
Chapter 3

Linear Algebra and Matrices

The previous chapter was relatively abstract but it sets us up nicely to study the kinds
of practical problems from linear algebra that we encounter in statistics and econo-
metrics. This chapter treats many of the core problems in linear algebra, frequently
relating them back to our analysis of vectors and linear maps in chapter 2.

3.1 Matrices and Linear Equations

Matrices provide a convenient way to organize data and algebraic operations. Let’s
start with definitions.

3.1.1 Basic Definitions

A N× K matrix is a rectangular array A of real numbers with N rows and K columns,
written in the following way:

A =


a11 a12 · · · a1K
a21 a22 · · · a2K
...

...
...

aN1 aN2 · · · aNK


45
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The symbol ank stands for the element in the nth row of the kth column. Often these
elements represent coefficients in a system of linear equations, such as

a11x1 + a12x2 + · · ·+ a1KxK = b1
...

aN1x1 + aN2x2 + · · ·+ aNKxK = bN

(3.1)

For obvious reasons, A is also called a vector if either N = 1 or K = 1. In the
former case, A is called a row vector, while in the latter case it is called a column
vector. When convenient, we will use the notation rown A to refer to the nth row of
A, and colk A to refer to its kth column.

We extend the notation 0 and 1 from vectors to matrices, in the sense that these
symbols will also represent matrices with all elements equal to zero and one respec-
tively. Dimensions will be stated explicitly or clear from context.

If A is N × K and N = K, then A is called square. For an N × N matrix A, the N
elements of the form ann for n = 1, . . . , N are called the principal diagonal:

a11 a12 · · · a1N
a21 a22 · · · a2N
...

...
...

aN1 aN2 · · · aNN


The unique N × N matrix with ones on the principle diagonal and zeros elsewhere is
called the identity matrix, and denoted by I:

I :=


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1


Note that coln I = en, the nth canonical basis vector in RN .

Just as was the case for vectors, a number of algebraic operations are defined for
matrices. The first two, scalar multiplication and addition, are immediate generaliza-
tions of the vector case: For γ ∈ R, we let

γ


a11 a12 · · · a1K
a21 a22 · · · a2K
...

...
...

aN1 aN2 · · · aNK

 :=


γa11 γa12 · · · γa1K
γa21 γa22 · · · γa2K

...
...

...
γaN1 γaN2 · · · γaNK


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while
a11 · · · a1K
a21 · · · a2K
...

...
...

aN1 · · · aNK

+


b11 · · · b1K
b21 · · · b2K

...
...

...
bN1 · · · bNK

 :=


a11 + b11 · · · a1K + b1K
a21 + b21 · · · a2K + b2K

...
...

...
aN1 + bN1 · · · aNK + bNK


Addition is only defined for matrices that have identical shape.

The matrix product C = AB of matrices A and B is formed by taking as its i, jth
element the inner product of the ith row of A and the jth column of B. That is,

cij =
〈
rowi A, colj B

〉
=

K

∑
k=1

aikbkj

Here’s the picture for i = j = 1:
a11 · · · a1K
a21 · · · a2K
...

...
...

aN1 · · · aNK




b11 · · · b1J
b21 · · · b2J

...
...

...
bK1 · · · bKJ

 =


c11 · · · c1J
c21 · · · c2J
...

...
...

cN1 · · · cNJ


Since inner products are only defined for vectors of equal length, we need the length
of the rows of A to be equal to the length of the columns of B. In other words, if A
is N × K and B is J ×M, then we require K = J. The resulting matrix AB is N ×M.
Here’s the rule to remember:

A is N × K and B is K×M =⇒ AB is N ×M

Matrix multiplication is not commutative: AB and BA are not in general equal. In
most other ways it behaves like ordinary multiplication:

Fact 3.1.1 For conformable matrices A, B, C and scalar α, we have

(i) A(BC) = (AB)C,

(ii) A(B + C) = AB + AC,

(iii) (A + B)C = AC + BC,

(iv) AαB = αAB, and

(v) AI = A and IA = A, where I is the identity matrix.

Here and below we use the word conformable to indicate dimensions are such that
the operation in question makes sense. For example, two matrices are conformable for
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addition if they have the same number of rows and columns.
The kth power of a square matrix A is defined as

Ak := A · · ·A︸ ︷︷ ︸
k terms

If B is such that B2 = A, then B is called the square root of A and written
√

A.
Before going further, let’s state the fundamental connection between matrix mul-

tiplication and the more elementary notion of linear combinations of vectors, as intro-
duced in §2.1.2: Given N × K matrix A and K × 1 column vector x, the product Ax
is an N × 1 column vector formed as a linear combination of the columns of A, with
scalars x1, . . . , xK. In symbols,

Ax =


a11 a12 · · · a1K
a21 a22 · · · a2K
...

...
...

aN1 aN2 · · · aNK




x1
x2
...

xK



= x1


a11
a21
...

aN1

+ x2


a12
a22
...

aN2

+ · · ·+ xK


a1K
a2K

...
aNK


=

K

∑
k=1

xk colk A

3.1.2 Matrices as Maps

One of the most useful ways to think about matrices is as maps from one vector space
to another. In particular, an N × K matrix A can be thought of as a map sending a
vector x ∈ RK into a new vector y = Ax in RN . As the next theorem shows, these
maps are always linear. In fact, they are the only linear functions. In other words, the
set of linear functions from RK to RN and the set of N × K matrices are in one-to-one
correspondence:

Theorem 3.1.1 Let T be a function from RK to RN . The following are equivalent:

(i) T is linear.

(ii) There exists an N × K matrix A such that Tx = Ax for all x ∈ RK.

Proof. ((i) =⇒ (ii)) Let T : RK → RN be linear. We aim to construct a matrix A such
that Tx = Ax for all x ∈ RK. As usual, let ek be the kth canonical basis vector in
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RK. Define an N × K matrix A by colk A = Tek. Pick any x ∈ RK. We can also write
x = ∑K

k=1 xkek, where xk is the kth element of x. By linearity, we have

Tx =
K

∑
k=1

xkTek =
K

∑
k=1

xk colk A

This is just Ax, as shown in §3.1.1.
((ii) =⇒ (i)) Fix N × K matrix A and consider the function T : RK → RN defined

by Tx = Ax. Pick any x, y in RK, and any scalars α and β. The rules of matrix
arithmetic (see fact 3.1.1) tell us that

T(αx + βy) := A(αx + βy) = Aαx + Aβy = αAx + βAy =: αTx + βTy

Hence T is linear.

When we consider the problem of solving a system of linear equations such as
Ax = b, the first issue we need to concern ourselves with is existence. Can we find
an x that satisfies this equation, for any given b? A bit of thought will convince you
that this is the same question as: Is the corresponding linear map Tx = Ax an onto
function? (See §15.2 for the definition.) Equivalently, is rng T equal to all of RN?

The range of T is all vectors of the form Tx = Ax where x varies over RK. We just
saw in §3.1.1 that, for any x ∈ RK, we have Ax = ∑K

k=1 xk colk A. It follows that rng T
is equal to the column space of A, which is by definition the span of the columns of
A. We represent it by the symbol

colspace A := span{col1 A, . . . , colK A} (3.2)

To summarize the preceding discussion, we have

colspace A = rng T = {Ax : x ∈ RK}

How large is the column space of a given matrix? To answer that question, we
have to say what “large" means. In the context of linear algebra, size of subspaces is
usually measured by dimension. The dimension of colspace A is known as the rank
of A. That is,

rank A := dim colspace A

A is said to have full column rank if rank A is equal to K, the number of its columns.
The reason we say “full” rank here is that, by definition, colspace A is the span of K
vectors. Hence, by part (i) of theorem 2.1.6 on page 23, we must have dim colspace A 6
K. In other words, the rank of A is less than or equal to K. A is said to have full column
rank when this maximum is achieved.
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When is this maximum achieved? By part (ii) of theorem 2.1.6, this will be the case
precisely when the columns of A are linearly independent. Let’s state this as a fact:

Fact 3.1.2 Let A be an N × K matrix. The following statements are equivalent:

(i) A is of full column rank.

