
Chapter 11

Regression

11.1 Linear Regression

Linear regression is one of the core topics of statistics. It is even more central to econo-
metrics, where a shortage of controlled experiments often leaves econometricians try-
ing to factor heterogeneity out ex post. We begin with a nontraditional view of linear
regression based on minimal assumptions.

11.1.1 The Setup

Let’s start with the kind of prediction problem discussed in §8.2.2. We study a system
with vector input xn ∈ RK followed by scalar output yn. For example,

• xn is a description of a lottery (probabilities, possible outcomes, etc.) in a con-
trolled experiment and yn is willingness to pay in order to participate (see, e.g.,
Peysakhovich and Naecker 2015).

• xn is a set of household characteristics (ethnicity, age, location, etc.) and yn is
household wealth at some later date (see, e.g., McKernan et al. 2014).

• xn is price of electricity, prices of alternatives, temperature, household income,
and measurements of the regional income distribution, while yn is regional elec-
tricity consumption (see, e.g., Auffhammer and Wolfram 2014).

Although we don’t exclude the possibility that y is categorical (i.e., discrete), our
loss function will be oriented toward regression (where y takes values in R).

Suppose that we have N observations zn := (xn, yn), all of which are draws from
some fixed joint distribution P. Since P is fixed, we are assuming that the system is
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stationary across the set of draws. Our aim is to predict new output values from input
values on the basis of this data. In particular, our problem is to

choose a function f : RK → R such that f (x) is a good predictor of y (11.1)

To define “good predictor" mathematically, we need a loss function. Throughout this
chapter we will be using quadratic loss. Thus, in the language of §8.2.2, our aim is to
minimize the prediction risk

R( f ) := EP (y− f (x))2 (11.2)

As we saw in §5.2.5, the minimizer of (11.2) over the set of all B-measurable functions
is the regression function f ∗(x) := EP [y | x]. If we could compute this, then all our
problems would be solved. But we cannot compute it because P is not known. Instead
we apply the principle of empirical risk minimization (see §8.2.2), which leads to the
problem

min
f∈H

Remp( f ) where Remp( f ) :=
1
N

N

∑
n=1

(yn − f (xn))
2 (11.3)

Here H is the hypothesis space, a set of candidate functions mapping RK into R. For
obvious reasons, the problem (11.3) is called a least squares problem.

If we take H to be the set of all functions from RK to R, then, provided the input
vectors are all distinct, we can set the empirical risk Remp( f ) to zero by choosing any
function f satisfying yn = f (xn) for all n. However, as discussed at length in §8.2.3,
minimizing empirical risk is different from minimizing the prediction risk R( f ). The
latter is what we actually want to minimize. ThusH must be restricted.

In this chapter we consider the caseH = H`, whereH` is all linear functions from
RK to R. Recalling theorem 3.1.1 on page 48, we can write

H` =
{

all f : RK → R such that f (x) = xᵀb for some b ∈ RK
}

(11.4)

The problem (11.3) then reduces to

min
b∈RK

N

∑
n=1

(yn − xᵀnb)2 (11.5)

The term 1
N has been dropped because it does not affect the minimizer. This is the

multivariate version of (8.22) on page 227.

The idea of choosing b to minimize (11.5) is intuitive: We are choosing a “line of
best fit" to minimize in-sample prediction error. This optimization problem has a long
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tradition. It dates back at least as far as Carl Gauss’s work on the orbital position of
Ceres, published in 1801.

You might be wondering whether the choice H = H` is a suitable one. This is an
excellent question. It might not be. However, there are good reasons to start with H`,
even in this setting where no linearity assumptions are imposed. First, H` is a natu-
ral starting point when seeking a class of simple, well-behaved functions. Second, as
we’ll see, setting H = H` allows us to obtain an analytical expression for the mini-
mizer, which simplifies both analysis and computation. Third, the technique has an
extension fromH` to broader classes of functions, as described in §11.2.1.

11.1.2 The Least Squares Estimator

Now let’s solve (11.5). With our knowledge of overdetermined systems (see §3.3.2),
we already have all the necessary tools. This will be more obvious after we switch to
matrix notation. To do this, let

y :=


y1
y2
...

yN

 , xn :=


xn1
xn2

...
xnK

 = nth observation of all regressors (11.6)

and

X :=


xᵀ1
xᵀ2
...

xᵀN

 :=:


x11 x12 · · · x1K
x21 x22 · · · x2K

...
...

