
Chapter 2

Vector Spaces

Our first technical topic for this book is linear algebra, which is one of the foundation
stones of applied mathematics in general, and econometrics and statistics in partic-
ular. Data ordered by observation are naturally stored in vectors. Related vectors
are naturally grouped into matrices. Once our data are organized this way, we need
to perform basic arithmetic operations or solve equations or quadratic minimization
problems. In this chapter we cover the foundations of vector operations used in linear
algebra. As we’ll see, the conceptual aspects of linear algebra are clearest if we begin
by stripping away details such as matrices and look instead at linear operations from
a more abstract perspective.

2.1 Vectors and Vector Space

Let’s begin with vector space and basic vector operations.

2.1.1 Vectors

For arbitrary N ∈ N, the symbol RN represents the set of all N-vectors, or vectors of
length N. A typical element has the form

x =


x1
x2
...

xN

 where xn ∈ R for each n
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Figure 2.1 Three vectors in R2

(R = R1 represents the set of all real numbers, which is the union of the rational and
irrational numbers.) While x has been written vertically, as a column of numbers, we
could also write it horizontally as x = (x1, . . . , xN). For now vectors are just a se-
quences of numbers, and it makes no difference whether we write them vertically or
horizontally. (Only when we work with matrix multiplication does it become neces-
sary to distinguish between column and row vectors.)

The vector of ones will be denoted 1 and the vector of zeros will be denoted 0:

1 :=

 1
...
1

 , 0 :=

 0
...
0


Although vectors are infinitesimal points inRN , they are often represented visually as
arrows from the origin to the point itself. Figure 2.1 gives an illustration for the case
N = 2.

In vector space theory there are two fundamental algebraic operations: vector ad-
dition and scalar multiplication. For x, y ∈ RN , their vector sum is

x + y =

 x1
...

xN

+

 y1
...

yN

 :=

 x1 + y1
...

xN + yN


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Figure 2.2 Vector addition

If α ∈ R, then the scalar product of α and x is defined to be

αx = α

 x1
...

xN

 :=

 αx1
...

αxN


Thus addition and scalar multiplication are defined in terms of ordinary addition and
multiplication in R, computed element by element, adding and multiplying respec-
tively.1 Figures 2.2 and 2.3 show examples of vector addition and scalar multiplication
in the case N = 2.

Subtraction of two vectors is performed element by element, just like addition.
Subtraction is not a primitive operation because the definition can be given in terms of
addition and scalar multiplication: x− y := x + (−1)y. An illustration of subtraction
is given in figure 2.4. One way to remember this operation is to draw a line from y to
x and then shift it to the origin.

The inner product of two vectors x and y in RN is denoted by 〈x, y〉, and defined

1. In some instances, the notion of scalar multiplication includes multiplication of vectors by complex
numbers. In what follows we will work almost entirely with real scalars. Hence scalar multiplication means
real scalar multiplication unless otherwise stated.
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as the sum of the products of their elements:

〈x, y〉 :=
N

∑
n=1

xnyn (2.1)

Fact 2.1.1 For any α, β ∈ R and any x, y, z ∈ RN , the following statements are true:

(i) 〈x, y〉 = 〈y, x〉,
(ii) 〈αx, βy〉 = αβ 〈x, y〉, and

(iii) 〈x, αy + βz〉 = α 〈x, y〉+ β 〈x, z〉.

These properties are easy to check from (2.1). For example, regarding the second
equality, pick any α, β ∈ R and any x, y ∈ RN . By the definitions of scalar multiplica-
tion and inner product respectively, we have

〈αx, βy〉 =
N

∑
n=1

αxnβyn = αβ
N

∑
n=1

xnyn = αβ 〈x, y〉

The (Euclidean) norm of a vector x ∈ RN is defined as

‖x‖ :=
√
〈x, x〉 (2.2)

and represents the length of the vector x. (In the arrow representation of vectors in
figures 2.2–2.4, the norm of the vector is equal to the length of the arrow.)

Fact 2.1.2 For any α ∈ R and any x, y ∈ RN , the following statements are true:

(i) ‖x‖ > 0 and ‖x‖ = 0 if and only if x = 0,

(ii) ‖αx‖ = |α|‖x‖,
(iii) ‖x + y‖ 6 ‖x‖+ ‖y‖, and

(iv) |〈x, y〉| 6 ‖x‖‖y‖.

Properties (i) and (ii) you can verify yourself without difficulty. Proofs for (iii)
and (iv) are a bit harder. Property (iii) is called the triangle inequality, while (iv) is
called the Cauchy–Schwarz inequality. The proof of the Cauchy–Schwarz inequality
is given as a solved exercise after we’ve built up some more tools (see ex. 3.5.33). If
you’re prepared to accept the Cauchy–Schwarz inequality for now, then the triangle
inequality follows, because, by the properties of the inner product given in fact 2.1.1,

‖x + y‖2 = 〈x + y, x + y〉 = 〈x, x〉+ 2 〈x, y〉+ 〈y, y〉 6 〈x, x〉+ 2|〈x, y〉|+ 〈y, y〉
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Figure 2.5 Linear combinations of x1, x2

Applying the Cauchy–Schwarz inequality leads to ‖x + y‖2 6 (‖x‖+ ‖y‖)2. Taking
the square root gives the triangle inequality.

Given two vectors x and y, the value ‖x − y‖ has the interpretation of being the
“distance” between these points. To see why, consult figure 2.4 again.

2.1.2 Linear Combinations and Span

One of the most elementary ways to work with vectors is to combine them using linear
operations. Given vectors x1, . . . , xK in RN , a linear combination of these vectors is a
new vector of the form

y =
K

∑
k=1

αkxk = α1x1 + · · ·+ αKxK (2.3)

for some collection of scalars α1, . . . , αK (i.e., with αk ∈ R for all k). Figure 2.5 shows
four different linear combinations y = α1x1 + α2x2 where x1, x2 are fixed vectors inR2

and the scalars α1 and α2 are varied.
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Figure 2.6 Span of X = {x1, x2}

Given any nonempty X ⊂ RN , the set of all vectors that can be made by (finite)
linear combinations of elements of X is called the span of X, and denoted by span X.
For example, the set of all linear combinations of X := {x1, . . . , xK} is

span X :=

{
all vectors

K

∑
k=1

αkxk such that α := (α1, . . . , αK) ∈ RK

}

As will be discussed below, the span of certain collections of vectors turns out to have
an intimate connection with existence of solutions to linear equations.

Example 2.1.1 By construction, the four vectors labeled y in figure 2.5 lie in the span
of X = {x1, x2}. Looking at this picture might lead you to wonder whether any vector
in R2 could be created as a linear combination of x1, x2. The answer is affirmative.
We’ll prove this in §2.1.5.

Example 2.1.2 Let X = {1} = {(1, 1)} ⊂ R2. The span of X is all vectors of the form
α1 = (α, α) with α ∈ R. This constitutes a line in the plane. Since we can take α = 0,
it follows that the origin 0 is in span X. In fact span X is the unique line in the plane
that passes through both 0 and the vector 1 = (1, 1).

Example 2.1.3 Let x1 = (3, 4, 2) and let x2 = (3,−4, 0.4). The span of {x1, x2} is
a plane in R3 that passes through both of these vectors and the origin, as shown in
figure 2.6.
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e1 = (1, 0)

e2 = (0, 1)
y = y1e1 + y2e2

Figure 2.7 Canonical basis vectors in R2

Example 2.1.4 Consider the vectors {e1, . . . , eN} ⊂ RN , where en has all zeros except
for a 1 as the nth element:

e1 :=


1
0
...
0

 , e2 :=


0
1
...
0

 , · · · , eN :=


0
0
...
1


The case of R2 is illustrated in figure 2.7. The vectors e1, . . . , eN are called the canon-
ical basis vectors of RN . One reason is that {e1, . . . , eN} spans all of RN . Here’s a
proof for N = 2: Observe that for any y ∈ R2, we have

y :=
(

y1
y2

)
=

(
y1
0

)
+

(
0
y1

)
= y1

(
1
0

)
+ y2

(
0
1

)
= y1e1 + y2e2

Thus y ∈ span{e1, e2}. Since y is an arbitrary vector in R2, we have shown that
{e1, e2} spans R2.

