Solving Recursive Utility Models
with Preference Shocks

John Stachurski (ANU)
Ole Wilms (Hamburg)
Junnan Zhang (Xiamen)

(with thanks to Chase Coleman and Pablo Levi)

Sun 28 Nov 2021 09:30:54 AEDT

1/68



Scope

Focus entirely on Epstein-Zin preferences

Applications are all in asset pricing

Seek conditions for existence and uniqueness of solutions
Conditions are necessary as well as sufficient

Globally convergent solution methods

Implementation on GPUs
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Related Work

Pohl, Schmedders and Wilms (2018, JF)

* full solutions using projection methods
* shows value of treating original nonlinear models

* no existence / uniqueness / global convergence results
Bloise and Vailakis (2018, JET)

* valuable DP results in a recursive setting
* uses concave monotone operator methods
* no preference shocks

* sufficient but not necessary conditions
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Related Work

See also

* Epstein and Zin (1989, ECMA)

* Le Van and Vailakis (2005, JET)

* Marinacci and Montrucchio (2010, JET)
* Hansen and Scheinkman (2012, PNAS)
* Christensen (2021, working paper)

4/68



Closest Related Work

Borovicka and Stachurski (2020, JF)
* ignores preference shocks
Stachurski and Zhang (2021, JET)

* restricted parameter values
* restricted preference shocks
e sufficient but not necessary conditions

* no global convergence results
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Asset Pricing Background

Pricing a claim to a cash flow {D,} via

P = EtMt+l(Dt+l + Pt+l) (1)

* {M,} = stochastic discount factor (SDF) process

Example. In Lucas (1978),

”,(Ct+1)
u'(C,)

M,=p

Example. Mehra and Prescott (1985) apply this SDF CRRA with u
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Important: {M,} can be used to price a claim to cash flow

* dividend stream from holding PepsiCo shares
* constant cash flow from risk-free bond

¢ cash flow from holding one Dogecoin?
A tough ask, which the Lucas SDF fails (e.g., risk premium puzzle)
We need some more free parameters!

One line of approach:

* Epstein—Zin preferences

* with preference shocks!
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Epstein—Zin preferences defined recursively by

. 11 /O=1/9)
Vo=[a-pac ™ 45 Ry, (Vi)

A popular specification in quantitative finance

* Albuquerque et al. (2016, JF)
* Schorfheide, Song and Yaron (2018, ECMA)
* Gomez-Cram and Yaron (2020, RFS)

* etc.
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Before working through this, let's go back a few steps

* What's different about recursive preference models?
* How should we solve them?

* How does this change when we add preferences shocks?
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Recursive Preferences Background

Let's value a Markov process {X,} with

P{X,,; € B| X, = x} :/Q(X,Y)dy
B

Current reward from state X, is r(X,)

Example. Valuing a consumption stream

° Ct = g(Xt)
* utility is u(C,)

Set r = uog, so that r(X,) = u(g(X,)) = u(C,)
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Examples
* Classic linear aggregator

v(x) = r(x) + p / v(y)q(x, y)dy (2)

e discount factor g € (0, 1)

° the v evaluates x given (r, §,q)

Sequential version is

v(x)=F

Y BrX )| Xy = x]

t=0
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x Linear aggregator with preference shocks

v(x) = r(x) + p(x) / v(y)q(x, y)dy (3)
* now discounting is state dependent

Sequential version is

U(x):E{i [1:[/;()()] r(X)lXO_x}

=0 =0
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x CES aggregator

1-1/y m
/ v(¥)q(x,y) dy] }

* w # 1 measures elasticity of substitution

v(x) = {r(x)‘—‘/‘” +p

Sequential version is
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* Epstein—Zin preferences

1

=1/ -1/

1-y

v(x) = r(x)! TV 4 p

/ (' 7 q(x, ) dy]

* y # 1 measures elasticity of substitution

* ¥y # 1 measures risk aversion

Sequential version is
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Solving with Linear Aggregators

Consider again

v(x) =r(x)+p / v(y)q(x, y)dy

Fixed point problem is

To(x)=r(x)+p / v(y)q(x,y)dy

[To(x) = Tw(x)| < B / lo(y) — w(y)| q(x, y)dy
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Bounded case: for all x,

WM@—Tw@NSﬁ/hw%wde@JNy
< ﬁ/ lo — wl, aCx. ») dy

=pllv-wll

”TU - Tw”oo < .H”U - w“oo

Now use Banach
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Unbounded case, where