...
xN1 xN2 · · · xNK

 (11.7)

Sometimes X is called the design matrix. By construction, colk X = all observations
on the kth regressor. Also, for any b ∈ RK, we have

Xb =


xᵀ1 b
xᵀ2 b

...
xᵀNb


It follows that the objective function in (11.5) can be written as

N

∑
n=1

(yn − xᵀnb)2 = ‖y− Xb‖2
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Since strictly increasing transforms preserve the set of minimizers (see §15.4),

argmin
b∈RK

‖y− Xb‖2 = argmin
b∈RK

‖y− Xb‖ (11.8)

We already know how to solve for the minimizer on the right-hand side of (11.8). By
theorem 3.3.2 (page 63), the solution is

β̂ := (XᵀX)−1Xᵀy (11.9)

Traditionally, this random vector β̂ is called the least squares estimator. Once we
move to more classical assumptions it will be an estimator of a particular parameter
vector. At this stage it just defines our answer to the problem posed in (11.1). That is,

given x ∈ RK, our prediction of y is f (x) = xᵀβ̂

In terms of geometric interpretation, since Xβ̂ solves (11.8), it is the closest point in
colspace X to y. In particular,

Py = Xβ̂ when P := proj (colspace X)

(See (3.13) on page 63.) In what follows, M is the residual projection, as defined in
(2.11) on page 32.

11.1.2.1 Assumptions

Theorem 3.3.2 and our definition of β̂ in 11.9 require that X has full column rank (or,
equivalently, that the columns of X are linearly independent—see page 50).

Assumption 11.1.1 X has full column rank with probability one.

By theorem 2.1.3 on page 20, N > K is a necessary condition for assumption 11.1.1
to hold. (If N < K, then RN , which is necessarily spanned by N vectors, cannot
contain K linearly independent vectors.)

If assumption 11.1.1 fails, then a minimizer of (11.8) still exists but is no longer
unique (see ex. 3.5.34). While we can treat this case, it rarely occurs in well-designed
regression problems.

Let’s also put some mild regularity conditions on the common joint distribution P
of each data point zn := (xn, yn).

Assumption 11.1.2 P is such that all elements of EP[znzᵀn] are finite. Moreover

Σx := EP[xnxᵀn] is finite and positive definite (11.10)
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Finite second moments are imposed because we want to evaluate expected squared
errors. This assumption cannot be weakened unless we are willing to work with a dif-
ferent loss function. Positive definiteness of Σx ensures that the asymptotic limit of
our estimator is well defined.1

11.1.2.2 Notation

There’s a range of standard notation associated with linear least squares estimation.
Let’s collect it in one place. First, the projection

ŷ := Xβ̂ = Py

is called the vector of fitted values. The nth fitted value ŷn is the prediction xᵀn β̂
associated with least squares estimate and the nth observation xn of the input vector.
The vector My is often denoted û, and called the vector of residuals:

û := My = y− ŷ

The vector of residuals corresponds to the error that occurs when y is approximated
by Py. From fact 2.2.8 on page 33 we have

My ⊥ Py and y = Py + My (11.11)

In other words, y can be decomposed into two orthogonal vectors Py and My, where
the first represents the best approximation to y in colspace X, and the second repre-
sents the residual.

Related to the fitted values and residuals, we have some standard definitions:

• Total sum of squares := TSS := ‖y‖2.

• Residual sum of squares := RSS := ‖My‖2.

• Explained sum of squares := ESS := ‖Py‖2.

By (11.11) and the Pythagorean law (page 27),

TSS = ESS + RSS (11.12)

When running regressions it is conventional to report the coefficient of determi-
nation, or R2. The plain vanilla definition of R2 is

R2 :=
ESS

TSS
(11.13)

1. In essence, positive definiteness of Σx requires that no random variable in x can be written as a linear
combination of other variables in x. See exercise 11.4.1.
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Many regression packages report an alternative definition of R2. See §11.2.3 below.

11.1.3 Out-of-Sample Fit

We have stressed a number of times that learning from data (statistics) means general-
ization from current observations to new ones. As such, the most important measure
of success for a statistical procedure is out-of-sample fit. So how does linear least
squares perform out-of-sample? We start with a general observation about linear pre-
dictors.