Example 2.1.5 Consider the set P := {(x1, x2, 0) ∈ R3 : x1, x2 ∈ R}. Graphically,
P corresponds to the flat plane in R3, where the height coordinate is always zero. If
we take e1 = (1, 0, 0) and e2 = (0, 1, 0), then given y = (y1, y2, 0) ∈ P, we have
y = y1e1 + y2e2. In other words, any y ∈ P can be expressed as a linear combination
of e1 and e2. Equivalently, P ⊂ span{e1, e2}.

The next fact follows directly from the definition of span.

Fact 2.1.3 If X, Y are nonempty subsets of RN and X ⊂ Y, then span X ⊂ span Y.
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Figure 2.8 The only solution is α1 = α2 = 0

2.1.3 Linear Independence

Linear independence is an apparently simple concept with implications that stretch
deep into many aspects of analysis. If you wish to understand when a matrix is in-
vertible, or when a system of linear equations has a unique solution, or when a least
squares estimate is uniquely defined, the most important foundational idea is linear
independence of vectors.

Let’s begin with the definition. Consider a set of vectors X := {x1, . . . , xK}. We can
surely realize the origin 0 as a linear combination of these vectors, just by setting all
of the scalars αk in ∑K

k=1 αkxk to zero. The set X is called linearly independent when
this is the only possibility. That is, X ⊂ RN is called linearly independent if

α1x1 + · · ·+ αKxK = 0 =⇒ α1 = · · · = αK = 0 (2.4)

We call X linearly dependent if it is not linearly independent.

Example 2.1.6 In figure 2.5 on page 14, the two vectors are x1 = (1.2, 1.1) and x2 =
(−2.2, 1.4). Suppose that α1 and α2 are scalars with

α1

(
1.2
1.1

)
+ α2

( −2.2
1.4

)
= 0

This translates to the linear, two-equation system shown in figure 2.8, where the un-
knowns are α1 and α2. The only solution is α1 = α2 = 0. Hence {x1, x2} is linearly
independent.
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Example 2.1.7 The set of N canonical basis vectors {e1, . . . , eN} is linearly indepen-
dent in RN . To see this, let α1, . . . , αN be coefficients such that ∑N

n=1 αnen = 0. Equiv-
alently,

α1


1
0
...
0

+ α2


0
1
...
0

+ · · ·+ αN


0
0
...
1

 =


α1
α2
...

αN

 =


0
0
...
0


In particular, αn = 0 for all n.

Example 2.1.8 Consider the vectors {x1, x2} as given in

x1 = (1, 0)

x2 = (−2, 0)

This pair fails to be linearly independent, since x2 = −2x1, and hence 2x1 + x2 = 0.

How can we interpret linear independence? One way to understand it is as an
indicator of the algebraic diversity of a given collection of vectors. In particular, in
a linearly independent set, the span is relatively large, in the sense that every vector
contributes to the span. Here’s a formal statement of this idea.

Theorem 2.1.1 Let X := {x1, . . . , xK} ⊂ RN . For K > 1, the following statements are
equivalent:

(i) X is linearly independent.

(ii) X0 is a proper subset2 of X =⇒ span X0 is a proper subset of span X.

(iii) No vector in X can be written as a linear combination of the others.

Exercise 2.4.15 asks you to check these equivalences. For now let’s just step through
them in the context of two examples. First consider the pair of canonical basis vectors
{e1, e2} in R2, as depicted in figure 2.7. As we saw in examples 2.1.4 and 2.1.7, this
pair is linearly independent, and its span is all of R2. Both vectors contribute to the
span, since removing either one reduces the span to just a line inR2. (For example, the
span of {e1} is just the horizontal axis in R2.) Neither one of this pair can be written
as a linear combination of the other.

2. A is a proper subset of B if A ⊂ B and A 6= B.
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Next, consider instead the pair {x1, x2} in example 2.1.8. These vectors fail to be
linearly independent, as shown in that example. It is also clear that dropping either
one does not change the span—it remains the horizontal axis in any case. Finally, we
saw in example 2.1.8 that x2 = −2x1, which means that each vector can be written as
a linear combination of the other.

Fact 2.1.4 If X := {x1, . . . , xK} is linearly independent, then

(i) every subset of X is linearly independent,

(ii) X does not contain 0, and

(iii) X ∪ {x} is linearly independent for all x ∈ RN such that x /∈ span X.

The proof is a solved exercise (ex. 2.4.16 on page 36).

2.1.3.1 Linear Independence and Uniqueness

As we’ll see below, the problem of existence of solutions to systems of linear equations
comes down to whether or not a given point is contained in the span of a collection
of vectors (which typically correspond to the columns of a matrix). This depends in
general on the size of the span, and the size of the span in turn depends on whether
or not the vectors are linearly independent.

Given that linear independence is the key condition for existence of solutions, it’s
surprising at first to learn that linear independence is the key condition for uniqueness
as well. As we’ll see, the connection between linear independence and uniqueness
stems from the following result.

Theorem 2.1.2 Let X := {x1, . . . , xK} be any collection of vectors in RN . The following
statements are equivalent:

(i) X is linearly independent.

(ii) For each y ∈ RN there exists at most one set of scalars α1, . . . , αK such that

y = α1x1 + · · ·+ αKxK (2.5)

Proof. ((i) =⇒ (ii)) Let X be linearly independent and pick any y ∈ RN . Suppose
that there are two sets of scalars such that (2.5) holds. In particular, suppose that y =

∑K
k=1 αkxk = ∑K

k=1 βkxk. It follows from the second equality that ∑K
k=1(αk − βk)xk = 0.

By linear independence, we then have αk = βk for all k. In other words, the represen-
tation is unique.

((ii) =⇒ (i)) If (ii) holds, then there exists at most one set of scalars such that
0 = ∑K

k=1 αkxk. Because α1 = · · · = αk = 0 has this property, we conclude that no
nonzero scalars yield 0 = ∑K

k=1 αkxk. In other words, X is linearly independent.
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2.1.4 Linear Subspaces

We will find it rewarding to study more closely the structure of spans generated by
a collection of vectors. One of the defining features of the span of a set X is that it is
“closed” under the linear operations of vector addition and scalar multiplication, in
the sense that

(i) x, y ∈ span X =⇒ x + y ∈ span X, and

(ii) y ∈ span X and γ ∈ R =⇒ γy ∈ span X.

For example, (i) holds because the sum of two linear combinations of elements of X is
another linear combination of elements of X.

The notion of a set being closed under scalar multiplication and vector addition
is important enough to have its own name: A nonempty subset S of RN is called a
linear subspace (or just subspace) of RN if

x, y ∈ S and α, β ∈ R =⇒ αx + βy ∈ S (2.6)

Example 2.1.9 It follows from the preceding discussion that if X is any nonempty
subset of RN , then span X is a linear subspace of RN . For this reason, span X is often
called the linear subspace spanned by X.

Example 2.1.10 Given any a ∈ RN , the set A := {x ∈ RN : 〈a, x〉 = 0} is a linear
subspace ofRN . To see this let x, y ∈ A and let α, β ∈ R. We claim that z := αx + βy ∈
A, or, equivalently, that 〈a, z〉 = 0. This is true because

〈a, z〉 = 〈a, αx + βy〉 = α 〈a, x〉+ β 〈a, y〉 = 0 + 0 = 0

Example 2.1.11 The entire space RN is a linear subspace of RN because any linear
combination of N-vectors is an N-vector.