(ii) The columns of A are linearly independent.

(iii) Ax = 0 =⇒ x = 0.

The last equivalence follows from theorem 2.1.1 on page 18.

3.1.3 Square Matrices and Invertibility

Perhaps the most common problem in linear algebra is solving systems of linear equa-
tions. A generic representation is Ax = b, where x contains the unknowns and A and
b are given. There are a variety of scenarios depending on the properties of A. For
now let’s consider the case where A is N× N, and seek conditions on A under which,
for every b ∈ RN , there exists exactly one x ∈ RN such that Ax = b.

The best way to understand this problem is as follows. Let T be the linear map
Tx = Ax. The question we are asking here is: When does each point b ∈ RN have
one and only one preimage under T? In other words, when is T a bijection?

To answer this question, we can refer back to the discussion in §2.1.7. We saw there
that linear bijections are called nonsingular functions, and we discussed a number
of equivalences for this property. The next fact replicates these equivalences in the
language of matrices.

Fact 3.1.3 For N × N matrix A, the following are equivalent:

(i) The columns of A are linearly independent.

(ii) The columns of A form a basis of RN .

(iii) rank A = N.

(iv) colspace A = RN .

(v) Ax = Ay =⇒ x = y.

(vi) Ax = 0 =⇒ x = 0.

(vii) For each b ∈ RN , the equation Ax = b has a solution.

(viii) For each b ∈ RN , the equation Ax = b has a unique solution.

These results can all be verified using theorem 2.1.7 on page 25 by checking the
corresponding implications for Tx = Ax. For example, it’s easy to see that if en is the
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nth canonical basis vector of RN , then

Ten = Aen = coln A

and hence the condition of linear independence of {Te1, . . . , TeN} in theorem 2.1.7
translates to linear independence of the columns of A.

Following common usage, if any of the equivalent conditions in fact 3.1.3 are true
we will call not just the map T but also the underlying matrix A nonsingular. If any
one—and hence all—of these conditions fail, then A is called singular.

Any bijection has an inverse (see §15.2). In fact any nonsingular map T has a
nonsingular inverse T−1 (see fact 2.1.9 on page 26). In the present setting, where T is
generated by a matrix A, the inverse T−1 is also associated with a matrix, called the
inverse of A. The next theorem gives details:

Theorem 3.1.2 For nonsingular A the following statements are true:

(i) There exists a square matrix B such that AB = BA = I, where I is the identity matrix.
The matrix B is called the inverse of A, and written as A−1.

(ii) For each b ∈ RN , the unique solution to Ax = b is given by

x = A−1b (3.3)

For this reason, nonsingular matrices are also referred to as invertible. The proof
of theorem 3.1.2 is a solved exercise (ex. 3.5.5).

Example 3.1.1 Consider the N good linear demand system

qn =
N

∑
k=1

ank pk + bn, n = 1, . . . , N

where qn and pn are quantity and price of the nth good respectively. We want to
compute the inverse demand function, which gives prices in terms of quantities. To
do so, we write our system in matrix form as q = Ap + b. If the columns of A are
linearly independent, then we can invert the system: a unique solution exists for each
fixed q and b. That solution is given by p = A−1(q− b).

As stated in the next fact, to show that A is invertible and B is the inverse of A,
it suffices to show that B is either a left inverse, in the sense that BA = I, or a right
inverse, in the sense that AB = I. A proof is given in §3.1.4.

Fact 3.1.4 Let A and B be N× N square matrices. If B is either a left or a right inverse
of A, then A is nonsingular and B is its inverse.
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The next fact collects more useful results about inverse matrices.

Fact 3.1.5 If A and B are nonsingular and α 6= 0, then

(i) (A−1)−1 = A,

(ii) (αA)−1 = α−1A−1, and

(iii) (AB)−1 = B−1A−1.

The relation (AB)−1 = B−1A−1 is just a special case of the analogous rule for
inversion of bijections (see fact 15.2.1 on page 410). But you can also prove the equality
directly by confirming that B−1A−1 is a right inverse (or left inverse) of AB.

3.1.4 Determinants

To each square matrix A, we can associate a unique number det A called the determi-
nant of A. To define it, let S(N) be the set of all bijections from {1, . . . , N} to itself. For
π ∈ S(N) we define the signature of π as

sgn(π) := ∏
m<n

π(m)− π(n)
m− n

The determinant of N × N matrix A is then given as

det A := ∑
π∈S(N)

sgn(π)
N

∏
n=1

aπ(n)n

We won’t concern ourselves with the details of this definition. For now it’s enough to
know the following facts:

Fact 3.1.6 If I is the N × N identity, A and B are N × N matrices and α ∈ R, then

(i) det I = 1,

(ii) A is nonsingular if and only if det A 6= 0,

(iii) det(AB) = det(A)det(B),

(iv) det(αA) = αN det(A), and

(v) det(A−1) = (det(A))−1.

In the 2× 2 case one can show that the determinant satisfies

det
(

a b
c d

)
= ad− bc (3.4)
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As an example of how these results can be useful, let’s go back and prove fact 3.1.4.
Fix square matrix A and suppose that a right inverse B exists, in the sense that AB = I.
This equality implies that both A and B are nonsingular, since applying det to both
sides of AB = I and using the rules in fact 3.1.6 gives det(A)det(B) = 1. It follows
that both det A and det B are nonzero. Hence both matrices are nonsingular.

To show that B is the inverse of A, we just need to check that, in addition to AB = I,
we have BA = I. To obtain the latter equality from the former, premultiply the former
by B to get BAB = B and then postmultiply by B−1 to get BA = I. The proof for the
left inverse case is similar.

3.2 Properties of Matrices

Let’s look at some special kinds of matrices and their role in linear algebra.

3.2.1 Diagonal and Triangular Matrices

A square matrix is called

• lower triangular if each element strictly above the principal diagonal is zero,

• upper triangular if every element strictly below the principal diagonal is zero,
and

• triangular if it is either upper or lower triangular.

For example, if we define

L :=

 1 0 0
2 5 0
3 6 1

 and U :=

 1 2 3
0 5 6
0 0 1


then L and U are lower and upper triangular respectively. The great advantage of
triangular matrices is that the associated linear equations are simple to solve using
either forward or backward substitution. For example, with the system 1 0 0

2 5 0
3 6 1

 x1
x2
x3

 =

 x1
2x1 + 5x2

3x1 + 6x2 + x3

 =

 b1
b2
b3


the top equation involves only x1, so we can solve for its value directly. Plugging this
value into the second equation, we can solve for x2 and so on.

Fact 3.2.1 If A = (amn) is triangular, then det A = ∏N
n=1 ann.
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An even better situation arises when our matrix is both upper and lower triangular.
These are the diagonal matrices. In other words, a square matrix A is diagonal if
all entries off the principal diagonal are zero. For example, the identity matrix is
diagonal.

The following notation is often used to define diagonal matrices:

diag(d1, . . . , dN) :=


d1 0 · · · 0
0 d2 · · · 0
...

...
...

0 0 · · · dN


With diagonal matrices it is trivial to compute powers, roots, inverses and products:

Fact 3.2.2 Let C = diag(c1, . . . , cN) and D = diag(d1, . . . , dN). The following state-
ments are true:

(i) C + D = diag(c1 + d1, . . . , cN + dN).

(ii) CD = diag(c1d1, . . . , cNdN).