Theorem 11.1.1 If ` is the linear function `(x) = xᵀb, then

R(`) = E(y− f ∗(x))2 +E( f ∗(x)− xᵀb∗)2 + (b∗ − b)ᵀΣx(b∗ − b)

Here f ∗ is the regression function and b∗ = Σx
−1E [x y] is the vector of coeffi-

cients in the best linear predictor (see page 147). R( f ) is the prediction risk of f and
expectations are taken under the unknown joint distribution P of the pairs (x, y).

The proof of theorem 11.1.1 is given in §11.1.3.1. For now let’s look at interpreta-
tion. The general question is how well we can generalize (i.e., reduce prediction risk)
using linear functions. Theorem 11.1.1 decomposes the prediction risk of an arbitrary
linear predictor `(x) = xᵀb into three terms:

(i) The intrinsic risk E(y− f ∗(x))2.

(ii) The approximation error E( f ∗(x)− xᵀb∗)2.

(iii) The estimation error (b∗ − b)ᵀΣx(b∗ − b).

The intrinsic risk is also called Bayes risk (see example 8.2.3 on page 226). It is
the residual error after y is approximated with the best possible predictor (i.e., the
regression function). It is large to the extent that y is hard to predict using x.

The approximation error or bias is the deviation between the best predictor and the
best linear predictor. It reflects the cost of our decision to approximate the regression
function using a linear architecture. If this architecture is held fixed, the approxima-
tion error is also fixed and cannot be reduced in the estimation process.

The estimation error is caused by the deviation of our estimator from the best linear
predictor b∗. This deviation occurs because we are predicting using finite sample
information on the joint distribution of (x, y).

Theorem 11.1.1 tells us that onceH is set to the class of linear functions, the best we
can do is find an estimation method (a learning algorithm) that produces an estimate
that is close to b∗ on average when the sample size is sufficiently large. The next result
states that the least squares estimator β̂ has this property.
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Theorem 11.1.2 Let assumptions 11.1.2–11.1.1 hold and let β̂N be the least squares estimator
given sample size N. If the observations {zn} are independent, then

β̂N
p→ b∗ as N → ∞ (11.14)

The proof is below. Independence is required only for the LLN to function. We
could weaken this to ergodicity (see §7.1.1) and obtain the same conclusion.2

On one level, theorems 11.1.1 and 11.1.2 are reassuring. They tell us that if the un-
derlying process is relatively linear, then we will attain small risk asymptotically. On
the other hand, the Glivenko–Cantelli theorem tells us that we can learn everything
about the underlying distribution in the limit. Here we are bounded away from this
kind of consistency whenever the approximation error is positive.

As will be discussed in chapter 14, a general principle of induction is that we
should introduce bias in finite samples to avoid overfitting, while at the same time
reducing bias asymptotically, as the empirical distribution converges to the true dis-
tribution. By comparison, in standard linear regression the bias is held fixed by the
linearity assumption.

11.1.3.1 Proofs

Proof of theorem 11.1.1. Fix b ∈ RK and let `(x) = xᵀb. In view of (8.17) on page 226,
we have the prediction risk

R(`) = E [(y− f ∗(x))2] +E [( f ∗(x)− xᵀb)2]

Hence the result will established if we can show that

E [( f ∗(x)− xᵀb)2] = E [( f ∗(x)− xᵀb∗)2] +E [(b∗ − b)ᵀxxᵀ(b∗ − b)] (11.15)

To see that (11.15) holds, observe that

f ∗(x)− xᵀb = f ∗(x)− xᵀb∗ + xᵀ(b∗ − b) (11.16)

The terms f ∗(x)− xᵀb∗ and xᵀ(b∗ − b) are orthogonal. The reason is that xᵀb∗ is the
orthogonal projection of f ∗(x) onto S = span{x}, the linear subspace of L2 spanned
by all linear combinations of the form aᵀx. (See ex. 5.4.18 on page 156.) As such,
f ∗(x) − xᵀb∗ is orthogonal to every element of the target subspace span{x}. This
includes xᵀ(b∗ − b).

For any orthogonal elements u and v of L2 we have E [(u + v)2] = E [u2] +E [v2].

2. Later, in §13.1, we’ll do something similar (i.e., weaken independence to ergodicity) in a setting with
some additional structure.
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(This is the Pythagorean law in L2.) Squaring both sides of (11.16), taking expectations
and applying this law gives (11.15). The proof of theorem 11.1.1 is done.