To visualize subspaces inR3, think of lines and planes that pass through the origin.
Here are some elementary facts about linear subspaces:

Fact 2.1.5 If S is a linear subspace of RN , then

(i) 0 ∈ S,

(ii) X ⊂ S =⇒ span X ⊂ S, and

(iii) span S = S.

There’s also one deep result about linear subspaces we need to cover, which forms
a cornerstone of many foundational results:

Theorem 2.1.3 Let S be a linear subspace of RN . If S is spanned by K vectors, then any
linearly independent subset of S has at most K vectors.
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Figure 2.9 Any three vectors in P are linearly dependent

In other words, if there exists a set X = {x1, . . . , xK} with S ⊂ span X, then any
subset of S with more than K vectors will be linearly dependent. The proof can be
found in most texts on linear algebra (e.g., §3.5 of Jänich 1994).

Example 2.1.12 We saw in example 2.1.4 thatR2 is spanned by the pair {e1, e2}, where
ei is the ith canonical basis vector in R2. (See also figure 2.7.) It follows immediately
from this fact and theorem 2.1.3 that the three vectors in R2 shown in figure 2.1 are
linearly dependent.

Example 2.1.13 Consider the plane P := {(x1, x2, 0) ∈ R3 : x1, x2 ∈ R} from exam-
ple 2.1.5. We saw in that example that P can be spanned by two vectors. As a conse-
quence of theorem 2.1.3, we now know that any three vectors in this plane—such as
the three shown in figure 2.9—are linearly dependent.

2.1.5 Bases and Dimension

Consider again the pair x1, x2 shown in figure 2.5 on page 14, and the four different
vectors labeled y that we created from x1, x2 by way of linear combinations. Eye-
balling the figure gives the impression that any y ∈ R2 could be constructed as a
linear combination of x1, x2 with suitable choice of the scalars α1, α2. Indeed this is
true. The reason is that the pair {x1, x2} is linearly independent (see example 2.1.6
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on page 17), and any pair of linearly independent vectors in R2 spans R2. Here’s a
statement of this result for the general case:

Theorem 2.1.4 Let X := {x1, . . . , xN} be any N vectors in RN . The following statements
are equivalent:

(i) span X = RN .

(ii) X is linearly independent.

Proof. ((i) =⇒ (ii)) Suppose that span X = RN but X is not linearly independent.
Then, by theorem 2.1.1, there exists a proper subset X0 of X with span X0 = span X.
Since X0 is a proper subset of X it contains K < N elements. We now have K vec-
tors spanning RN . In particular, the span of K vectors contains the N > K linearly
independent vectors e1, . . . , eN . This contradicts theorem 2.1.3.

((ii) =⇒ (i)) Suppose that X is linearly independent and yet there exists an x ∈ RN

with x /∈ span X. By fact 2.1.4, it follows that the N + 1 element set X ∪ {x} ⊂ RN

is linearly independent. Since RN is spanned by the N canonical basis vectors, this
statement also contradicts theorem 2.1.3.

We now come to a key definition. Let S be a linear subspace of RN and let B ⊂ S.
The set B is called a basis of S if

(i) B spans S and

(ii) B is linearly independent.

The plural of basis is bases. In view of theorem 2.1.2, when B is a basis of S, each point
in S has exactly one representation as a linear combination of elements of B.

It follows immediately from theorem 2.1.4 that any N linearly independent vectors
in RN form a basis of RN .

Example 2.1.14 The set of canonical basis vectors {e1, . . . , eN} ⊂ RN described in
example 2.1.4 is linearly independent and spans all of RN . As a result, it provides a
basis for RN—as anticipated by the name.

Example 2.1.15 The pair {x1, x2} from figure 2.5 (page 14) forms a basis of R2.

Example 2.1.16 The pair {e1, e2} is a basis for the set P defined in example 2.1.5.

Here are the two most fundamental results about bases:

Theorem 2.1.5 If S is a linear subspace of RN distinct from {0}, then

(i) S has at least one basis and

(ii) every basis of S has the same number of elements.
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The proof of part (i) is not particularly hard. See, for example, section 3.2 of Jänich
(1994). Part (ii) follows from theorem 2.1.3 and is left as an exercise (ex. 2.4.17).

If S is a linear subspace ofRN , then the common number identified in theorem 2.1.5
is called the dimension of S, and written as dim S.

Example 2.1.17 For P := {(x1, x2, 0) ∈ R3 : x1, x2 ∈ R} we have dim P = 2 because
{e1, e2} ⊂ R3 is a basis (see example 2.1.5) and {e1, e2} has two elements.

Example 2.1.18 dimRN = N because {e1, . . . , eN} ⊂ RN is a basis.

Example 2.1.19 A line {αx ∈ RN : α ∈ R} through the origin is one dimensional.

In RN the singleton subspace {0} is said to have zero dimension.
If we take a set of K vectors, then how large will its span be in terms of dimension?

The next theorem answers this question.

Theorem 2.1.6 Let X := {x1, . . . , xK} ⊂ RN . Then

(i) dim span X 6 K and

(ii) dim span X = K if and only if X is linearly independent.

Exercise 2.4.19 asks you to prove these results.
Let’s finish this section with facts that can be deduced from the preceding results.

Fact 2.1.6 The following statements are true:

(i) Let S and S′ be K-dimensional linear subspaces of RN . If S ⊂ S′, then S = S′.

(ii) If S is an M-dimensional linear subspace of RN and M < N, then S 6= RN .

Part (i) of fact 2.1.6 implies that the only N-dimensional linear subspace of RN is
RN itself.

2.1.6 Linear Maps

The single most important class of functions in applied mathematics is the linear func-
tions. In high school we are told that linear functions as those whose graph is a straight
line. Here’s a better definition: A function T : RK → RN is linear if

T(αx + βy) = αTx + βTy for any x, y ∈ RK and α, β ∈ R (2.7)

(Following a common convention, we’ll write linear functions with uppercase letters
and omit the parenthesis around the argument where no confusion arises. This con-
vention has come about because the action of linear maps is essentially isomorphic to
multiplication of vectors by matrices. More on that topic soon.)
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Example 2.1.20 The function T : R→ R defined by Tx = 2x is linear because, for any
α, β, x, y in R, we have T(αx + βy) = 2(αx + βy) = α2x + β2y = αTx + βTy.

Example 2.1.21 Given a ∈ RK, the function T : RK → R defined by Tx = 〈a, x〉 is
linear. Indeed, by the rules for inner products on page 13, for any α, β inR and x, y in
RK we have

T(αx + βy) = 〈a, αx + βy〉 = α 〈a, x〉+ β 〈a, y〉 = αTx + βTy

Example 2.1.22 The function f : R → R defined by f (x) = x2 fails to be linear be-
cause, if α = β = x = y = 1, then f (αx + βy) = 4, while α f (x) + β f (y) = 2.

Example 2.1.23 The function f : R→ R defined by f (x) = 1+ 2x is not linear because
if α = β = x = y = 1, then f (αx + βy) = f (2) = 5, while α f (x) + β f (y) = 3 + 3 =
6. This kind of function is called an affine function. We see that identifying linear
functions with functions whose graph is a straight line is not correct.