(iii) Dk = diag(dk
1, . . . , dk

N) for any k ∈ N.

(iv) If dn > 0 for all n, then
√

D exists and equals diag(
√

d1, . . . ,
√

dN).

(v) If dn 6= 0 for all n, then D is nonsingular and D−1 = diag(d−1
1 , . . . , d−1

N ).

You can check parts (i) and (ii) directly. The other claims follow from (i) and (ii).

3.2.2 Trace, Transpose, and Symmetry

The trace of an N × N matrix A is the sum of the elements on its principal diagonal:

trace A =
N

∑
n=1

ann

Fact 3.2.3 If A and B are N × N matrices and α and β are two scalars, then

trace(αA + βB) = α trace(A) + β trace(B)

Moreover, if A is N ×M and B is M× N, then trace(AB) = trace(BA).

The transpose of N × K matrix A is a K × N matrix Aᵀ such that coln(A
ᵀ) =
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rown A. For example,

A :=

 10 40
20 50
30 60

 =⇒ Aᵀ
=

(
10 20 30
40 50 60

)
(3.5)

and

B :=
(

1 3 5
2 4 6

)
=⇒ Bᵀ

=

 1 2
3 4
5 6


A square matrix A is called symmetric if Aᵀ = A, or, equivalently, ank = akn for every
k and n. Note that AᵀA and AAᵀ are always well-defined and symmetric.

Fact 3.2.4 For conformable matrices A and B, transposition satisfies

(i) (Aᵀ)ᵀ = A,

(ii) (AB)ᵀ = BᵀAᵀ,

(iii) (A + B)ᵀ = Aᵀ + Bᵀ, and

(iv) (cA)ᵀ = cAᵀ for any constant c.

Fact 3.2.5 For each square matrix A, we have

(i) trace(A) = trace(Aᵀ) and

(ii) det(Aᵀ) = det(A).

(iii) If A is nonsingular, then so is Aᵀ, and its inverse is (Aᵀ)−1 = (A−1)ᵀ.

Note that if a and b are N × 1 vectors, then the matrix product aᵀb = bᵀa is equal
to ∑N

n=1 anbn, which is the same as the inner product 〈a, b〉. In what follows we’ll often
work with column vectors and use matrix product rather than inner product notation.

3.2.3 Eigenvalues and Eigenvectors

Let A be N × N. As in § 3.1.2, think of A as a linear map, so that Ax is the image of
x under A. In general, A will map x to some arbitrary new location but sometimes x
will only be scaled. That is,

Ax = λx (3.6)

for some scalar λ. If x and λ satisfy (3.6) and x is nonzero, then x is called an eigen-
vector of A, λ is called an eigenvalue, and (x, λ) is called an eigenpair.
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Figure 3.1 R rotates points by 90◦

Example 3.2.1 If

A :=
(

1 −1
3 5

)
, x :=

(
1
−1

)
and λ := 2

then (x, λ) is an eigenpair of A, since x 6= 0 and

Ax =

(
1 −1
3 5

)(
1
−1

)
=

(
2
−2

)
= 2

(
1
−1

)
= λx

Example 3.2.2 If I is the N × N identity then (x, 1) is an eigenpair of I for every
nonzero x ∈ RN .

Consider now the matrix

R :=
(

0 −1
1 0

)
that rotates any point counterclockwise by 90◦, as shown in figure 3.1. This rotation
causes the scaling in (3.6) to fail for any λ ∈ R and nonzero x ∈ R2. If, however, we
admit the possibility that λ and the elements of x can be complex, then (3.6) can hold.
For example, direct calculation confirms that λ = i and x = (1,−i)ᵀ is an eigenpair
for R. It turns out that contemplation of complex eigenpairs is useful. Here eigenpairs
are taken to be complex-valued unless explicitly stated to be real.
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Fact 3.2.6 Given N × N matrix A, the scalar λ is an eigenvalue of A if and only if

det(A− λI) = 0

Here I is the N × N identity. Exercise 3.5.17 asks you to confirm this important
fact. For the 2× 2 matrix in (3.4), the rule for the 2× 2 determinant in (3.4), fact 3.2.6
and a little bit of algebra imply that its eigenvalues are given by the two roots of the
polynomial expression

λ2 − (a + d)λ + (ad− bc) = 0

More generally, given any N × N matrix A, it can be shown via the fundamental the-
orem of algebra that there exist complex numbers λ1, . . . , λN , not necessarily distinct,
such that

det(A− λI) =
N

∏
n=1

(λn − λ) (3.7)

It is clear that each λn satisfies det(A− λnI) = 0 and hence is an eigenvalue of A. In
particular, λ1, . . . , λN is the set of eigenvalues of A, although it’s worth repeating that
these numbers are not necessarily distinct.

Fact 3.2.7 Let A be N × N and let λ1, . . . , λN be the eigenvalues defined in (3.7). The
following statements are true:

(i) det A = ∏N
n=1 λn.

(ii) trace A = ∑N
n=1 λn.

(iii) If A is symmetric, then λn ∈ R for all n.

(iv) If A is nonsingular, then the eigenvalues of A−1 are 1/λ1, . . . , 1/λN .

(v) If A is triangular, then its eigenvalues coincide with the elements on the princi-
ple diagonal.

It is immediate from (i) that A is nonsingular ⇐⇒ all its eigenvalues are nonzero.

3.2.4 Quadratic Forms

In statistics and econometrics we often encounter quadratic expressions. In general,
given symmetric N × N matrix A, the quadratic function or quadratic form on RN

associated with A is the map Q defined by

Q(x) := xᵀAx =
N

∑
j=1

N

∑
i=1

aijxixj



58 Chapter 3

3 2 1 0 1 2 3 3
2

1
0

1
2

3

0

2

4

6

8

10

12

Figure 3.2 Quadratic function Q(x) = x2
1 + x2

2

To give a simple illustration, let N = 2 and let A be the identity matrix I. In this case,

Q(x) = ‖x‖2 = x2
1 + x2

2

A 3D graph of this function is shown in figure 3.2.
One thing you’ll notice about this function is that its graph lies everywhere above

zero, or Q(x) > 0. In fact we know that ‖x‖2 is nonnegative and will be zero only
when x = 0. Hence the graph touches zero only at the point x = 0. Many other
choices of A yield a quadratic form with this property. Such A are said to be positive
definite. More generally, an N × N symmetric matrix A is called

• nonnegative definite if xᵀAx > 0 for all x ∈ RN ,

• positive definite if xᵀAx > 0 for all x ∈ RN with x 6= 0,

• nonpositive definite if xᵀAx 6 0 for all x ∈ RN , and

• negative definite if xᵀAx < 0 for all x ∈ RN with x 6= 0.

If A fits none of these categories, then A is called indefinite. Figure 3.3 shows the
graph of a negative definite quadratic function. Now the function is hill-shaped, and
0 is the unique global maximum. Figure 3.4 shows an indefinite form.

The easiest case for detecting definiteness is when the matrix A is diagonal, since

A = diag(d1, . . . , dN) implies Q(x) = d1x2
1 + · · ·+ dN x2

N
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From the right-hand expression we see that a diagonal matrix is positive definite if
and only if all diagonal elements are positive. Analogous statements are true for non-
negative, nonpositive and negative definite matrices. The next fact generalizes this
idea and is proved in §3.3.4.

Fact 3.2.8 Let A be any symmetric matrix. A is

(i) positive definite if and only if its eigenvalues are all positive,

(ii) negative definite if and only if its eigenvalues are all negative,

and similarly for nonpositive and nonnegative definite.

It follows from fact 3.2.8 that

Fact 3.2.9 If A is positive definite, then A is nonsingular, with det A > 0.

Finally, here’s a necessary (but not sufficient) condition for each kind of definite-
ness.