Proof of theorem 11.1.2. The proof of theorem 11.1.2 is not hard if we express β̂N in a
slightly different way. Multiplying and dividing by N in the definition of β̂N and then
expanding out the matrix products (see ex. 11.4.9) gives

β̂N =

[
1
N

XᵀX
]−1
· 1

N
Xᵀy =

[
1
N

N

∑
n=1

xnxᵀn

]−1

· 1
N

N

∑
n=1

xnyn (11.17)

By the matrix LLN in fact 6.2.3 (page 173), we have

1
N

N

∑
n=1

xnxᵀn
p→ Σx and

1
N

N

∑
n=1

xnyn
p→ E [xy] as N → ∞

By fact 6.2.1 on page 170, convergence in probability is preserved over the taking of

inverses and products. Hence β̂N
p→ Σx

−1E [x y] = b∗, as was to be shown.

11.1.4 In-Sample Fit

In-sample fit measures how well a given model fits the same data set that it was es-
timated on. The difference between in-sample fit (empirical risk) and out-of-sample
fit (risk) was discussed in §8.2.3. In-sample fit of a regression is often measured with
R2 (see (11.13)). Let’s make some further comments on R2 and then discuss how R2

relates to in-sample fit.

Fact 11.1.1 0 6 R2 6 1 with R2 = 1 if and only if y ∈ colspace X.

That R2 6 1 is immediate from ‖Py‖ 6 ‖y‖ (cf. theorem 2.2.2 on page 31). Exer-
cise 11.4.17 asks you to prove the second claim. More generally, a high R2 indicates
y is relatively close to colspace X. This fact suggests that we can increase R2 at least
weakly by adding regressors. As we do so the column space of X expands, pushing
out towards y. Here’s a formal statement:

Fact 11.1.2 Let Xa and Xb be two design matrices. If R2
a and R2

b are the respective
coefficients of determination, then

colspace Xa ⊂ colspace Xb =⇒ R2
a 6 R2

b

For a proof, see exercise 11.4.8 and its solution.
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High R2 is sometimes equated with successful regression. This is a misunder-
standing of the aim of statistics. The correct definition of statistical learning is effec-
tive generalization from existing data. In the present context this means that the linear
predictor produced by regression attains low risk.

So how does R2 relate to risk? What R2 actually measures is the degree to which
empirical risk is minimized. To see this, note that

R2 = 1− RSS

TSS
= 1− N

Remp( f̂ )
TSS

where Remp is as defined in (11.3) and f̂ is our linear predictor f̂ (x) = xᵀβ̂. Thus
high R2 means low empirical risk and good in-sample fit. But low empirical risk is no
guarantee of low prediction risk, as was emphasized in §8.2.3.

Here’s a simulation that shows how we can produce high R2 without estimating
anything meaningful. We take xn and yn as independent draws from a uniform distri-
bution on [0, 1]. By construction, there is no relationship between these two variables.
For the regressors we take the powers 1, x, x2, . . . , xK, where K is a positive integer.
The R code below runs these regressions for different values of K. At K = 25 the value
of R2 is around 0.95. This is despite the fact that no relationship exists between x and
y.

set.seed(1234)
N <- 25
y <- runif(N)
x <- runif(N)
X <- rep(1, N)

Kmax <- 25
for (K in 1:Kmax) {

X <- cbind(X, x^K)
results <- lm(y ~ 0 + X)
Py2 <- sum(results$fitted.values^2)
y2 <- sum(y^2)
cat("K =", K, "R^2 =", Py2 / y2, "\n")

}

(You can obtain all code from the text at johnstachurski.net/emet.html.)
To finish this section, let’s draw a connection between fact 11.1.2, which says that

the value of R2 is at least weakly increasing in the number of right-hand side variables,
and fact 8.2.1 on page 229. Suppose that x lists a large number of possible regressors.
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Let the hypothesis space be

Hj :=
{

all f : Rj → R s.t. f (x) = xᵀb for some b ∈ Rj
}

(11.18)

Here 1 6 j 6 K. Empirical risk minimization overHj is equivalent to linear regression
over the first j regressors. Empirical risk falls as j increases by fact 8.2.1 on page 229.
Hence R2 increases. This is the same conclusion as fact 11.1.2.

11.2 The Geometry of Least Squares

In this section we cover transformations of the data and an important theorem on
subsets of the least squares estimator.