The definition in (2.7) tells us directly that if T is linear then the exchange of order
in T[∑K

k=1 αkxk] = ∑K
k=1 αkTxk will be valid whenever K = 2. A simple inductive argu-

ment extends this to arbitrary K. As an application of this fact, consider the following:
As discussed in example 2.1.4, any x ∈ RK can be expressed in terms of the basis vec-
tors as ∑K

k=1 αkek, for some suitable choice of scalars. Hence, for a linear function T,
its range, denoted rng T, is the set of all points of the form

Tx = T

[
K

∑
k=1

αkek

]
=

K

∑
k=1

αkTek

as we vary α1, . . . , αK over all scalar combinations. (See §15.2 for the definition of
range.) In other words, the range of a linear map is the span of the image of the
canonical basis functions. This will prove to be important later on. The next fact
summarizes.

Fact 2.1.7 If T : RK → RN is a linear map, then

rng T = span V, where V := {Te1, . . . , TeK}

Soon we’ll turn to the topic of determining when linear functions are bijections,
an issue that is intimately related to invertibility of matrices. To this end it’s useful
to note that, for linear functions, the property of being one-to-one can be determined
by examining the set of points it maps to the origin. To express this idea, for any
T : RK → RN , we define the null space or kernel of T as

null T := {x ∈ RK : Tx = 0}
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F(x) = y

outcomemodel

what x led to outcome y?

Figure 2.10 Inverse problem

Fact 2.1.8 If T : RK → RN is linear, then

(i) null T is a linear subspace of RK and

(ii) null T = {0} if and only if T is one-to-one.

The proofs are straightforward. For example, if Tx = Ty for some x, y ∈ RK, then
T(x − y) = 0, and hence x − y ∈ null T. So if null T = {0}, then Tx = Ty implies
x = y, which means that T is one-to-one.

2.1.7 Linear Independence and Bijections

Many statistical problems are “inverse" problems, in the sense that we observe out-
comes and wish to determine what generated them. For example, we might want to
know what consumer preferences led to observed market behavior, or what kinds of
expectations led to a given shift in exchange rates.

Consider the generic inverse problem in figure 2.10, where F and y are given, and
we seek to obtain the unknown object x. Two immediate questions are: Does this
problem have a solution? and Is it unique? To provide general answers to these ques-
tions, we need to know whether F is one-to-one, onto, etc. (see §15.2 for definitions
and further discussion). The best case is when F is a bijection, for then we know that
a unique solution x exists for every possible y.

In general, functions can be onto, one-to-one, bijections, or none of the above.
However, for linear functions from RN to RN , the first three properties are all equiv-
alent! The next theorem gives details.

Theorem 2.1.7 If T is a linear function fromRN toRN , then all of the following are equiva-
lent:

(i) T is a bijection.

(ii) T is onto.

(iii) T is one-to-one.

(iv) null T = {0}.
(v) V := {Te1, . . . , TeN} is linearly independent.
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Figure 2.11 The case of N = 1, nonsingular and singular

(vi) V := {Te1, . . . , TeN} forms a basis of RN .

If any one of these conditions is true, then T is called nonsingular. (Equivalently,
a nonsingular function is a linear bijection.) Otherwise T is called singular. The proof
of theorem 2.1.7 is a solved exercise (ex. 2.4.21). Figure 2.11 provides intuition for the
case of N = 1. In the top panel all conditions in theorem 2.1.7 are satisfied. In the
lower panel none are. In particular, we can see that the condition for T to be one-to-
one and onto is exactly the same (i.e., α 6= 0).

If T is nonsingular, then, being a bijection, it must have an inverse function T−1

that is also a bijection (fact 15.2.1 on page 410). It turns out that this inverse function
inherits the linearity of T (see ex. 2.4.20). In summary,

Fact 2.1.9 If T : RN → RN is nonsingular, then so is T−1.

Theorem 2.1.7 only applies to linear maps between spaces of the same dimension.
When linear functions map across distinct dimensions the situation changes:

Theorem 2.1.8 For a linear map T from RK → RN , the following statements are true:

(i) If K < N, then T is not onto.

(ii) If K > N, then T is not one-to-one.

The most important implication is that if N 6= K, then we can forget about bijec-
tions. The proof of theorem 2.1.8 is a solved exercise (ex. 2.4.22).
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x z

Figure 2.12 x ⊥ z

2.2 Orthogonality

One of the core concepts in this book is orthogonality, not just of vectors but also of
more complex objects such as random variables. Let’s begin with the vector definition
and some key implications.

2.2.1 Definition and Basic Properties

Let x and z be vectors in RN . If 〈x, z〉 = 0, then we write x ⊥ z and call x and z
orthogonal. InR2, x and z are orthogonal when they are perpendicular to one another,
as in figure 2.12. For x ∈ RN and S ⊂ RN , we say that x is orthogonal to S if x ⊥ z
for all z ∈ S (figure 2.13), and we write x ⊥ S. A set of vectors {z1, . . . , zK} ⊂ RN

is called an orthogonal set if its elements are mutually orthogonal, that is, if zj ⊥ zk
whenever j and k are distinct.

Fact 2.2.1 (Pythagorian law) If {z1, . . . , zK} is an orthogonal set, then

‖z1 + · · ·+ zK‖2 = ‖z1‖2 + · · ·+ ‖zK‖2

Orthogonal sets and linear independence are closely related. For example,

Fact 2.2.2 If O ⊂ RN is an orthogonal set and 0 /∈ O, then O is linearly independent.

While not every linearly independent set is orthogonal, an important partial con-
verse to fact 2.2.2 is given in §2.2.4.
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x
S

Figure 2.13 x ⊥ S

An orthogonal set O ⊂ RN is called an orthonormal set if ‖u‖ = 1 for all u ∈
O. An orthonormal set that lies in and spans a linear subspace S of RN is called an
orthonormal basis of S. It is, necessarily, a basis of S. (Why?) The standard example
of an orthonormal basis for all of RN is the canonical basis {e1, . . . , eN}.

By definition, if O = {u1, . . . , uK} is any basis of S, then, for any x ∈ S, we can find
unique scalars α1, . . . , αK such that x = ∑K

k=1 αkuk. While the values of these scalars
are not always transparent, for an orthonormal basis they are easy to compute:

Fact 2.2.3 If {u1, . . . , uK} is an orthonormal set and x ∈ span{u1, . . . , uK}, then

x =
K

∑
k=1
〈x, uk〉 uk (2.8)

The proof is an exercise. Given S ⊂ RN , the orthogonal complement of S is de-
fined as

S⊥ := {x ∈ RN : x ⊥ S}
Figure 2.14 gives an example in R2.

Fact 2.2.4 For any nonempty S ⊂ RN , the set S⊥ is a linear subspace of RN .

Indeed, if x, y ∈ S⊥ and α, β ∈ R, then αx + βy ∈ S⊥ because, for any z ∈ S,

〈αx + βy, z〉 = α 〈x, z〉+ β 〈y, z〉 = α× 0 + β× 0 = 0

Fact 2.2.5 For S ⊂ RN , we have S ∩ S⊥ = {0}.
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S
S⊥

Figure 2.14 Orthogonal complement of S

2.2.2 The Orthogonal Projection Theorem

A central problem in linear regression and many other applications is approximation
of some y of RN by an element of a given subspace S of RN . Stated more precisely,
the problem is, given y and S, to find the closest element ŷ of S to y. Closeness is in
terms of Euclidean norm, so ŷ is the minimizer of ‖y− z‖ over all z ∈ S:

ŷ = argmin
z∈S

‖y− z‖ (2.9)

The next theorem tells us that a solution ŷ to this minimization problem always exists,
as well as providing a means to identify it.

Theorem 2.2.1 (Orthogonal Projection Theorem I) Let y ∈ RN and let S be any nonempty
linear subspace of RN . The following statements are true:

(i) The optimization problem (2.9) has exactly one solution.

(ii) ŷ ∈ RN solves (2.9) if and only if ŷ ∈ S and y− ŷ ⊥ S.

The unique solution ŷ is called the orthogonal projection of y onto S.