Fact 3.2.10 If A is positive definite, then each element ann on the principal diagonal is
positive, and the same for nonnegative, nonpositive and negative.

3.3 Projection and Decomposition

This section collects some essential results on projection and decomposition of matri-
ces. The projection material takes our abstract projection theory from §2.2 and trans-
lates it into the more concrete language of matrices.

3.3.1 Projection Matrices

As stated in theorem 2.2.2 on page 31, given any subspace S, the corresponding pro-
jection P = proj S is a linear map fromRN toRN . In view of theorem 3.1.1 on page 48,
it follows that there exists an N × N matrix P̂ such that Px = P̂x for all x ∈ RN . In
fact we’ve anticipated this in the notation P, and from now on P will also represent
the corresponding matrix. But what does this matrix look like?

Theorem 3.3.1 Let S be a subspace of RN . If P = proj S, then

P = B(BᵀB)−1Bᵀ (3.8)

for every matrix B such that the columns of B form a basis of S.



Linear Algebra and Matrices 61

This result generalizes fact 2.2.6 on page 32, which pertains to projection onto the
span of an orthonormal basis. The expression in (3.8) is more complex, but at the same
time it applies to any basis, orthonormal or otherwise. We further explore the connec-
tion between the two results in §3.3.3. For the proof of theorem 3.3.1 see exercise 3.5.30
and its solution.

The construction of P in (3.8) implicitly assumes that BᵀB is nonsingular. This is
justified because B has full column rank (see ex. 3.5.28). As usual, we let M = I− P
denote the residual projection (see page 32).

Example 3.3.1 Recall example 2.2.1 on page 30, where we found that the projection of
y ∈ RN onto span{1} is ȳ1. We can get this from (3.8) as well. Since 1 is a basis for
span{1}, we have

P = proj span{1} =⇒ P = 1(1ᵀ1)−11ᵀ =
1
N

11ᵀ (3.9)

This leads us back to Py = ȳ1, as expected. The corresponding residual projection is

Mc = I− 1
N

11ᵀ (3.10)

The reason for the subscripted c was discussed in example 2.2.3 on page 33.

Fact 3.3.1 In the setting of theorem 3.3.1, we have

(i) MB = 0

(ii) PB = B

For example, it’s easy to see that Mc in (3.10) maps 1 to 0. Exercise 3.5.31 asks you
to prove fact 3.3.1.

A square matrix A is called idempotent if AA = A.

Fact 3.3.2 Both P and M are symmetric and idempotent.

Idempotence of P and M can be checked by direct calculation. A better under-
standing is obtained by reflecting on the fact that projecting onto a subspace twice is
the same as projecting once. After one projection the vector is already in the subspace.
See fact 2.2.8 on page 33.

Fact 3.3.3 If A is any idempotent matrix, then rank A = trace A.

For orthogonal projections, we can say more:

Fact 3.3.4 Let S be a linear subspace of RN . If P = proj S and M is the residual
projection, then
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(i) rank P = trace P = dim S and

(ii) rank M = trace M = N − dim S.

To see why rank P = dim S, recall that the rank of a linear map is the dimension of
its range. When P = proj S, the range of P is exactly S.

To show that trace P = dim S also holds, we can appeal to fact 3.3.3. There’s also
a nice direct proof. See exercise 3.5.27 and its solution. Once we know that trace P =
dim S, it’s clear that trace M = N − dim S because

trace M = trace(I− P) = trace I− trace P = N − dim S

3.3.2 Overdetermined Systems of Equations

In §3.1.3 we talked about solving equations of the form Ax = b when A is square.
In statistics and econometrics, we often work the case where A is N × K and K 6 N.
When the inequality is strict, the system of equations is said to be overdetermined.

Consider the problem of whether or not there exists a vector x satisfying Ax = b
in this setting. Intuitively, when the number of equations is larger than the number of
unknowns (N > K) we may not be able to find an x that satisfies all N equations. There
are several equivalent ways to formalize this intuition. The linear map T : RK → RN

corresponding to A is Tx = Ax (see 3.1.2). We know the following statements to be
equivalent:

(i) there exists an x ∈ RK with Ax = b.

(ii) b ∈ colspace A.

(iii) b ∈ rng T.

We also know from theorem 2.1.8 on page 26 that when K < N, the function T cannot
be onto, and hence it’s possible that b lies outside the range of T.

In fact we can say more than this. When K < N, the scenario b ∈ colspace A
is in some sense very rare. The reason is that the dimension of colspace A, which is
precisely the rank of A, is less than or equal to K (see §3.1.2) and hence strictly less
than N. There is a sense in which K-dimensional subspaces of RN are negligible, and
hence the “chance” of b happening to lie in this subspace is tiny.1

As a result the standard approach is to admit that an exact solution may not exist,
and to focus instead on finding a x ∈ RK such that Ax is as close to b as possible. It’s

1. Formally, K dimensional subspaces have measure zero in RN whenever K < N. Hence every proba-
bility measure that is absolutely continuous with respect to Lebesgue measure puts zero mass on such a set.
Less formally, consider the case where N = 3 and K = 2. Then colspace A forms at most a 2-dimensional
plane inR3. Intuitively, this set has no volume inR3 because planes have no “thickness.” Similarly, while
we might visualize b as a dot in R3, as a point it is in fact infinitesimally small. Hence the chance of a
randomly chosen b lying in colspace A is zero.
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natural that “close to" is defined in terms of ordinary Euclidean norm, which leads us
to the minimization problem

min
x∈RK

‖b−Ax‖ (3.11)

This is called a least squares problem because solving (3.11) is the same as minimizing
‖b−Ax‖2 with respect to x, and the squared norm is, by definition, a sum of squares.
Assuming as before that A is N × K with K 6 N and b is N × 1, we can use the
orthogonal projection theorem to solve (3.11) as follows:

Theorem 3.3.2 If A has full column rank, then (3.11) has the unique solution

x̂ := (AᵀA)−1Aᵀb (3.12)

Proof. Let A and b be as in the statement of the theorem. Let x̂ be as in (3.12) and let
S := colspace A. By the full column rank assumption, the columns of A form a basis
for S. Hence, applying theorem 3.3.1, the orthogonal projection of b onto S is

Pb := A(AᵀA)−1Aᵀb = Ax̂ (3.13)

Moreover, since the orthogonal projection theorem gives a unique minimizer in terms
of the closest point in S to b, we must have

‖b−Ax̂‖ < ‖b− y‖ for all y ∈ S, y 6= Ax̂ (3.14)

Pick any x ∈ RK such that x 6= x̂. By the definition of S we have Ax ∈ S. In addition,
since x 6= x̂, and since A has full column rank, it must be that Ax 6= Ax̂ (ex. 3.5.4).
Hence

‖b−Ax̂‖ < ‖b−Ax‖ for all x ∈ RK, x 6= x̂

In other words, x̂ is the unique solution to (3.11).

In the expression for x̂ in (3.12), the matrix (AᵀA)−1Aᵀ is called the pseudoinverse
of A. If K = N—that is, if A is in fact square—then, under our full rank assumption,
the pseudoinverse reduces to the inverse A−1, and the least squares solution x̂ in (3.12)
reduces to the expression given in (3.3) on page 51.

What happens if we drop the assumption that the columns of A are linearly inde-
pendent? The set colspace A is still a linear subspace, and the orthogonal projection
theorem still gives us a closest point Pb to b in colspace A. Since Pb ∈ colspace A,
there still exists a vector x̂ such that Pb = Ax̂. The problem is that now there exists an
infinity of such vectors. Exercise 3.5.34 asks you to prove this.
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3.3.3 QR Decomposition

The QR decomposition of a given matrix A is a product of the form QR, where the
first matrix has orthonormal columns and the second is upper triangular. This factor-
ization has many applications, including least squares problems and the computation
of eigenvalues. The decomposition is based on Gram–Schmidt orthogonalization.

