beta(x) \int g(y)q(x, y)$$

Now write (7) as

$$v = r + Kv$$

Finally, use the Neumann series lemma

$$r(K) < 1 \implies v = (I - K)^{-1}r$$

Interpretation

Recall that the condition is

$$r(K) < 1$$
 where $Kg(x) = \beta(x) \int g(y)q(x, y)$

Gelfand's formula:

$$r(K) = \lim_{n \to \infty} ||K^n||^{1/n}$$

Local spectral radius thm: If K is irreducible and eventually compact, then

$$r(K) = \lim_{n \to \infty} ||K^n g||^{1/n}$$
 whenever $g \gg 0$

Hence

$$r(K) = \lim_{n \to \infty} ||K^n \mathbb{1}||^{1/n}$$

Since $Kg(x) = \beta(x) \int g(y)q(x, y)$, we have

$$\begin{split} (K^n\mathbb{1})(x) &= \int \cdots \int \beta(x_0) \cdots \beta(x_{n-1}) q(x_0,x_1) \cdots q(x_{n-1},x_{n-1}) \\ &= \mathbb{E}_x \prod_{t=0}^{n-1} \beta(X_t) \end{split}$$

Thus,

$$r(K) = \lim_{n \to \infty} \left\| \mathbb{E}_x \prod_{t=0}^{n-1} \beta(X_t) \right\|^{1/n}$$

Now specialize to $\|\cdot\| = L_1(\pi)$ norm, so

$$\|f\| = \mathbb{E}|f(X_0)|$$
 when $X_0 \sim \pi$

Then

$$\begin{split} r(K) &= \lim_{n \to \infty} \left\| \mathbb{E}_{x} \prod_{t=0}^{n-1} \beta(X_{t}) \right\|^{1/n} \\ &= \lim_{n \to \infty} \left\{ \mathbb{E} \mathbb{E}_{X_{0}} \prod_{t=0}^{n-1} \beta(X_{t}) \right\}^{1/n} \\ &= \lim_{n \to \infty} \left\{ \mathbb{E} \prod_{t=0}^{n-1} \beta(X_{t}) \right\}^{1/n} \approx \text{long run geometric average} \end{split}$$

Example. If $\beta(X_t) \equiv \bar{\beta}$, then

$$\left\{\mathbb{E}\prod_{t=0}^{n-1}\beta(X_t)\right\}^{1/n}=\left\{\bar{\beta}^n\right\}^{1/n}=\bar{\beta}$$

Example. If $\{X_t\}$ is IID with $\bar{\beta}:=\mathbb{E}\beta(X_t)$, then

$$\left\{ \mathbb{E} \prod_{t=0}^{n-1} \beta(X_t) \right\}^{1/n} = \left\{ \prod_{t=0}^{n-1} \mathbb{E} \beta(X_t) \right\}^{1/n} = \bar{\beta}$$

In either case,

$$r(K) < 1 \iff \bar{\beta} < 1$$

Example. Suppose $\{X_t\}$ obeys

$$X_{t+1} = \rho X_t + \mu + \sigma \eta_{t+1}, \qquad \{\eta_t\} \stackrel{\text{IID}}{\sim} N(0, 1)$$

with $\rho \in (0,1)$ and $\beta(X_t) = \exp(X_t)$

Some algebra (see Stachurski and Zhang (2021)) gives

$$\lim_{n \to \infty} \left\{ \mathbb{E} \prod_{t=0}^{n-1} \beta(X_t) \right\}^{1/n} = \lim_{n \to \infty} \left\{ \mathbb{E} \exp\left(\sum_{t=0}^{n-1} X_t\right) \right\}^{1/n}$$
$$= \exp\left(\frac{\mu}{1-\rho} + \frac{\sigma^2}{2(1-\rho)^2}\right)$$

$$\therefore r(K) < 1 \iff 2\mu + \frac{\sigma^2}{1 - \rho} < 0$$

EZ Utility with Preference Shocks, Take 2

Epstein–Zin preferences defined recursively by

$$V_{t} = \left[(1 - \beta) \lambda_{t} C_{t}^{1 - 1/\psi} + \beta \left\{ \mathcal{R}_{t, 1 - \gamma} \left(V_{t+1} \right) \right\}^{1 - 1/\psi} \right]^{1/(1 - 1/\psi)}$$

where

• $\mathcal{R}_{t,1-\gamma}$ is a Kreps–Porteus certainty equivalent operator with

$$\mathcal{R}_{t,1-\gamma}(V_{t+1}) = (\mathbb{E}_t V_{t+1}^{1-\gamma})^{1/(1-\gamma)}$$