The intuition is easy to grasp from a graphical presentation. Figure 2.15 illustrates.
Looking at the figure, we can see that the closest point to y in S is the one point ŷ ∈ S
such that y− ŷ is orthogonal to S.

For a full proof see, for example, theorem 5.16 of Çinlar and Vanderbei (2013). Let’s
just cover sufficiency of the conditions in part (ii): Let y ∈ RN and let S be a linear
subspace of RN . Let ŷ be a vector in S satisfying y− ŷ ⊥ S. Let z be any other point
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Figure 2.15 Orthogonal projection

in S. We have

‖y− z‖2 = ‖(y− ŷ) + (ŷ− z)‖2 = ‖y− ŷ‖2 + ‖ŷ− z‖2

The second equality follows from y− ŷ ⊥ S (why?) and the Pythagorian law. Since
z was an arbitrary point in S, we have ‖y− z‖ > ‖y− ŷ‖ for all z ∈ S. Hence (2.9)
holds.

Example 2.2.1 Let y ∈ RN and let 1 ∈ RN be the vector of ones. Let S be the set of
constant vectors in RN , meaning that all elements are equal. Evidently S is the span
of {1}. The orthogonal projection of y onto S is ŷ := ȳ1, where ȳ := 1

N ∑N
n=1 yn. To

see this, note that ŷ ∈ S clearly holds. Hence we only need to check that y − ŷ is
orthogonal to S, for which it suffices to show that 〈y− ŷ, 1〉 = 0 (see ex. 2.4.14 on
page 36). This is true because

〈y− ŷ, 1〉 = 〈y, 1〉 − 〈ŷ, 1〉 =
N

∑
n=1

yn − ȳ 〈1, 1〉 = 0

2.2.3 Projection as a Mapping

In view of theorem 2.2.1, for each fixed linear subspace S in RN , the operation

y 7→ the orthogonal projection of y onto S
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Figure 2.16 Orthogonal projection under P

is a well-defined function from RN to RN . The function is typically denoted by P.
For each y ∈ RN , the symbol Py represents the image of y under P, which is the
orthogonal projection ŷ. P is called the orthogonal projection onto S, and we write

P = proj S

Figure 2.16 illustrates the action of P on two different vectors.
Using this notation, we can restate the orthogonal projection theorem, as well as

adding some properties of P:

Theorem 2.2.2 (Orthogonal Projection Theorem II) Let S be any linear subspace of RN ,
and let P = proj S. The following statements are true:

(i) P is a linear function.

Moreover, for any y ∈ RN , we have

(ii) Py ∈ S,

(iii) y− Py ⊥ S,

(iv) ‖y‖2 = ‖Py‖2 + ‖y− Py‖2,

(v) ‖Py‖ 6 ‖y‖,
(vi) Py = y if and only if y ∈ S, and

(vii) Py = 0 if and only if y ∈ S⊥.

These results are not difficult to prove, given theorem 2.2.1. Linearity of P is left as
an exercise (ex. 2.4.29). Parts (ii)–(iii) follow directly from theorem 2.2.1. To see (iv),
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observe that y can be decomposed as y = Py + y− Py. Now apply the Pythagorean
law (page 27). Part (v) follows from part (iv). Part (vi) follows from the definition of
Py as the closest point to y in S. Part (vii) is an exercise.

Fact 2.2.6 If {u1, . . . , uK} is an orthonormal basis for S, then, for each y ∈ RN ,

Py =
K

∑
k=1
〈y, uk〉 uk (2.10)

Fact 2.2.6 is a fundamental result. It’s true because the right-hand side of (2.10)
clearly lies in S (being a linear combination of basis functions) and, for any uj in the
basis set

〈
y− Py, uj

〉
=
〈
y, uj

〉
−

K

∑
k=1
〈y, uk〉

〈
uk, uj

〉
=
〈
y, uj

〉
−
〈
y, uj

〉
= 0

This is enough to confirm that y− Py ⊥ S (see ex. 2.4.14).

Example 2.2.2 Recall example 2.2.1, where we showed that the projection of y ∈ RN

onto span{1} is ȳ1, where ȳ is the “sample mean" ȳ := 1
N ∑N

n=1 yn. We can see
this from (2.10) too. To apply (2.10), we just need to find an orthonormal basis for
span{1}. The obvious candidate is {N−1/21}. Applying (2.10) now gives Py =〈

N−1/21, y
〉

N−1/21. As before, this leads us to ȳ1.

There’s one more essential property of P that we need to make note of: Suppose
that we have two linear subspaces S1 and S2 of RN , where S1 ⊂ S2. What then is the
difference between (1) first projecting a point onto the bigger subspace S2, and then
projecting the result onto the smaller subspace S1, and (2) projecting directly to the
smaller subspace S1? The answer is none—we get the same result:

Fact 2.2.7 Let Si be a linear subspace ofRN for i = 1, 2 and let Pi = proj Si. If S1 ⊂ S2,
then

P1P2y = P2P1y = P1y for all y ∈ RN

2.2.4 The Residual Projection

Consider the setting of the orthogonal projection theorem. Our interest is in projecting
y onto S, where S is a linear subspace of RN . The closest point to y in S is ŷ := Py
where P = proj S. Unless y was already in S, some error y − Py remains. Tracking
and managing this residual will be important to us, so let’s introduce an operator M
that takes y ∈ RN and returns the residual. We can define it as

M := I− P (2.11)
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Figure 2.17 The residual projection

where I is the identity mapping on RN . For any y we have My = Iy− Py = y− Py
as required. In regression analysis M shows up as a matrix called the “annihilator.”
This is a pretty cool name, but it’s also not a great description of its function. In what
follows we will refer to M as the residual projection.

Example 2.2.3 Recall example 2.2.1, where we found that the projection of y ∈ RN

onto span{1} is ȳ1. The residual projection is Mcy := y− ȳ1. In econometric appli-
cations, we’ll view this as a vector of errors obtained when the elements of a vector
are predicted by its sample mean. The subscript reminds us that Mc centers vectors
around their mean.

Fact 2.2.8 Let S be a linear subspace of RN , let P = proj S, and let M be the residual
projection as defined in (2.11). The following statements are true:

(i) M = proj S⊥.

(ii) y = Py + My for any y ∈ RN .

(iii) Py ⊥ My for any y ∈ RN .

(iv) My = 0 if and only if y ∈ S.

(v) P ◦M = M ◦ P = 0.

Part (v) means that PMy = MPy = 0 for all y ∈ RN . Figure 2.17 illustrates the
action of M. The results in fact 2.2.8 can be seen in the figure.

If S1 and S2 are two subspaces ofRN with S1 ⊂ S2, then S⊥2 ⊂ S⊥1 . This means that
the result in fact 2.2.7 is reversed for M.
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Fact 2.2.9 Let S1 and S2 be two subspaces of RN and let y ∈ RN . Let M1 and M2 be
the projections onto S⊥1 and S⊥2 respectively. If S1 ⊂ S2, then

M1M2y = M2M1y = M2y

As an application of the ideas above, let’s now discuss a procedure called Gram–
Schmidt orthogonalization, which provides a fundamental link between the two ma-
jor concepts discussed in this chapter: linear independence and orthogonality. It can
be considered as a partial converse to fact 2.2.2 on page 27.

Theorem 2.2.3 For each linearly independent set {b1, . . . , bK} ⊂ RN , there exists an or-
thonormal set {u1, . . . , uK} with

span{b1, . . . , bk} = span{u1, . . . , uk} for k = 1, . . . , K

The proof of theorem 2.2.3 provides an important algorithm for generating the
orthonormal set {u1, . . . , uK}. The first step is to construct orthogonal sets {v1, . . . , vk}
with span identical to {b1, . . . , bk} for each k. The construction of {v1, . . . , vK} uses the
so called Gram–Schmidt orthogonalization procedure. First, for each k = 1, . . . , K, let

(i) Bk := span{b1, . . . , bk},

(ii) Pk := proj Bk and Mk := proj B⊥k ,

(iii) vk := Mk−1bk where M0 is the identity mapping, and

(iv) Vk := span{v1, . . . , vk}.