Theorem 3.3.3 If A is an N × K matrix with full column rank, then there exists a factoriza-
tion A = QR where

(i) R is K× K, upper triangular and nonsingular, and

(ii) Q is N × K, with orthonormal columns.

Proof. Let A be as stated, and let ak := colk A. Theorem 2.2.3 gives us existence
of an orthonormal set {u1, . . . , uK} such that the span of {u1, . . . , uk} equals that of
{a1, . . . , ak} for k = 1, . . . , K. In particular, ak is in the span of {u1, . . . , uk}, and hence,
appealing to fact 2.2.3 on page 28, we can write

a1 = (aᵀ1 u1)u1

a2 = (aᵀ2 u1)u1 + (aᵀ2 u2)u2

a3 = (aᵀ3 u1)u1 + (aᵀ3 u2)u2 + (aᵀ3 u3)u3

and so on. Sticking to the 3× 3 case to simplify expressions, we can stack these equa-
tions horizontally to get | | |

a1 a2 a3
| | |

 =

 | | |
u1 u2 u3
| | |

 (aᵀ1 u1) (aᵀ2 u1) (aᵀ3 u1)
0 (aᵀ2 u2) (aᵀ3 u2)
0 0 (aᵀ3 u3)


or A = QR. This is our QR decomposition.

It remains to show that R is invertible. This will be so if each term aᵀk uk is nonzero,
since the determinant is the product of these elements (see fact 3.2.7 on page 57).
Suppose, to the contrary, that aᵀk uk = 0 for some k. Then ak lies in the span of
{u1, . . . , uk−1}, which, by construction, agrees with the span of {a1, . . . , ak−1}. This
contradicts linear independence of the columns of A.

Given the decomposition A = QR, the least squares solution x̂ defined in (3.12)
can also be written as x̂ = R−1Qᵀb (ex. 3.5.32). Premultiplying by R converts this
expression to Rx̂ = Qᵀb, which is easy to solve because R is triangular (see §3.2.1).
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Figure 3.5 A is similar to B

3.3.4 Diagonalization and Spectral Theory

One important concept in dynamic systems and related fields is topological conjugacy.
If f : A→ A and g : B→ B, then g is said to be topologically conjugate to f whenever
there exists a continuous bijection τ : B→ A such that f = τ ◦ g ◦ τ−1. The idea is that
the action of f can be replicated by transporting a point into the domain of g, applying
g, and then transporting it back. This can be beneficial if g is somehow simpler than
f .

In the case of linear maps—that is, matrices—it is natural to study conjugacy in a
setting where the bijection is also required to be linear. In linear algebra this is called
similarity. In particular, a square matrix A is said to be similar to another matrix B
if there exists an invertible matrix P such that A = PBP−1. Figure 3.5 shows the
conjugate relationship of the two matrices when thought of as maps.

The next fact is a fun exercise.

Fact 3.3.5 If A is similar to B, then At is similar to Bt for all t ∈ N.

As discussed above, similarity of A to a given matrix B is most useful when B is
somehow simpler than A, or more amenable to a given operation. The simplest kind
of matrices we work with are diagonal matrices, so similarity to a diagonal matrix is
particularly desirable. If A is similar to a diagonal matrix, then A is called diagonal-
izable.

Example 3.3.2 Suppose that we want to calculate At for some given t ∈ N. If A =
PΛP−1 for some Λ = diag(λ1, . . . , λN), then by fact 3.3.5 and fact 3.2.2 on page 54,
we have At = P diag(λt

1, . . . , λt
N)P

−1. Aside from mapping backward and forward
with P, the only effort required to take the tth power of A is to take the tth power of
N scalars.

If A = PΛP−1 where Λ is diagonal, it follows immediately that the elements on
the principal diagonal of Λ are the eigenvalues of A, and that the columns of P are
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eigenvectors. To see this, observe that A = PΛP−1 implies AP = PΛ. Equating the
nth column on each side gives Apn = λnpn, where pn := coln P. Finally, pn is not the
zero vector because otherwise P would not be invertible. Let’s summarize:

Fact 3.3.6 If A = PΛP−1 for some Λ = diag(λ1, . . . , λN), then (coln P, λn) is an eigen-
pair of A for each n.

But when is A diagonalizable? The only thing we need to make the expression
A = PΛP−1 work is for P to be invertible. This explains the next fact.

Fact 3.3.7 An N × N matrix A is diagonalizable if and only if it has N linearly inde-
pendent eigenvectors.2

If A does have N linearly independent eigenvectors, then we are in good shape—
diagonalization is possible. But can we do any better? The matrix Λ cannot really
be simplified, but in some cases P can be. In particular, things are even nicer if P
has orthonormal columns—that is, its columns form an orthonormal set, and hence
an orthonormal basis of RN . These kinds of matrices are called orthogonal matrices.
Here are some nice properties of such matrices.

Fact 3.3.8 If Q and P are N × N orthogonal matrices, then

(i) Qᵀ is orthogonal and Q−1 = Qᵀ,

(ii) QP is orthogonal, and

(iii) det Q ∈ {−1, 1}.
The first result tells us is that if A = QΛQ−1 and Q has orthonormal columns,

then A = QΛQᵀ. It’s easy to see from this expression that A must be symmetric,
so if we hope to diagonalize with this extra orthonormal property, then we shouldn’t
look beyond symmetric matrices. The following fundamental theorem tells us that
this form of diagonalization is possible precisely when A is symmetric.

Theorem 3.3.4 If A is symmetric, then A can be diagonalized as A = QΛQᵀ, where Q is
an orthogonal matrix and Λ is the diagonal matrix formed from the eigenvalues of A.

This is one version of the spectral decomposition theorem. See, for example, §10.3
of Jänich (1994). QΛQᵀ is called the symmetric eigenvalue decomposition of A. It’s
not hard to see that its action on a given N × 1 vector x can be written as

Ax =
N

∑
n=1

λn(u
ᵀ
nx)un

2. If we permit the eigenvectors to be complex, then the requirement is that they form a basis ofCN , the
set of complex N-vectors. In this case there is a sense in which almost all matrices are diagonalizable.
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where λn is the nth eigenvalue of A and un = coln Q. Compare with x = ∑N
n=1(u

ᵀ
nx)un,

which is true by fact 2.2.3 on page 28.
One nice application of the spectral theorem is a proof of fact 3.2.8 on page 60,

which states among other things that symmetric matrix A is positive definite if and
only if its eigenvalues are all positive. Exercise 3.5.23 and its solution step you through
the arguments.

Fact 3.3.9 If A is nonnegative definite, then
√

A exists and equals Q
√

ΛQᵀ. The matrix√
Λ is given by diag(

√
λ1, . . . ,

√
λN).

Here QΛQᵀ is the spectral decomposition of A. To check that Q
√

ΛQᵀ is a square
root just multiply.

√
Λ exists because A is nonnegative definite, and hence its eigen-

values are nonnegative (see fact 3.2.8 and fact 3.2.2).
By combining our results on spectral decomposition with the QR decomposition

discussed in §3.3.3, we can prove the following well-known fact:

Fact 3.3.10 If A is positive definite, then there exists a nonsingular, upper triangular
matrix R such that A = RᵀR.

This decomposition is called the Cholesky decomposition. The proof is obtained
by writing

A = QΛQᵀ
= Q
√

Λ
√

ΛQᵀ
= (
√

ΛQᵀ
)
ᵀ√

ΛQᵀ

and applying the QR decomposition to
√

ΛQᵀ. This allows us to write
√

ΛQᵀ =
Q̃R, where R is nonsingular and upper triangular, and Q̃ has orthonormal columns.
Because the columns of Q̃ are orthonormal,

A = (Q̃R)
ᵀQ̃R = RᵀQ̃ᵀQ̃R = RᵀR

Our decomposition has the properties stated in fact 3.3.10.