- $\{C_t\}_{t\geqslant 0}$ is a consumption path
- $\{\lambda_t\}_{t\geq 0}$ is a sequence of preference shocks
- $V_t = \text{utility value of } \{C_{t+j}\}_{j \geqslant 0}$

Consumption growth and the preference shock grow via

$$\ln\left(\frac{C_{t+1}}{C_t}\right) = g_c(X_t, X_{t+1}, \xi_{t+1})$$

and

$$\ln\left(\frac{\lambda_{t+1}}{\lambda_t}\right) = g_{\lambda}(X_t, X_{t+1}, \xi_{t+1})$$

where

- $\{X_t\}_{t\geqslant 0}$ is an aperiodic and irreducible Markov process on compact X
- $\{\xi_t\}_{t\geqslant 1}$ is IID on $\mathsf{Y}\subset\mathbb{R}^k$, and
- g_i is continuous for each $i \in \{c, \lambda\}$

Step 1. Let

$$G_t := \frac{1}{\lambda_t^{\theta}} \left(\frac{V_t}{C_t} \right)^{1-\gamma} \quad \text{with} \quad \theta := \frac{1-\gamma}{1-1/\psi}$$

Rewrite E7 recursion as

$$G_t = F\left[\mathbb{E}_t G_{t+1} \Gamma(X_t, X_{t+1}, \xi_{t+1})\right]$$

where

$$F(t) := \left(1 - \beta + \beta t^{1/\theta}\right)^{\theta}$$

$$\Gamma(x, y, z) := \exp\left\{\theta g_{\lambda}(x, y, z) + (1 - \gamma)g_{c}(x, y, z)\right\}$$

Step 2 Convert

$$G_t = F\left[\mathbb{E}_t G_{t+1} \Gamma(X_t, X_{t+1}, \xi_{t+1})\right]$$

to

$$g(x) = F[(Kg)(x)]$$

where

$$(Kg)(x) = \mathbb{E}_x g(X_{t+1}) \Gamma(X_t, X_{t+1}, \xi_{t+1})$$

Problem is now:

- solve for the fixed point g^* of $T := F \circ K$
- and obtain the solution $G_t^* = g^*(X_t)$

Summary Find the fixed point g^* of $T = F \circ K$ where

$$(Kg)(x) = \int g(y) \left[\int \Gamma(x, y, z) \nu(z) dz \right] q(x, y) dy$$

and

$$F(t) := \left(1 - \beta + \beta t^{1/\theta}\right)^{\theta}$$

Then set $G_t^* = g^*(X_t)$

Transform to get

- $V_t = \text{utility}$
- W_t = wealth-consumption ratio, etc.

But which fixed point theorem to use?

What about Banach's fixed point theorem?

Figure: $|Tg - Th| \le \beta |g - h|$

Consider the one-dimensional case

Figure: Tg = F(Kg) when $g \in (0, \infty)$, K = 1, $\beta = 0.5$ and $\theta = -10$

Message: Banach will not work for all parameter values

The operator T is continuous and monotone

Should we use

- Brouwer's fixed point theorem?
- Schauder?
- Tarski?

What's the problem here?

We get our cue from this figure:

Figure: Shape properties of F

For any parameters, F is increasing and either convex or concave $T=F\circ K$ and K is positive and linear, so true for T as well

Du's Theorem

The following theorem extends work by Yihong Du (1990)

Theorem Let \mathscr{P} be the (nonempty) interior of the positive cone of a Banach lattice. Let $S:\mathscr{P}\to\mathscr{P}$ be order preserving and either convex or concave. Suppose further that, for any pair $g_1,g_2\in\mathscr{P}$, there exists a pair $f_1,f_2\in\mathscr{P}$ such that