(y) = / q(x, y)m(x) dx

Integrate

[To(x) = Tw(x)| < B / lo(y) — w(y)| q(x, y)dy

to get

/ ITv(x) — Tw(x)|z(x)dx < p / / lo(y) — w»lg(x, y) dyz(x) dx

=p / [o(y) — w(y)|z(y)dy

Now use Banach in L,(x)
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Linear aggregator with preference shocks, where
v(x) = r(x) + f(x) / v(»)q(x, y)dy (6)
Not always a one-step contraction
For example, in the bounded case, we get
ITv—-Twll, < Sup POllv — wll
But, in many applications,

P{p(X)>1}>0
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How else can we handle

v(x) = r(x) + p(x) / v(y)q(x, y)dy? (7)

Actually, it's easy: define K via

Kg(x) = p(x) / gq(x,y)

Now write (7) as
v=r+Kv

Finally, use the Neumann series lemma

HKy<l = v=I-K)'r
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Interpretation

Recall that the condition is

r(K) <1 where Kg(x)=p(x) / g(q(x,y)

Gelfand’s formula:

r(K) = lim [|K"||'/"

Local spectral radius thm: If K is irreducible and eventually
compact, then

r(K) = lim IK"g||'/"  whenever g > 0
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Hence
r(K) = lim ||[K"1||'/"
n—>o0

Since Kg(x) = f(x) [ g(»)q(x,y), we have

(K"JI)(X)=/---/ﬂ(xo)---ﬁ(xn_l)q(xo,xl)

n—1
=E, []sx)
t=0
Thus,
1 1/n
HK) = lim ||E, H B(X,)
n—oo 120

q(xn—l’ xn—l)
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Now specialize to || - || = L;(x) norm, so

I/l =E[f(X)| when X,~z

Then
n—1 1/n
r(K) = lim |E ] 8X)
n—oo
t=0

1 1/n
lim {EEXO Hﬂ(Xt)}
=0

1 1/n
lim {EHﬁ(X,)} ~ long run geometric average
n—oo =0
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Example. If f(X,) = f, then
n—1 1/n
{EH/J(X»} = {5} =5
t=0

Example. If {X,} is ID with § := E(X,), then

n—1 1/n n—1 I/n
{EHﬁ(X,)} = {HEﬁ(Xt)} =p
t=0 =0

In either case,
rKy<l << f<lI1
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Example. Suppose {X,} obeys

11D
Xt+1=sz+/4+0'77t+1, {’7;} ~ N(,1)

with p € (0,1) and f(X,) = exp(X,)

Some algebra (see Stachurski and Zhang (2021)) gives

n—1 1/n n—1 1/n
lim {]El |ﬂ(X,)} = lim {]Eexp<2)(,>}
n—00 n—00

=0 t=0

:CXP( d + 0-2 >
l—=p 2(1-py

2

<0

rK)<1 = 2,u+16
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EZ Utility with Preference Shocks, Take 2

Epstein—Zin preferences defined recursively by

. L1y =1
Vo= [a=pac ™ s p (R, (V) ]

where
* R,,_, is a Kreps—Porteus certainty equivalent operator with
— I=yyN1/(1-
Ry imy Vi) = BV, YO
* {C,};50 is a consumption path

* {A};>0 is a sequence of preference shocks

* V, = utility value of {C,;} ;50
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Consumption growth and the preference shock grow via

Cir1) _
In C =g.( Xy, Xpy15&41)

t

and

A
In < ;H > = 8 (Xp Xi15&41)

t

where

* {X,};50 is an aperiodic and irreducible Markov process on
compact X

* {&}51 isTD on Y € R¥, and

* g; is continuous for each i € {c, 1}
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v\ 1-
G, = ie <—’> with 0 := !
2 \¢

Rewrite EZ recursion as

G, =F [Et Gt+l (X, X1 §t+1)]

where

F(t) := (1 —ﬁ+ﬂt1/9)9

F(X, Vs Z) = eXp {eg,l(xe Y, Z) + (1 - }/)gc(xy Y, Z)}
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Convert

G, =F []Et Gt+1 (X, Xt+1’§t+1)]

to
g(x) = F[(Kg)(x)]

where
(Kg)(x) = Ex g(Xt+1) F(Xt7 XH.] s ét-{-l)

Problem is now:

* solve for the fixed point g* of T := FoK

* and obtain the solution G} = g*(X,)
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Summary Find the fixed point g* of T = FoK where

(Kg)(X)=/g(y) [/ ['(x.y. Z)V(Z)dZ] q(x,y)dy

and
F() := (1= p+p1%)°

Then set GF = g*(X))

Transform to get

* V, = utility

* W, = wealth-consumption ratio, etc.