3.3.5 Norms and Continuity

Given vector sequence {xn} inRK and any point x ∈ RK, we say that {xn} converges
to x and write xn → x if, for any ε > 0, there exists an N ∈ N such that ‖xn − x‖ < ε
whenever n > N. Another way to say this is that the real-valued sequence zn :=
‖xn − x‖ converges to zero in R as n→ ∞.

Fact 3.3.11 The following results hold:

(i) If xn → x and yn → y, then xn + yn → x + y.

(ii) If xn → x and α ∈ R, then αxn → αx.

(iii) xn → x if and only if aᵀxn → aᵀx for all a ∈ RK.
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For econometrics it is helpful if we extend the notion of convergence to matrices.
We can do this in a parallel fashion by defining norms over matrices. The matrix norm
of N × K matrix A is defined as

‖A‖ := max
{
‖Ax‖ : x ∈ RK, ‖x‖ = 1

}
(3.15)

In this expression there are two different norms in play: The left-hand side is a matrix
norm, while on the right we have the ordinary vector norm.

Given a sequence of N × K matrices An and an N × K matrix A, we say that An
converges to A if the matrix norm deviation ‖An −A‖ converges to zero in R.

While the value in (3.15) is not particularly easy to solve for in general, the defi-
nition is entirely standard, and one can show that the matrix norm behaves like the
vector norm in many ways. For example,

Fact 3.3.12 For any conformable matrices A and B, the matrix norm satisfies

(i) ‖A‖ > 0 and ‖A‖ = 0 if and only if all entries of A are zero,

(ii) ‖αA‖ = |α|‖A‖ for any scalar α,

(iii) ‖A + B‖ 6 ‖A‖+ ‖B‖, and

(iv) ‖AB‖ 6 ‖A‖‖B‖.

Compare these results with those of fact 2.1.2 on page 13.

Fact 3.3.13 For any J × K matrix A with elements ajk, we have

‖A‖ 6
√

JK max
jk
|ajk|

This bound is handy. For example, it tells us that if every element of A is close to
zero then ‖A‖must also be close to zero.

3.3.5.1 Neumann Series

Let’s look at an important result in analysis that uses matrix norms. Starting in chap-
ter 7, we will investigate dynamic systems such as xt+1 = Axt +b, where xt represents
the values of some variables of interest and A and b form the parameters in the law
of motion for xt. One question we might ask in this setting is whether or not there
exists a “stationary" vector x ∈ RN , in the sense that xt = x implies xt+1 = x. In other
words, we seek an x ∈ RN that solves the system of equations

x = Ax + b (A is N × N and b is N × 1) (3.16)
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We can get some insight by reflecting on the scalar case x = ax + b. If |a| < 1, then
this equation has the unique solution

x̄ =
b

1− a
= b

∞

∑
k=0

ak

The second equality follows from elementary results on geometric series.
It turns out that a similar result is true in RN if we replace the condition |a| < 1

with an analogous result for matrices based around the matrix norm. We begin with
the Neumann series lemma, which states the following:

Theorem 3.3.5 If A is square and ‖Aj‖ < 1 for some j ∈ N, then I−A is invertible, and

(I−A)−1 =
∞

∑
i=0

Ai (3.17)

Here I is the identity. The equality in (3.17) means that the matrix sum ∑t
i=0 Ai con-

verges to the left-hand side in matrix norm as t→ ∞. The sum is called the Neumann
series associated with A. The condition in the theorem ensures that it converges.
When the condition holds, (3.16) has the unique solution

x̄ = (I−A)−1b =
∞

∑
i=0

Aib

How to test the condition in theorem 3.3.5? The most commonly used sufficient
condition involves the spectral radius of A, which is defined as

$(A) := max{|λ| : λ is an eigenvalue of A} (3.18)

In this definition, |λ| is the modulus of the possibly complex number λ.3

Fact 3.3.14 If $(A) < 1, then ‖Aj‖ < 1 for some j ∈ N.

To understand why $(A) < 1 is sufficient for the result in the Neumann series
lemma, consider theorem 3.3.5 in this light: The claim is that ∑∞

i=0 Ai is the inverse of
I−A, so ∑t

i=0 Ai(I−A) should be close to I for large t. Evidently

t

∑
i=0

Ai(I−A) =
t

∑
i=0

Ai −
t

∑
i=0

Ai+1 = I−At+1

3. The modulus of a + ib ∈ C is (a2 + b2)1/2. If the imaginary part is zero, this reduces to the usual
notion of absolute value.
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Hence, for the result to go through, we require At → 0 as t → ∞. The case where
A is diagonalizable gives the clearest insight here, so let’s suppose, as in §3.3.4, that
A = PΛP−1 where Λ is a diagonal matrix containing the eigenvalues λ1, . . . , λN of A
on its principal diagonal. As discussed in fact 3.3.5 on page 65, we then have

At = P


λt

1 0 · · · 0
0 λt

2 · · · 0
...

...
...

0 0 · · · λt
N

 P−1

If $(A) < 1, then |λn| < 1 for all n, and hence λt
n → 0 as t→ ∞. It follows that At → 0

as required.

3.4 Further Reading

Good treatments of matrix and linear algebra include Jänich (1994) and Axler (2015).

3.5 Exercises

Ex. 3.5.1 Prove that the inverse of a nonsingular matrix is always nonsingular.

Ex. 3.5.2 Prove the claim in fact 3.2.9 on page 60 that if A is positive definite, then A
is nonsingular. If you can, prove it without invoking positivity of its eigenvalues.

Ex. 3.5.3 Prove fact 3.2.10 on page 60.

Ex. 3.5.4 Let A be N×K and full column rank. Show that x, z ∈ RK and x 6= z implies
Ax 6= Az.

Ex. 3.5.5 Prove theorem 3.1.2 on page 51. Before doing so, you might like to review
fact 2.1.9 on page 26 and theorem 3.1.1 on page 48.

Ex. 3.5.6 Let A be square. Assuming existence of the inverse A−1, show that (Aᵀ)−1 =
(A−1)ᵀ.

Ex. 3.5.7 Show that if ei and ej are the ith and jth canonical basis vectors of RN

respectively, and A is an N × N matrix, then eᵀi Aej = aij, the i, jth element of A.

Ex. 3.5.8 Suppose that A is N × K, the equation Ax = b has a solution, and K > N.
Show that the same equation has an infinity of solutions.4

4. This is the so-called “underdetermined" case, where the number of equations is less than the number
of unknowns. Intuitively, we do not have enough restrictions to pin down values uniquely.
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Ex. 3.5.9 Let

A :=
(

1 −1
−1 1

)
, B :=

(
1 2
2 1

)
Show that

(i) A is nonnegative definite.

(ii) B is not positive definite.

Ex. 3.5.10 Let A1, . . . , AJ be invertible matrices. Use induction and fact 3.1.5 on
page 52 to show that the product of these matrices is invertible, and, in particular,
that

(A1A2 · · ·AJ)
−1 = A−1

J · · ·A−1
2 A−1

1

Ex. 3.5.11 Show that for any matrix A, the matrix AᵀA is well-defined (i.e., multipli-
cation is possible), square, and nonnegative definite.

Ex. 3.5.12 Show that if A and B are positive definite and A + B is well-defined, then
A + B is also positive definite.

Ex. 3.5.13 Let A be N × K. Show that if Ax = 0 for all K × 1 vectors x, then A = 0
(i.e., every element of A is zero). Show as a corollary that if A and B are N × K and
Ax = Bx for all K× 1 vectors x, then A = B.

Ex. 3.5.14 Let I be the N × N identity matrix.