In step (iii) we map each successive element bk into a subspace orthogonal to
the subspace generated by b1, . . . , bk−1. In the exercises you are asked to show that
{v1, . . . , vK} is an orthogonal set and Vk = Bk for all k (ex. 2.4.34). To complete the
argument, we introduce the vectors uk by uk := vk/‖vk‖ and confirm that this set
of vectors {u1, . . . , uk} is orthonormal with span equal to Vk. These results are also
(solved) exercises.

2.3 Further Reading

Good texts on vector spaces include Marcus and Minc (1988) and Jänich (1994).
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2.4 Exercises

Ex. 2.4.1 Show that inner products of linear combinations satisfy the following rule:〈
K

∑
k=1

αkxk,
J

∑
j=1

β jyj

〉
=

K

∑
k=1

J

∑
j=1

αkβ j
〈
xk, yj

〉
Ex. 2.4.2 Show that the vectors (1, 1) and (−1, 2) are linearly independent.

Ex. 2.4.3 Use fact 2.1.2 on page 13 to show that if y ∈ RN is such that 〈y, x〉 = 0 for
every x ∈ RN , then y = 0.

Ex. 2.4.4 Fix nonzero x ∈ RN . Consider the optimization problem

max
y
〈x, y〉 subject to y ∈ RN and ‖y‖ = 1

Show that the maximizer is x̂ := (1/‖x‖)x.3

Ex. 2.4.5 Is R2 a linear subspace of R3? Why or why not?

Ex. 2.4.6 Show that if T : RK → RN is a linear function, then 0 ∈ ker T.

Ex. 2.4.7 Let {x1, x2} be a linearly independent set inR2 and let γ be a nonzero scalar.
Is it true that {γx1, γx2} is also linearly independent?

Ex. 2.4.8 Is it true that

z :=

−3.9
12.4
−6.8

 ∈ span{x1, x2, x3} when x1 =

−4
0
0

 , x2 =

0
2
0

 , x3 =

 0
0
−1


Why or why not?

Ex. 2.4.9 Show that if S and S′ are two linear subspaces of RN , then S ∩ S′ is also a
linear subspace of RN .

Ex. 2.4.10 Prove fact 2.1.5 on page 20.

Ex. 2.4.11 Let Q := {(x1, x2, x3) ∈ R3 : x2 = x1 + x3}. Is Q a linear subspace of R3?

Ex. 2.4.12 Let Q := {(x1, x2, x3) ∈ R3 : x2 = 1}. Is Q a linear subspace of R3?

3. Hint: There’s no need to go taking derivatives and setting them equal to zero. An easier proof exists.
If you’re stuck, consider the Cauchy–Schwarz inequality.
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Ex. 2.4.13 Show that if T : RN → RN is a linear function and λ is any scalar, then
E := {x ∈ RN : Tx = λx} is a linear subspace of RN .

Ex. 2.4.14 Show that if B ⊂ S with span B = S, then x ⊥ S if and only if x ⊥ b for all
b ∈ B.

Ex. 2.4.15 Prove the equivalences in theorem 2.1.1 on page 18.

Ex. 2.4.16 Prove fact 2.1.4 on page 19.

Ex. 2.4.17 Show that if S is a linear subspace ofRN then every basis of S has the same
number of elements.

Ex. 2.4.18 Prove fact 2.1.6 on page 23.

Ex. 2.4.19 Prove theorem 2.1.6 on page 23.

Ex. 2.4.20 Show that if T : RN → RN is nonsingular (i.e., a linear bijection), then T−1

is also linear.

Ex. 2.4.21 Prove theorem 2.1.7 on page 25.

Ex. 2.4.22 Prove theorem 2.1.8 on page 26.

Ex. 2.4.23 Find two unit vectors (i.e., vectors with norm equal to one) that are orthog-
onal to (1,−2).

Ex. 2.4.24 Prove the Pythagorean law (fact 2.2.1 on page 27). See ex. 2.4.1 if you need
a hint.

Ex. 2.4.25 Prove fact 2.2.2 on page 27.

Ex. 2.4.26 Prove fact 2.2.8 using theorems 2.2.1 and 2.2.2.

Ex. 2.4.27 Prove fact 2.2.5: If S ⊂ RN , then S ∩ S⊥ = {0}.

Ex. 2.4.28 Prove fact 2.2.7 on page 32.

Ex. 2.4.29 Let P be the orthogonal projection described in theorem 2.2.2 (page 31).
Confirm that P is a linear function from RN to RN .

Ex. 2.4.30 Let S := {(x1, x2, x3) ∈ R3 : x3 = 0} and let y := 1 := (1, 1, 1). Using the
orthogonal projection theorem, find the closest point in S to y.

Ex. 2.4.31 Let S be any linear subspace ofRN and let P = proj S (see theorem 2.2.2 on
page 31). Is P one-to-one as a function on RN?
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Ex. 2.4.32 Prove the reverse triangle inequality. That is, given two vectors x and y,
show that |‖x‖ − ‖y‖| 6 ‖x− y‖.4

Ex. 2.4.33 Show that Py = 0 implies y ∈ S⊥.

In the next three exercises, the notation is as given in theorem 2.2.3 and the discus-
sion immediately afterwards.

Ex. 2.4.34 Show that Vk = Bk for all k.

Ex. 2.4.35 Show that {v1, . . . , vK} is an orthogonal set.

Ex. 2.4.36 Show that {u1, . . . , uk} is an orthonormal set with span equal to Vk for all
k.

2.4.1 Solutions to Selected Exercises

Solution to Ex. 2.4.4. Fix nonzero x ∈ RN . Let x̂ := x/‖x‖. Comparing this point
with any other y ∈ RN satisfying ‖y‖ = 1, the Cauchy–Schwarz inequality yields

〈y, x〉 6 | 〈y, x〉 | 6 ‖y‖‖x‖ = ‖x‖ = 〈x, x〉
‖x‖ = 〈x̂, x〉

Hence x̂ is the maximizer, as claimed.

Solution to Ex. 2.4.5. This is a bit of a trick question. To solve it, you need to look
carefully at the definitions (as always). A linear subspace of R3 is a subset of R3 with
certain properties. R3 is a collection of 3-tuples (x1, x2, x3) where each xi is a real
number. Elements ofR2 are 2-tuples (pairs), and hence not elements ofR3. Therefore
R2 is not a subset of R3, and, in particular, not a linear subspace of R3.

Solution to Ex. 2.4.6. Let T be as in the question. We need to show that T0 = 0. Here’s
one proof. We know from the definition of scalar multiplication that 0x = 0 for any
vector x. Let x and y be any vectors in RK and apply the definition of linearity to
obtain

T0 = T(0x + 0y) = 0Tx + 0Ty = 0 + 0 = 0

Solution to Ex. 2.4.7. The answer is yes. Suppose, to the contrary, that {γx1, γx2} is
linearly dependent. Then one element can be written as a linear combination of the
others. In our setting with only two vectors, this translates to γx1 = αγx2 for some α.
Since γ 6= 0, we can multiply each side by 1/γ to get x1 = αx2. This contradicts linear
independence of {x1, x2}.