But ?
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What about Banach's fixed point theorem?

—— Tg with slope B<1 e
=== 45 degrees -’

Figure: |[Tg —Th| < Blg — h|
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Consider the one-dimensional case

— Tg=F(Kg) -
=== 45 degrees -

Figure: Tg = F(Kg) when g € (0,00), K =1, f=0.5 and 6 = —-10

Message: Banach will not work for all parameter values
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The operator T is continuous and monotone

Should we use

* Brouwer's fixed point theorem?
* Schauder?

e Tarski?

What's the problem here?
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We get our cue from this figure:

— 6=-15

— 6=-05

— 6=05

— 6=15

Figure: Shape properties of F

For any parameters, F is increasing and either convex or concave

T = FoK and K is positive and linear, so true for T as well
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Du's Theorem

The following theorem extends work by Yihong Du (1990)

Theorem Let & be the (nonempty) interior of the positive cone of
a Banach lattice. Let S: 9 — & be order preserving and either
convex or concave. Suppose further that, for any pair g;, 8, € &,
there exists a pair f|, f, € & such that

L igg&sf
2. fl <<Sf1 and Sf2<<f2

Then S has a unique fixed point g* in & and, for all g € &,

Ja < 1 such that ||S"g — g%|| = O@a")
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Concave case

— Sg //
——- 45 degrees -

Figure: Concave and monotone increasing
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Convex case

P — Sg
. ——- 45 degrees

Figure: Convex and monotone increasing
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Application to EZ Preference

The map T = FoK is order preserving (increasing) and

* convex when 0 <8 <1

* concave otherwise (6 = 0 excluded)

Hence we need only check: Vg;,g, € &, 3 f}, f, € & such that

1. .f} <g,8 < .fﬁ
2. fl <<Tf1 and Tf2<<f2

Prop. This is true if and only if pr(K)'/? < 1
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Main Result

Let
S :=Inpg+ %ln(r(K))

Let € be the continuous functions from X to (0, c0)

Theorem The following statements are equivalent:

(a) <0

(b) T has a unique fixed point g* in € and, for all g € €, there
exists an @ < 1 and N < oo such that

IT"g — g*ll, < a@"N forallneN

Moreover, if & > 0, then no solution exists
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Interpreting the Condition

Theorem If {C,} and {4,} are independent, then

5=1nﬂ+cs;+<1—l>§c
14

where

A
S, i= lim ~InR, <—T>
T—-oo )’0

. 1 Cr
and &, :=Thm ?lan_y ren
— 00 O

Proof: Via a local spectral radius result by Krasnoselskii and Zima
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Simple Example

Ignoring lack of compactness, suppose that

A 1
i+l = ln< ;r > =h 4

t

where

1D
h/l,t+1 = pﬁha,r t 850441 and {’M,z+1} ~ N(O,1),

Then

S =0—"—
AT - py)?

Key implication
0<0 = &,<0
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Suppose further that (as in § I.A of Bansal and Yaron (2004))
Zerl = He + 2+ 064

Zig1 =Pz H 0Ny

Then

2

1 g7 (1 )< o )
=Inf+60 ——+u +=(1-
nBH0 S T ! (1= p?

Existence holds when

* patient
* risky preference shocks and consumption

* low mean growth rate for consumption
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Testing the Condition for SSY

Let's look at Schorfheide, Song and Yaron (2018, ECMA)

Pref shocks are as above but

=1 Ci _
e+l = 1N C =U+ 2, +0, 8415
t

where
Zy1 = P2+ 0,

and
o, = ¢; exp(h;,)

Riy1r =pihig+s;m,4 fori€{zc}
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No analytical solution for &, exists

But recall that |
S=Inpg+ 7 In(r(K))