(i) Explain why I is full column rank.

(ii) Show that I is the inverse of itself.

(iii) Let A := αI. Give a condition on α such that A is positive definite.

Ex. 3.5.15 Let X := I− 2uuᵀ, where u is an N × 1 vector with ‖u‖ = 1. Show that X
is symmetric and XX = I.

Ex. 3.5.16 Recall the definition of similarity of matrices, as given in §3.3.4. Let’s write
A ∼ B if A is similar to B. Show that∼ is an equivalence relation on the set of N× N
matrices. In particular, show that, for any N × N matrices A, B, and C, we have (i)
A ∼ A, (ii) A ∼ B implies B ∼ A and (iii) A ∼ B and B ∼ C implies A ∼ C.

Ex. 3.5.17 Confirm the claim in fact 3.2.6 on page 56.

Ex. 3.5.18 Show that A is nonsingular if and only if 0 is not an eigenvalue for A.

Ex. 3.5.19 Show that the only nonsingular idempotent matrix is the identity matrix.

Ex. 3.5.20 Let 1 be N × 1 and let P := 1
N 11ᵀ. Verify that P is idempotent.
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Ex. 3.5.21 Show that, for conformable and suitably invertible matrices A, U and W,
we have

(A + UW)−1 = A−1 −A−1U
(

I + WA−1U
)−1

WA−1

Ex. 3.5.22 Let Q be an orthogonal matrix. Show that Q−1 = Qᵀ and det Q ∈ {−1, 1}
both hold.

Ex. 3.5.23 Use theorem 3.3.4 (page 66) to prove the following part of fact 3.2.8: A
symmetric matrix A is positive definite if and only if its eigenvalues are all positive.

Ex. 3.5.24 Show that if Q is an N × N orthogonal matrix, then Q is an isometry on
RN . That is, for any x, y ∈ RN , we have ‖Qx−Qy‖ = ‖x− y‖.
Ex. 3.5.25 Let P be square, symmetric and idempotent. Let S := colspace P. Show
that P = proj S.

Ex. 3.5.26 Consider theorem 3.3.2 on page 63. If N = K, what does x̂ reduce to?
Interpret.

Ex. 3.5.27 Let S be a linear subspace of RN and let P = proj S. Show that trace P =
dim S without using the idempotence connection in fact 3.3.3.

Ex. 3.5.28 Show that when N × K matrix B is full column rank, the matrix BᵀB is
nonsingular.5

Ex. 3.5.29 Let A be an N × N matrix.

(i) Show that if I−A is idempotent, then A is idempotent.

(ii) Show that if A is both symmetric and idempotent, then the matrix I − 2A is
orthogonal.

Ex. 3.5.30 Prove theorem 3.3.1 on page 60. (This takes a bit of work, of course.)

Ex. 3.5.31 Let P = B(BᵀB)−1Bᵀ, as in theorem 3.3.1, and let M be the residual projec-
tion. Show that MB = 0 using matrix algebra.

Ex. 3.5.32 Let A be an N × K matrix with linearly independent columns and QR
factorization A = QR (see §3.3.3). Fix b ∈ RN . Show that x̂ defined in (3.12) can also
be written as x̂ = R−1Qᵀb.

Ex. 3.5.33 Let’s prove the Cauchy–Schwarz inequality |xᵀy| 6 ‖x‖‖y‖ from fact 2.1.2
on page 13 via the orthogonal projection theorem. Let y and x be nonzero vectors in
RN (since if either equals zero then the inequality is trivial), and let span{x} be all
vectors of the form αx for α ∈ R.

5. Hint: In view of fact 3.2.9, it suffices to show that BᵀB is positive definite.
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(i) Letting P be the orthogonal projection onto span{x}, show that

Py =
xᵀy
xᵀx

x

(ii) Using this expression and any relevant properties of orthogonal projections (see
theorem 2.2.2 on page 31), confirm the Cauchy–Schwarz inequality.

Ex. 3.5.34 Prove the claim made after theorem 3.3.2 regarding failure of unique-
ness without full column rank. In particular, let A be N × K with linearly dependent
columns, and let Pb be the closest point to b in colspace A. Prove that there are in-
finitely many x ∈ RK such that Pb = Ax.

Ex. 3.5.35 Let A be symmetric and idempotent. Show that every eigenvalue of A is
either 0 or 1.

Ex. 3.5.36 Show that if A is positive definite, then there exists a symmetric matrix C
such that CAC = I.6

3.5.1 Solutions to Selected Exercises

Solution to Ex. 3.5.1. Let A be a nonsingular matrix. Being nonsingular, A is invert-
ible, with inverse A−1. By the definition of the inverse, we have AA−1 = A−1A = I,
where I is the identity. This tells us directly that A is an inverse for A−1. Hence A−1

is invertible, which is equivalent to nonsingularity.

Solution to Ex. 3.5.2. Let A be positive definite and consider the following: If A is
singular, then there exists nonzero x with Ax = 0 (see fact 3.1.3 on page 50). But then
xᵀAx = 0 for nonzero x. Contradiction.

Solution to Ex. 3.5.3. If x = en, then xᵀAx = ann. The claim follows.

Solution to Ex. 3.5.4. Let A, x and z be as stated in the question. Suppose, to the
contrary, that Ax = Az. Then A(x− z) = 0, which, by fact 3.1.2 on page 50, implies
x− z = 0, or x = z. Contradiction.

Solution to Ex. 3.5.5. Let A be a nonsingular matrix and let T be the linear map as-
sociated with A via Tx = Ax. Since A is nonsingular, T is also, by definition, non-
singular and hence, by fact 2.1.9 on page 26, has a nonsingular inverse T−1. Being
nonsingular, T−1 is necessarily linear, and hence, by theorem 3.1.1 on page 48, there
exists a matrix B such that T−1x = Bx for all x. By the definition of the inverse, we

6. Hint: Look at fact 3.3.9 and the argument that follows it.
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have ABx = T(T−1(x)) = x = Ix. Since this holds for any x, we have AB = I (see
ex. 3.5.13). A similar argument shows that BA = I.

Regarding the second claim, A−1b is a solution to Ax = b, since AA−1b = Ib = b.
Uniqueness follows from fact 3.1.3 (and, in particular, the fact that nonsingularity of
A includes the implication that the map x 7→ Ax is one-to-one).

Solution to Ex. 3.5.8. Since the columns of A consist of K vectors in RN , the fact that
K > N implies that not all of the columns of A are linearly independent. (Recall
theorem 2.1.3 on page 20.) It follows that Az = 0 for some nonzero z in RK, and
hence Aλz = 0 for any scalar λ. Now suppose that some x solves Ax = b. Then, for
any λ ∈ R, we have Ax + Aλz = A(x + λz) = b. This proves the claim.

Solution to Ex. 3.5.14. The solutions are as follows: (1) I is full column rank because
its columns are the canonical basis vectors, which are independent. (2) By definition,
B is the inverse of A if BA = AB = I. It follows immediately that I is the inverse
of itself. (3) A sufficient condition is α > 0. If this holds, then given x 6= 0, we have
xᵀαIx = α‖x‖2 > 0.

Solution to Ex. 3.5.15. First, X is symmetric because

Xᵀ
= (I− 2uuᵀ

)
ᵀ
= I− 2(uuᵀ

)
ᵀ
= I− 2(uᵀ

)
ᵀuᵀ

= I− 2uuᵀ
= X

Second, XX = I because

XX = (I− 2uuᵀ
)(Iᵀ − 2uuᵀ

) = II− 2I2uuᵀ
+ (2uuᵀ

)(2uuᵀ
)

= I− 4uuᵀ
+ 4uuᵀuuᵀ

= I− 4uuᵀ
+ 4uuᵀ

= I

The second last equality is due to the assumption that uᵀu = ‖u‖2 = 1.