- 1. $f_1 \le g_1, g_2 \le f_2$
- 2. $f_1 \ll Sf_1$ and $Sf_2 \ll f_2$

Then S has a unique fixed point g^* in $\mathscr P$ and, for all $g\in\mathscr P$,

$$\exists a < 1 \text{ such that } ||S^n g - g^*|| = \mathcal{O}(a^n)$$

Concave case

Figure: Concave and monotone increasing

Convex case

Figure: Convex and monotone increasing

Application to EZ Preference

The map $T = F \circ K$ is order preserving (increasing) and

- convex when $0 < \theta \le 1$
- concave otherwise $(\theta = 0 \text{ excluded})$

Hence we need only check: $\forall g_1, g_2 \in \mathcal{P}$, $\exists f_1, f_2 \in \mathcal{P}$ such that

- 1. $f_1 \le g_1, g_2 \le f_2$
- 2. $f_1 \ll T f_1$ and $T f_2 \ll f_2$

Prop. This is true if and only if $\beta r(K)^{1/\theta} < 1$

Main Result

Let

$$\mathcal{S} := \ln \beta + \frac{1}{\theta} \ln(r(K))$$

Let $\mathscr C$ be the continuous functions from X to $(0,\infty)$

Theorem The following statements are equivalent:

- (a) S < 0
- (b) T has a unique fixed point g^* in $\mathscr C$ and, for all $g \in \mathscr C$, there exists an a < 1 and $N < \infty$ such that

$$||T^n g - g^*||_{\infty} \leqslant a^n N$$
 for all $n \in \mathbb{N}$

Moreover, if $S \ge 0$, then no solution exists

Interpreting the Condition

Theorem If $\{C_t\}$ and $\{\lambda_t\}$ are independent, then

$$\mathcal{S} = \ln \beta + \mathcal{S}_{\lambda} + \left(1 - \frac{1}{\psi}\right) \mathcal{S}_{c}$$

where

$$\mathcal{S}_{\lambda} := \lim_{T \to \infty} \frac{1}{T} \ln \mathcal{R}_{\theta} \left(\frac{\lambda_T}{\lambda_0} \right)$$

$$\text{ and } \mathcal{S}_c := \lim_{T \to \infty} \frac{1}{T} \ln \mathcal{R}_{1-\gamma} \left(\frac{C_T}{C_0} \right)$$

Proof: Via a local spectral radius result by Krasnoselskii and Zima

Simple Example

Ignoring lack of compactness, suppose that

$$g_{\lambda,t+1} := \ln\left(\frac{\lambda_{t+1}}{\lambda_t}\right) = h_{\lambda,t+1}$$

where

$$h_{\lambda,t+1} = \rho_{\lambda} h_{\lambda,t} + s_{\lambda} \eta_{\lambda,t+1}$$
 and $\{\eta_{\lambda,t+1}\} \stackrel{\text{IID}}{\sim} N(0,1),$

Then

$$S_{\lambda} = \theta \, \frac{s_{\lambda}^2}{2(1 - \rho_{\lambda})^2}$$

Key implication

$$\theta < 0 \implies \mathcal{S}_{\lambda} < 0$$

Suppose further that (as in § I.A of Bansal and Yaron (2004))

$$g_{c,t+1} = \mu_c + z_t + \sigma_c \, \xi_{t+1}$$

$$z_{t+1} = \rho z_t + \sigma \, \eta_{t+1}$$

Then

$$\mathcal{S} = \ln \beta + \theta \, \frac{s_{\lambda}^2}{2(1 - \rho_{\lambda})^2} + \mu_c + \frac{1}{2}(1 - \gamma) \left(\sigma_c^2 + \frac{\sigma^2}{(1 - \rho)^2}\right)$$

Existence holds when

- patient
- risky preference shocks and consumption
- low mean growth rate for consumption

Testing the Condition for SSY

Let's look at Schorfheide, Song and Yaron (2018, ECMA)

Pref shocks are as above but

$$g_{c,t+1} := \ln\left(\frac{C_{t+1}}{C_t}\right) = \mu_c + z_t + \sigma_{c,t} \, \xi_{c,t+1},$$

where

$$z_{t+1} = \rho z_t + \sigma_{z,t} \eta_{t+1}$$

and

$$\sigma_{i,t} = \phi_i \exp(h_{i,t})$$

$$h_{i,t+1} = \rho_i h_{i,t} + s_i \eta_{i,t+1} \quad \text{for } i \in \{z, c\}$$