After discretization,

K(x,y) = E exp {0g,(x, 7.8 + (1 — n)g.(x, 5.8} q(x, )

q(x,y) = discretized state dynamics

Hence

e Compute the matrix K

* Compute dominant eigenvalue (which = r(K))
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Let RAR1(p, o) := Rouwenhorst discretization of a centered
Gaussian AR1 with params o, p
h21L, P2, ] for £ =1,... L < RARL(p,,s,)
h.k], P.[k,:] for k =1,... K < RAR1(p,,s,)
h,lil, Pli,:] fori=1,...1 < RAR1(p,,s,)
forie{l,...,1} do
o.li] < ¢, exp(h,[i])
z[i, j1,0,li, j, ] for j =1,...J < RARL(p, o,[i])

end
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Now map the multi-index to a single index:
m=¢(K-1-J)+k(I-J)+iJ+j

M=L-K-I1-J

forminl,...,M do
get (¢, k,i,j) from m
x[m] < (h;[2], h k], b li], z[i, j])
form’ inl,...,M do
get ('K, i',j") from m’
qlm,m'] < P)[£,"|P,[k,K']P.[i,i'1Q.li, ], j']

end
end
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Now compute the M X M matrix K and set

S=Inpg+ éln(r(K))

Let d = number of states for each Rouwenhorst discretization
Then M =L-K-I1-J=d*
Example.

cd=6 = M =1296

*d=12 = M =20736

Compute r(K) using QR algorithm in LAPACK
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Figure: Compute time as a function of d
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Figure: SSY stability coefficient & as a function of d
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Only issue is the compute time

* Finer discretizations are closer to the original

And what happens if we add two more state variables?

Example. f M =H -G-L-K-I-J =d5, then
*d=6 = M =46,656
cd=12 = M =2,985,984

Memory requirement when d = 12 for 64 bit floats:

71,328,803, 586,048 bytes = 71,328 GB
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GPU-Based Alternative

Recall
S=mnp+8,+ <1—l) S,
Yy
with

1 Cr
and &, :=Thm ?lan_y ren
—00 0

Approximate via Monte Carlo
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GPU evaluation of

do in parallel

1=y
@ < ()

1-y
an < (C(TN)/C(()N)>

end

return [(I/N) Z,l,vzl an]

1
1=y
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Figure: SSY stability coefficient & as a function of d
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Figure: Compute time as a function of d
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Figure: Relative compute time (CPU/GPU) as a function of d
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Computing Recursive Utility

Now we know that

k

* 3 a unique g* € € such that g* =Tg

e T'g > g*asn—> o forallge®

From this we can obtain recursive utility

Method: fix g € € and iterate on

Tg=(1-p+pKe")’
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Computing the WC Ratio

To compute {M,}, we need the wealth-consumption ratio, which
is the fixed point of

Uw=(1+pKuw’)/?

Proposition The following statements are equivalent:

1. <0
2. U has a unique and globally stable fixed point w* in €

Proof: Let 7: € — @ be defined by

_ L
8= 58

ThenU =Tt ! on ©
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Visualization of U = zTz~! on €:

S\

N

S\

S\
K

N

(€¢,T) and (€, U) are topologically conjugate

(€,U) is globally stable < (€,T) is globally stable

(€,U) is globally stable < & <0
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Hence we compute w* = Uw™* by successive approximation

* Fixwe®€
* lterate on Uw = (1 + pKuw?)'/?
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Figure: WC ratio when d = 10 with z and h, fixed
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Figure: WC ratio when d =5
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7.0 7.0
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log-linear log-linear
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Figure: WC ratio when d = 10
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Parallelized Iteration on the GPU

Fix initial g
do

do in parallel

Compute Kg(x;)

Compute Kg(x,,)

end
Tg — (1-p+p(Kg)'/?)’

e |ITg - gl

g<Tg

while € > rol
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Figure: GPU based computation of WC ratio when d = 10
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Figure:
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Figure: Matrix WC computations on the CPU
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CuPy Implementation

# Transfer arrays to the GPU
K = cp.asarray(K_matrix)
w = cp.asarray(w)

while error > tol and iter < max_iter:
1 + beta * (cpm(K, (wx*theta)))**(1/theta)

Tw =

error = cp.max(cp.abs(w - Tw))
w=Tw

iter += 1

# Transfer back to the host
w = cp.asnumpy (w)
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Figure: GPU time (CuPy implementation) vs CPU time
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Next Steps

* Calculate {M,}
* Calculate prices and returns given { M, }

* Repeat for Gomez-Cram and Yaron (2020) (6 states)
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