11.2.1 Transformations and Basis Functions

In discussing the decision to set H = H` in §11.1.1, we mentioned that we can use
many of the same ideas when extendingH to a broader class of functions. The idea is
to first transform the data using some arbitrary function φ : RK → RJ . The action of
φ on x ∈ RK is

x 7→ φ(x) =


φ1(x)
φ2(x)

...
φJ(x)

 ∈ RJ

The individual functions φ1, . . . , φJ mappingRK intoR are sometimes called basis
functions. In machine learning texts, the range of φ is called feature space. Linear
least squares is now applied in feature space. That is, we solve the empirical risk
minimization problem when the hypothesis space is

Hφ := {all functions ` ◦φ, where ` is a linear function from RJ to R}

The empirical risk minimization problem is then

min
`

N

∑
n=1
{yn − `(φ(xn))}2 = min

γ∈RJ

N

∑
n=1

(yn − γ
ᵀ

φ(xn))
2 (11.19)
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Switching to matrix notation, if

Φ :=


φ1(x1) · · · φJ(x1)
φ1(x2) · · · φJ(x2)

... · · · ...
φ1(xN) · · · φJ(xN)

 ∈ RN×J (11.20)

then the objective in (11.19) can be expressed as ‖y−Φγ‖2. Since increasing functions
don’t affect minimizers, the problem becomes

argmin
γ∈RJ

‖y−Φγ‖ (11.21)

Assuming that Φ is full column rank, the solution is

γ̂ := (Φ
ᵀ

Φ)−1Φ
ᵀy

Example 11.2.1 Adding an intercept to a regression can be regarded as a transforma-
tion of the data. Indeed adding an intercept is equivalent to applying the transforma-
tion

φ(x) =
(

1
x

)
=


1
x1
...

xK


In practice, adding an intercept means fitting an extra parameter, and this extra degree
of freedom allows a more flexible fit in our regression.

Example 11.2.2 Let K = 1, so that xn ∈ R. Consider the mononomial basis functions
φj(x) := xj−1, so that

γ
ᵀ

φ(xn) = γ
ᵀ


x0

n
x1

n
...

x J−1
n

 =
J

∑
j=1

γjx
j−1
n (11.22)

The mononomial basis transformation applied to scalar x corresponds to univariate
polynomial regression, as discussed in §8.2.3. Under this transformation, the matrix
Φ in (11.20) is called the Vandermonde matrix. By the Weierstrass approximation
theorem, polynomials of sufficiently high order can effectively approximate any one-
dimensional continuous nonlinear relationship.
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Figure 11.1 Nonlinear relationship between x and y

Example 11.2.3 Example 11.2.2 uses mononomials as the basis functions. A common
alternative is to use orthogonal polynomials such as Chebychev polynomials or Her-
mite polynomials. Other alternatives include wavelets and splines. In econometrics
this procedure is often referred to as nonparametric series regression. A key topic is
the optimal number of basis functions.3

Figures 11.1 and 11.2 help illustrate how transformations can reduce approxima-
tion error. In figure 11.1 it is clear that no linear function mapping x to y can produce
small approximation error. Figure 11.2 shows the data after applying the transforma-
tion R 3 x 7→ φ(x) := (x, x3)ᵀ ∈ R2. The plane drawn in figure 11.2 represents
a linear function ` : R2 → R. The composition ` ◦ φ has low approximation error.
The two figures illustrate how nonlinear data can become linear when projected into
higher dimensions.

Below, when y is regressed on x, we can imagine that the data have already been
transformed, and x is the result. Hence we use X to denote the design matrix instead
of Φ without loss of generality.

3. See, for example, Hong and White (1995), Sun (2011), or Chen and Christensen (2015).



Regression 311

x
−2

2

x3
−15

15

y

−15

−5

5

15

Figure 11.2 Approximate linearity after projecting the data to R2

11.2.2 The Frisch–Waugh–Lovell Theorem

The Frisch–Waugh–Lovell (FWL) theorem yields an expression for an arbitrary sub-
vector of the least squares estimator β̂ obtained by regressing y on X. In stating the
theorem, we continue with the assumptions of §11.1. Let y and X be given and let β̂
be as in (11.9). In addition, let K1 be an integer with 1 6 K1 < K, and let

• X1 be a matrix consisting of the first K1 columns of X,

• X2 be a matrix consisting of the remaining K2 := K− K1 columns,

• β̂1 be the K1 × 1 vector consisting of the first K1 elements of β̂.