No analytical solution for \mathcal{S}_c exists

But recall that

$$\mathcal{S} = \ln \beta + \frac{1}{\theta} \ln(r(K))$$

After discretization,

$$K(x,y) = \mathbb{E} \, \exp \left\{ \theta g_{\lambda}(x,y,\xi) + (1-\gamma) g_c(x,y,\xi) \right\} q(x,y)$$

$$q(x,y) = \text{ discretized state dynamics}$$

Hence

- Compute the matrix K
- Compute dominant eigenvalue (which = r(K))

Let RAR1(ρ, σ) := Rouwenhorst discretization of a centered Gaussian AR1 with params σ, ρ

$$\begin{split} &h_{\lambda}[\ell], P_{\lambda}[\ell,:] \text{ for } \ell = 1, \dots L \ \leftarrow \mathsf{RAR1}(\rho_{\lambda}, s_{\lambda}) \\ &h_{c}[k], P_{c}[k,:] \text{ for } k = 1, \dots K \ \leftarrow \mathsf{RAR1}(\rho_{c}, s_{c}) \\ &h_{z}[i], P_{z}[i,:] \text{ for } i = 1, \dots I \ \leftarrow \mathsf{RAR1}(\rho_{z}, s_{z}) \\ &\text{ for } i \in \{1, \dots, I\} \text{ do} \\ & \qquad \qquad \sigma_{z}[i] \leftarrow \phi_{z} \exp(h_{z}[i]) \\ & \qquad \qquad z[i,j], Q_{z}[i,j,:] \text{ for } j = 1, \dots J \ \leftarrow \mathsf{RAR1}(\rho, \sigma_{z}[i]) \\ &\text{ end} \end{split}$$

Now map the multi-index to a single index:

$$m = \mathcal{C}(K \cdot I \cdot J) + k(I \cdot J) + iJ + j$$

$$M = L \cdot K \cdot I \cdot J$$

```
for m in 1, \ldots, M do
          get (\ell, k, i, j) from m
     get (\ell, k, l, j) \text{ from } m
x[m] \leftarrow (h_{\lambda}[\ell], h_{c}[k], h_{z}[i], z[i, j])
for m' \text{ in } 1, \dots, M \text{ do}
get (\ell', k', i', j') \text{ from } m'
q[m, m'] \leftarrow P_{\lambda}[\ell, \ell']P_{c}[k, k']P_{z}[i, i']Q_{z}[i, j, j']
end
```

Now compute the $M \times M$ matrix K and set

$$\mathcal{S} = \ln \beta + \frac{1}{\theta} \ln(r(K))$$

Let d = number of states for each Rouwenhorst discretization

Then $M = L \cdot K \cdot I \cdot J = d^4$

Example.

- $d = 6 \implies M = 1296$
- $d = 12 \implies M = 20736$

Compute r(K) using QR algorithm in LAPACK

Figure: Compute time as a function of d

Figure: SSY stability coefficient $\mathcal S$ as a function of d

Only issue is the compute time

· Finer discretizations are closer to the original

And what happens if we add two more state variables?

Example. If
$$M = H \cdot G \cdot L \cdot K \cdot I \cdot J = d^6$$
, then

- $d = 6 \implies M = 46,656$
- $d = 12 \implies M = 2,985,984$

Memory requirement when d = 12 for 64 bit floats:

71,328,803,586,048 bytes = 71,328 GB

GPU-Based Alternative

Recall

$$\mathcal{S} = \ln \beta + \mathcal{S}_{\lambda} + \left(1 - \frac{1}{\psi}\right) \mathcal{S}_{c}$$

with

and
$$\mathcal{S}_c := \lim_{T \to \infty} \frac{1}{T} \ln \mathcal{R}_{1-\gamma} \left(\frac{C_T}{C_0} \right)$$

Approximate via Monte Carlo

$$\mathcal{R}_{1-\gamma}\left(\frac{C_T}{C_0}\right) = \left[\mathbb{E}\left(\frac{C_T}{C_0}\right)^{1-\gamma}\right]^{\frac{1}{1-\gamma}} \approx \left[\frac{1}{N}\sum_{n=1}^{N}\left(\frac{C_T^{(n)}}{C_0^{(n)}}\right)^{1-\gamma}\right]^{\frac{1}{1-\gamma}}$$