4. Hint: Use the triangle inequality.
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Solution to Ex. 2.4.8. There is an easy way to do this: We know that any linearly in-
dependent set of 3 vectors in R3 will span R3. Since z ∈ R3, this will include z. So all
we need to do is show that the 3 vectors are linearly independent. To this end, take
any scalars α1, α2, α3 with

α1

−4
0
0

+ α2

0
2
0

+ α3

 0
0
−1

 = 0 :=

0
0
0


Written as three equations, this says that −4α1 = 0, 2α2 = 0, and −1α3 = 0. Hence
α1 = α2 = α3 = 0, and therefore the set is linearly independent.

Solution to Ex. 2.4.9. Let S and S′ be two linear subspaces ofRN . Fix x, y ∈ S∩ S′ and
α, β ∈ R. We claim that z := αx + βy ∈ S ∩ S′. To see this, note that since x, y ∈ S and
S is a linear subspace, we have z ∈ S; and since x, y ∈ S′ and S′ is a linear subspace,
we have z ∈ S′. It follows that z ∈ S ∩ S′, as was to be shown.

Solution to Ex. 2.4.11. If a := (1,−1, 1), then Q is all x with 〈a, x〉 = 0. This set is a
linear subspace of R3, as shown in example 2.1.10.

Solution to Ex. 2.4.15. We are asked to verify the equivalences in theorem 2.1.1 on
page 18 for the set X := {x1, . . . , xK}. We will prove the cycle (i) =⇒ (ii) =⇒ (iii)
=⇒ (i).

((i) =⇒ (ii)) We aim to show that if (i) holds and X0 is a proper subset of X, then
span X0 is a proper subset of span X. To simplify notation let’s take X0 := {x2, . . . , xK}.
Suppose, to the contrary, that span X0 = span X. Since x1 ∈ span X, we must then
have x1 ∈ span X0, from which we deduce the existence of scalars α2, . . . , αK such that
0 = −x1 + α2x2 + · · ·+ αKxK. Since −1 6= 0, this contradicts part (i).

((ii) =⇒ (iii)) The claim is that when (ii) holds, no vector in X can be written as
a linear combination of the others. Suppose, to the contrary, that x1 = α2x2 + · · · +
αKxK, say. Let y ∈ span X, so that y = β1x1 + · · · + βKxK. If we use the preceding
equality to substitute out x1, we get y as a linear combination of {x2, . . . , xK} alone. In
other words, any element of span X is in the span of the proper subset {x2, . . . , xK}.
Contradiction.

((iii) =⇒ (i)) The final claim is that α1 = · · · = αK = 0 whenever α1x1 + · · · +
αKxK = 0. Suppose, to the contrary, that there exist scalars with α1x1 + · · ·+ αKxK = 0
and yet αk 6= 0 for at least one k. It follows immediately that xk = (1/αk)∑j 6=k αjxj.
This contradicts (iii).

Solution to Ex. 2.4.16. The aim is to prove fact 2.1.4 on page 19. Regarding the part
(i), let’s take X as linearly independent and show that the subset X0 := {x1, . . . , xK−1}
is linearly independent. (The argument for more general subsets is similar.) Suppose,
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to the contrary, that X0 is linearly dependent. Then, by the definition, we can take
α1, . . . , αK−1 not all zero with ∑K−1

k=1 αkxk = 0. Letting αK = 0, we can write this as
∑K

k=1 αkxk = 0. Since not all coefficients are zero, we have contradicted linear inde-
pendence of X.

Regarding (ii), let X := {x1, . . . , xK} be linearly independent and suppose that
xj = 0. Then by setting αk = 0 for k 6= j and αj = 1, we can form scalars not all equal
to zero with ∑K

k=1 αkxk = 0.
Regarding (iii), let X := {x1, . . . , xK} ⊂ RN be linearly independent and let xK+1

be any point in RN such that xK+1 /∈ span X. The claim is that X ∪ {xK+1} is linearly
independent. Suppose, to the contrary, that there exist α1, . . . , αK, αK+1 not all zero
such that ∑K+1

k=1 αkxk = 0. There are two possibilities for αK+1, both of which lead
to a contradiction: First, if αK+1 = 0, then, since α1, . . . , αK, αK+1 are not all zero, at
least one of α1, . . . , αK are nonzero, and moreover ∑K

k=1 αkxk = ∑K+1
k=1 αkxk = 0. This

contradicts our assumption of independence on X. Second, if αK+1 6= 0, then from
∑K+1

k=1 αkxk = 0 we can express xK+1 as a linear combination of elements of X. This
contradicts the hypothesis that xK+1 /∈ span X.

Solution to Ex. 2.4.17. Let B1 and B2 be two bases of S, with K1 and K2 elements re-
spectively. By definition, B2 is a linearly independent subset of S. Moreover, S is
spanned by the set B1, which has K1 elements. Applying theorem 2.1.3, we see that
B2 has at most K1 elements. That is, K2 6 K1. Reversing the roles of B1 and B2 gives
K1 6 K2.

Solution to Ex. 2.4.18. The aim is to prove fact 2.1.6 on page 23. Suppose that S and
S′ are K-dimensional linear subspaces of RN with S ⊂ S′. We claim that S = S′. To
see this, observe that by the definition of dimension, S is equal to span B where B is
a set of K linearly independent basis vectors {b1, . . . , bK}. If S 6= S′, then there exists
a vector x ∈ S′ such that x /∈ span B. In view of theorem 2.1.1 on page 18, the set
{x, b1, . . . , bK} is linearly independent. Moreover, since x ∈ S′ and since B ⊂ S ⊂ S′,
we now have K + 1 linearly independent vectors inside S′. At the same time, being K-
dimensional, we know that S′ is spanned by K vectors. This contradicts theorem 2.1.3
on page 20.

Regarding part (ii), suppose that S is an M-dimensional linear subspace of RN

where M < N and yet S = RN . Then we have a space S spanned by M < N vectors
that also contains the N linearly independent canonical basis vectors. We are led to
another contradiction of theorem 2.1.3. Hence S = RN cannot hold.

Solution to Ex. 2.4.19. Regarding part (i), let B be a basis of span X. By definition,
B is a linearly independent subset of span X. Since span X is spanned by K vectors,
theorem 2.1.3 implies that B has no more than K elements. Hence, dim span X 6 K.
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Regarding part (ii), suppose first that X is linearly independent. Then X is a basis
for span X. Since X has K elements, we conclude that dim span X = K. Conversely,
if dim span X = K, then X must be linearly independent. If X were not linearly inde-
pendent, then there would exist a proper subset X0 of X such that span X0 = span X.
By part (i) of this theorem, we then have dim span X0 6 #X0 6 K − 1. Therefore
dim span X 6 K− 1, a contradiction.

Solution to Ex. 2.4.20. Let T : RN → RN be nonsingular, and let T−1 be its inverse.
To see that T−1 is linear, we need to show that for any pair x, y in RN (which is the
domain of T−1) and any scalars α and β, the following equality holds:

T−1(αx + βy) = αT−1x + βT−1y (2.12)

In the proof we will exploit the fact that T is by assumption a linear bijection.
Pick any vectors x, y ∈ RN and any two scalars α, β. Since T is a bijection, we

know that x and y have unique preimages under T. In particular, there exist unique
vectors u and v such that Tu = x and Tv = y. Using these definitions, linearity of T
and the fact that T−1 is the inverse of T, we have

T−1(αx + βy) = T−1(αTu + βTv) = T−1(T(αu + βv)) = αu + βv = αT−1x + βT−1y

This chain of equalities confirms (2.12).

Solution to Ex. 2.4.21. A collection of equivalent statements such as this is usually
proved via a cycle of implications, with the form (i) =⇒ (ii) =⇒ · · · =⇒ (vi) =⇒
(i). However, in this case the logic is clearer if we directly show that all statements are
equivalent to linear independence of V.

First observe equivalence of the onto property and linear independence of V via

T onto ⇐⇒ rng T = RN ⇐⇒ span V = RN

by fact 2.1.7. The last statement is equivalent to linear independence of V by theo-
rem 2.1.4 on page 22.