Solution to Ex. 3.5.17. Let A be N × N and let I be the N × N identity. We have

det(A− λI) = 0 ⇐⇒ A− λI is singular

⇐⇒ ∃ x 6= 0 s.t. (A− λI)x = 0 ⇐⇒ ∃ x 6= 0 s.t. Ax = λx

In other words, λ is an eigenvalue of A.

Solution to Ex. 3.5.19. Suppose that A is both idempotent and nonsingular. From
idempotence we have AA = A. Premultiplying by A−1 gives A = I.
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Solution to Ex. 3.5.21. The claim is true because

(A + UW)

[
A−1 −A−1U

(
I + WA−1U

)−1
WA−1

]
= I + UWA−1 − (U + UWA−1U)(I + WA−1U)−1WA−1

= I + UWA−1 −U(I + WA−1U)(I + WA−1U)−1WA−1

= I + UWA−1 −UWA−1 = I

Solution to Ex. 3.5.22. Let Q be an orthogonal matrix with columns u1, . . . , uN . By
the definition of matrix multiplication, the m, nth element of QᵀQ is uᵀ

mun, which is 1
if m = n and zero otherwise. Hence QᵀQ = I. It follows from fact 3.1.4 on page 51
that Qᵀ is the inverse of Q.

To see that det Q ∈ {−1, 1}, apply the results of fact 3.1.6 (page 52) and fact 3.2.5
(page 55) to the equality QᵀQ = I to obtain det(Q)2 = 1. The claim follows.

Solution to Ex. 3.5.23. Suppose that A is symmetric with eigenvalues λ1, . . . , λN . By
theorem 3.3.4 we can decompose it as A = QΛQᵀ, where Λ is the diagonal matrix
formed from eigenvalues and Q is an orthogonal matrix. Fixing x ∈ RN and letting
y := Qᵀx, we have

xᵀAx = (Qᵀx)ᵀΛ(Qᵀx) = yᵀ
Λy = λ1y2

1 + · · ·+ λNy2
N (3.19)

Suppose that all eigenvalues are positive. Take x to be nonzero. The vector y must be
nonzero (why?), and it follows from (3.19) that xᵀAx > 0. Hence A is positive definite
as claimed.

Conversely, suppose that A is positive definite. Fix n 6 N and set x = Qen.
Evidently x is nonzero (why?). Hence xᵀAx > 0. Since Qᵀ is the inverse of Q, it
follows that

λn = eᵀnΛen = (Qᵀx)ᵀΛQᵀx = xᵀQΛQᵀx = xᵀAx > 0

Since n was arbitrary, all eigenvalues are positive.

Solution to Ex. 3.5.24. Fixing x, y ∈ RN and letting z := x− y we have

‖Qx−Qy‖2 = ‖Qz‖2 = (Qz)ᵀQz = zᵀQᵀQz = zᵀz = ‖z‖2 = ‖x− y‖2

Solution to Ex. 3.5.26. If N = K, then, in view of the full column rank assumption
and theorem 3.1.2 on page 51, the matrix A is nonsingular. By fact 3.2.5 on page 55,
Aᵀ is likewise nonsingular. Applying the usual rule for inverse of products (fact 3.1.5
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on page 52), we have

x̂ = (AᵀA)−1Aᵀb = A−1(Aᵀ
)−1Aᵀb = A−1b

This is the solution to the system Ax = b when A is square and invertible.

Solution to Ex. 3.5.27. Let S and P be as in the statement of the exercise and let K :=
dim S. We aim to show that trace P = K. Let B be a matrix such that its columns form
a basis for S. By the definition of dimension, B has K columns. Applying (3.8), we
have

trace P = trace(B(BᵀB)−1Bᵀ
)

Recalling fact 3.2.3, we rearrange to get

trace[B(BᵀB)−1Bᵀ
] = trace[(BᵀB)−1BᵀB] = trace I

where I is the K× K identity. The claim follows.

Solution to Ex. 3.5.28. Let A = BᵀB. It suffices to show that A is positive definite,
since this implies that its determinant is strictly positive, and any matrix with nonzero
determinant is nonsingular. To see that A is positive definite, pick any b 6= 0. We must
show that bᵀAb > 0. To see this, observe that

bᵀAb = bᵀBᵀBb = (Bb)ᵀBb = ‖Bb‖2

By the properties of norms, the last term is zero only when Bb = 0. But this is not true
because b 6= 0 and B is full column rank (see theorem 2.1.1).

Solution to Ex. 3.5.30. Let S and P be as stated in theorem 3.3.1 and let B be a matrix
such that the columns of B form a basis of S. Fix y ∈ RN . The claim is that ŷ :=
B(BᵀB)−1Bᵀy is the orthogonal projection of y onto S. To verify this, we need to
show that

(i) ŷ ∈ S and

(ii) y− ŷ ⊥ S.

Part (i) is true because ŷ can be written as ŷ = Bx where x := (BᵀB)−1Bᵀy. The vector
Bx is a linear combination of the columns of B. Since these columns form a basis of S,
they must lie in S. Hence ŷ ∈ S as claimed.

Regarding (ii), from the assumption that B gives a basis for S, all points in S have
the form Bx for some x ∈ RK. Thus (ii) translates to the claim that

y− B(BᵀB)−1Bᵀy ⊥ Bx for all x ∈ RK
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This is true because if x ∈ RK, then

(Bx)ᵀ[y− B(BᵀB)−1Bᵀy] = xᵀ[Bᵀy− BᵀB(BᵀB)−1Bᵀy] = xᵀ[Bᵀy− Bᵀy] = 0

Solution to Ex. 3.5.31. These are straightforward. For example,

MB = B− B(BᵀB)−1BᵀB = 0

Solution to Ex. 3.5.32. Let A, Q, R and b ∈ RN be as in the statement of the exercise.
The claim is that x̂ defined in (3.12) is equal to x̃ := R−1Qᵀb. To show this, in view of
linear independence of the columns of A, it suffices to show that Ax̃ = Ax̂, or

A(AᵀA)−1Aᵀb = QRR−1Qᵀb

After simplifying, we see it suffices to show that A(AᵀA)−1Aᵀ = QQᵀ. Since A and
Q have the same column space, this follows from theorem 3.3.1 on page 60.

Solution to Ex. 3.5.33. Regarding (i), the expression for Py given in exercise 3.5.33
can also be written as x(xᵀx)−1xᵀy. Since x is a basis for span{x}, the validity of this
expression as the projection onto span{x} follows immediately from theorem 3.3.1.
Regarding (ii), recall that orthogonal projections contract norms, so that, in particular,
‖Py‖ 6 ‖y‖ must hold. Using our expression for Py from (i) and rearranging gives
the desired bound |xᵀy| 6 ‖x‖‖y‖.

Solution to Ex. 3.5.34. By the definition of orthogonal projection, Pb ∈ colspace A,
and hence there exists a vector x such that Pb = Ax. Since A has linearly dependent
columns, there exists a nonzero vector a such that Aa = 0. Hence Aλa = 0 for all
λ ∈ R. For each such λ we have Pb = Ax = Ax + Aλa = A(x + λa). This proves the
claim.

Solution to Ex. 3.5.35. By the spectral decomposition theorem (page 66), we know
that A = QΛQᵀ where Q is an orthogonal matrix and Λ is the diagonal matrix formed
from the eigenvalues of A. It follows (see page 65) that A2 = QΛ2Qᵀ and, since A
is idempotent, that QΛQᵀ = QΛ2Qᵀ. From this we obtain Λ = Λ2. For diagonal
matrices, powers are obtained by taking powers of the diagonal elements, from which
we get λn = λ2

n for any eigenvalue λn. Hence λn ∈ {0, 1} as claimed.