GPU evaluation of

$$\left[\frac{1}{N} \sum_{n=1}^{N} \left(\frac{C_{T}^{(n)}}{C_{0}^{(n)}}\right)^{1-\gamma}\right]^{\frac{1}{1-\gamma}}$$

do in parallel

$$a_{1} \leftarrow \left(C_{T}^{(1)}/C_{0}^{(1)}\right)^{1-\gamma}$$

$$\vdots$$

$$a_{N} \leftarrow \left(C_{T}^{(N)}/C_{0}^{(N)}\right)^{1-\gamma}$$

end

return
$$\left[(1/N) \sum_{n=1}^{N} a_n \right]^{\frac{1}{1-\gamma}}$$

Figure: SSY stability coefficient $\mathcal S$ as a function of d

Figure: Compute time as a function of d

Figure: Relative compute time (CPU/GPU) as a function of $\it d$

Computing Recursive Utility

Now we know that

- \exists a unique $g^* \in \mathscr{C}$ such that $g^* = Tg^*$
- $T^n g \to g^*$ as $n \to \infty$ for all $g \in \mathscr{C}$

From this we can obtain recursive utility

Method: fix $g \in \mathcal{C}$ and iterate on

$$Tg = \left(1 - \beta + \beta (Kg)^{1/\theta}\right)^{\theta}$$

Computing the WC Ratio

To compute $\{M_t\}$, we need the **wealth-consumption ratio**, which is the fixed point of

$$Uw = (1 + \beta Kw^{\theta})^{1/\theta}$$

Proposition The following statements are equivalent:

- 1. S < 0
- 2. U has a unique and globally stable fixed point w^* in $\operatorname{\mathscr{C}}$

Proof: Let $\tau: \mathscr{C} \to \mathscr{C}$ be defined by

$$\tau g = \frac{1}{1 - \beta} g^{1/\theta}$$

Then $U = \tau T \tau^{-1}$ on $\mathscr C$

Visualization of $U = \tau T \tau^{-1}$ on \mathscr{C} :

$$\begin{array}{ccc} \mathscr{C} & \stackrel{T}{\longrightarrow} \mathscr{C} \\ \tau^{-1} & & \uparrow \tau \\ \mathscr{C} & \stackrel{U}{\longrightarrow} \mathscr{C} \end{array}$$

 \therefore (\mathscr{C},T) and (\mathscr{C},U) are topologically conjugate

 \therefore (\mathscr{C}, U) is globally stable \iff (\mathscr{C}, T) is globally stable

 $\mathcal{E}(\mathscr{C}, U)$ is globally stable $\iff \mathcal{E} < 0$

Hence we compute $w^* = Uw^*$ by successive approximation

- Fix $w \in \mathscr{C}$
- Iterate on $Uw = (1 + \beta Kw^{\theta})^{1/\theta}$

Figure: WC ratio when d = 10 with z and h_{λ} fixed

Figure: WC ratio when d = 5

Figure: WC ratio when d = 10

Parallelized Iteration on the GPU

```
Fix initial g
```

```
do
```

```
do in parallel
        Compute Kg(x_1)
         Compute Kg(x_M)
  end
Tg \leftarrow \left(1 - \beta + \beta (Kg)^{1/\theta}\right)^{\theta}
\epsilon \leftarrow \|Tg - g\|_{\infty}
g \leftarrow Tg
```

while $\epsilon > tol$

Figure: GPU based computation of WC ratio when $\emph{d}=10$

Figure: GPU time (manual parallelization) vs CPU time

Figure: Matrix WC computations on the CPU

CuPy Implementation

```
# Transfer arrays to the GPU
K = cp.asarray(K_matrix)
w = cp.asarray(w)
while error > tol and iter < max_iter:
    Tw = 1 + beta * (cpm(K, (w**theta)))**(1/theta)
    error = cp.max(cp.abs(w - Tw))
    w = Tw
    iter += 1
# Transfer back to the host
w = cp.asnumpy(w)
```


Figure: GPU time (CuPy implementation) vs CPU time

Next Steps

- Calculate $\{M_t\}$
- Calculate prices and returns given $\{M_t\}$
- Repeat for Gomez-Cram and Yaron (2020) (6 states)