Next let’s show that null T = {0} implies linear independence of V. To this end,
suppose that null T = {0} and let α1, . . . , αN be such that ∑N

n=1 αnTen = 0. By lin-
earity of T, we then have T(∑N

n=1 αnen) = 0. Since null T = {0}, this means that
∑N

n=1 αnen = 0, which in view of independence of {e1, . . . , eN}, implies α1 = · · · =
αN = 0. This establishes that V is linearly independent.

Now let’s check that linear independence of V implies null T = {0}. To this end,
let x be a vector inRN such that Tx = 0. We can represent x in the form ∑N

n=1 αnen for
suitable scalars {αn}. From linearity and Tx = 0, we get ∑N

n=1 αnTen = 0. By linear
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independence of V, this implies that each αn = 0, whence x = 0. Thus null T = {0}
as claimed.

From fact 2.1.8 we have null T = {0} iff T is one-to-one, so we can now state the
following equivalences

T onto ⇐⇒ V linearly independent ⇐⇒ T one-to-one (2.13)

If T is a bijection, then T is onto and hence V is linearly independent by (2.13). Con-
versely, if V is linearly independent then T is both onto and one-to-one by (2.13).
Hence T is a bijection.

Finally, equivalence of linear independence of V and the statement that V forms a
basis of RN is immediate from the definition of bases and theorem 2.1.4 on page 22.

Solution to Ex. 2.4.22. Regarding part (i), let K < N and let T : RK → RN be linear.
T cannot be onto because, if T were onto, then we would have rng T = RN , in which
case the vectors in V = {Te1, . . . , TeK} in fact 2.1.7 would span RN , despite having
only K < N elements. This is impossible. (Why?)

Regarding part (ii), let T : RK → RN be linear and let K > N. Seeking a contradic-
tion, suppose in addition that T is one-to-one. Let {αk}K

k=1 be such that ∑K
k=1 αkTek =

0. By linearity, T(∑K
k=1 αkek) = 0, and since T is one-to-one and T0 = 0, this in turn

implies ∑K
k=1 αkek = 0. Since the canonical basis vectors are linearly independent, it

must be that α1 = · · · = αK = 0. From this we conclude that {Te1, . . . , TeK} is linearly
independent. Thus RN contains K linearly independent vectors, despite the fact that
N < K. This is impossible by theorem 2.1.3 on page 20.

Solution to Ex. 2.4.25. Let O = {x1, . . . , xK} ⊂ RN be an orthogonal set that does not
contain 0. Let α1, . . . , αK be such that ∑K

k=1 αkxk = 0. We claim that αj = 0 for any j. To
see that this is so, fix j and take the inner product of both sides of ∑K

k=1 αkxk = 0 with
respect to xj to obtain αj‖xj‖2 = 0. Since xj 6= 0, we conclude that αj = 0. The proof is
done.

Solution to Ex. 2.4.27. Let S ⊂ RN . We aim to show that S ∩ S⊥ = {0}. Fix a ∈
S ∩ S⊥. Since a ∈ S⊥, we know that 〈a, s〉 = 0 for any s ∈ S. Since a ∈ S, we have in
particular, 〈a, a〉 = ‖a‖2 = 0. As we saw in fact 2.1.2, the only such vector is 0.

Solution to Ex. 2.4.29. Fix α, β ∈ R and x, y ∈ RN . The claim is that

P(αx + βy) = αPx + βPy

To verify this equality, we need to show that the right-hand side is the orthogonal
projection of αx + βy onto S. Going back to theorem 2.2.1, we need to show that (i)
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αPx + βPy ∈ S and (ii) for any z ∈ S, we have

〈αx + βy− (αPx + βPy), z〉 = 0

Here (i) is immediate, because Px and Py are in S by definition, and, moreover S is a
linear subspace. To see that (ii) holds, just note that

〈αx + βy− (αPx + βPy), z〉 = α 〈x− Px, z〉+ β 〈y− Py, z〉

By definition, the projections of x and y are orthogonal to S, so we have 〈x− Px, z〉 =
〈y− Py, z〉 = 0. We are done.

Solution to Ex. 2.4.30. Let x = (x1, x2, x3) be the closest point in S to y. Note that
e1 ∈ S and e2 ∈ S. By the orthogonal projection theorem, we have (i) x ∈ S and (ii)
y− x ⊥ S. From (i) we have x3 = 0. From (ii) we have

〈y− x, e1〉 = 0 and 〈y− x, e2〉 = 0

These equations can be expressed more simply as 1 − x1 = 0 and 1 − x2 = 0. We
conclude that x = (1, 1, 0).

Solution to Ex. 2.4.31. If S = RN , then P is the identity mapping (why?), which is
one-to-one. If S 6= RN , then take any x /∈ S. By definition, y := Px is in S, and hence
y and x are distinct. But P maps elements of S to themselves, so Py = y = Px. Hence
P is not one-to-one.

Solution to Ex. 2.4.32. From the triangle inequality we have

‖x‖ = ‖x− y + y‖ 6 ‖x− y‖+ ‖y‖

It follows that ‖x‖ − ‖y‖ 6 ‖x− y‖. A similar argument reversing the roles of x and
y gives ‖y‖ − ‖x‖ 6 ‖x− y‖. Combining the last two inequalities gives

−‖x− y‖ 6 ‖x‖ − ‖y‖ 6 ‖x− y‖

This is equivalent to |‖x‖ − ‖y‖| 6 ‖x− y‖.
Solution to Ex. 2.4.33. If Py = 0, then y = Py + My = My. Hence M does not shift
y. If an orthogonal projection onto a subspace doesn’t shift a point, that’s because the
point is already in that subspace (see theorem 2.2.2). In this case the subspace is S⊥,
and we conclude that y ∈ S⊥.

Solution to Ex. 2.4.34. To see that Vk = Bk for all k, fix k and consider the claim that
Vk ⊂ Bk. By definition, vk = bk − Pk−1bk, and the two terms on the right-hand side
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lie in Bk. Hence vk ∈ Bk. Since spans increase as we add more elements, it follows that
vj ∈ Bk for j 6 k. In other words, {v1, . . . , vk} ⊂ Bk. Since Bk is a linear subspace, we
have Vk ⊂ Bk.

An induction argument shows that Bk ⊂ Vk also holds. Clearly it holds for k =
1. Suppose that it also holds for k − 1. From the definition of vk, we have bk =
Pk−1bk + vk. The first term on the right-hand side lies in Bk−1, which, by our induction
hypothesis, satisfies Bk−1 ⊂ Vk−1 ⊂ Vk. The second term on the right-hand side is vk,
which obviously lies in Vk. Hence both terms are in Vk, and therefore bk ∈ Vk. Using
arguments analogous to the end of the last paragraph leads us to Bk ⊂ Vk.

Solution to Ex. 2.4.35. To show that {v1, . . . , vK} is an orthogonal set, it suffices to
check that vk ⊥ vj whenever j < k. To see this, fix any pair j < k. By construction,
vk ∈ B⊥k−1. But, as shown in the solution to ex. 2.4.34, vj ∈ Bk−1 must hold. Hence
vk ⊥ vj.

Solution to Ex. 2.4.36. Since {v1, . . . , vk} is orthogonal, the family {u1, . . . , uk}will be
orthonormal provided that the norm of each element is 1. This is true by construction,
since uk := vk/‖vk‖. The only concern is that ‖vk‖ = 0 might hold for some k. But
vk = 0 is impossible because, if it was to hold, then by (vii) of theorem 2.2.2 we would
have bk ∈ Bk−1, contradicting linear independence of {b1, . . . , bK}.

The proof that span{u1, . . . , uk} = Vk is straightforward and left for you.