• β̂2 be the K2 × 1 vector consisting of the remaining K2 elements of β̂,

• P1 := proj(colspace X1), and

• M1 := I− P1 = the corresponding residual projection (see page 32).

Theorem 11.2.1 (FWL theorem) The vector β̂2 satisfies

β̂2 = (Xᵀ
2 M1X2)

−1Xᵀ
2 M1y (11.23)

Proof. From (11.11) and the definitions above we have

y = Xβ̂ + My = X1β̂1 + X2β̂2 + My
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Premultiplying both sides of this expression by Xᵀ
2 M1, we obtain

Xᵀ
2 M1y = Xᵀ

2 M1X1β̂1 + Xᵀ
2 M1X2β̂2 + Xᵀ

2 M1My (11.24)

The first term on the right-hand side is zero by fact 3.3.1 on page 61. The last term is
also zero because

(Xᵀ
2 M1My)ᵀ = yᵀMᵀMᵀ

1 X2 = yᵀMM1X2 = yᵀMX2 = 0

In the first equality, we used the usual property of transposes (fact 3.2.4); in the second,
we used symmetry of M and M1 (see page 61); in the third, we used fact 2.2.9 on
page 34; and in the fourth, we used fact 3.3.1 again (which tells us that M maps all
columns of X, and hence all columns of X2, to the zero vector).

In light of the above, (11.24) becomes Xᵀ
2 M1y = Xᵀ

2 M1X2β̂2. To go from this equa-
tion to (11.23), we just need to check that the matrix premultiplying β̂2 is nonsingular.
The proof is left as an exercise (ex. 11.4.23).

As exercise 11.4.22 asks you to show, the expression for β̂2 in theorem 11.2.1 can
be rewritten as

β̂2 = [(M1X2)
ᵀM1X2]

−1(M1X2)
ᵀM1y (11.25)

Close inspection of this formula confirms the following claim: There is another way
to obtain β̂2 besides just regressing y on X and then extracting the last K2 elements:
we can also regress M1y on M1X2 to produce the same result.

To get some feeling for what this means, let’s look at a special case, where X2 is
the single column colK X, containing the observations on the Kth regressor. To tie into
this notation let’s write X1 as X−K to remind us that it stands for all columns of X
expect the Kth one, and similarly for M1. In view of the preceding discussion, the
least squares estimate β̂K can be found by regressing

ỹ := M−Ky = residuals of regressing y on X−K (11.26)

on
x̃K := M−K colK X = residuals of regressing colK X on X−K (11.27)

Loosely speaking, these two residual terms ỹ and x̃K can be thought of as the parts of
y and colK X that are “not explained by” X−K. Thus, on an intuitive level, the process
for obtaining the least squares estimate β̂K is as follows:

(i) Remove effects of all other regressors from y and colK X, producing ỹ and x̃K.

(ii) Regress ỹ on x̃K.

This is obviously different from the process for obtaining the coefficient of the vector
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colK X in a simple univariate regression, the latter being just

(i) Regress y on colK X.

In words, the difference between the univariate least squares estimated coefficient
of the Kth regressor and the multiple regression least squares coefficient is that the
multiple regression coefficient β̂K measures the isolated relationship between xK and y,
without taking into account indirect channels involving other variables.

We can illustrate this idea further with a small simulation. Suppose that

y = x1 + x2 + u where u IID∼ N(0, 1)

If we generate N independent observations from this model and regress y on the ob-
servations of (x1, x2), then, provided that N is sufficiently large, the coefficients for x1
and x2 will both be close to unity (see theorem 11.1.2). However, if we regress y on x1
alone, then the coefficient for x1 will depend on the relationship between x1 and x2.
For example:

> N <- 1000
> x1 <- runif(N)
> x2 = 10 * exp(x1) + rnorm(N)
> y <- x1 + x2 + rnorm(N)
> results <- lm(y ~ 0 + x1)
> results$coefficients

x1
30.83076

Here the coefficient for x1 is much larger than unity, because an increase in x1 tends
to have a large positive effect on x2, which in turn increases y. The coefficient in the
univariate regression reflects this total effect.

11.2.2.1 Application: Simple Regression

Here’s an easy application of the FWL theorem: deriving the familiar expression for
the slope coefficient in simple linear regression (see §8.2.1.1) from the multivariate
expression. Simple linear regression is a special case of multivariate regression when
1 is the first column of X and K = 2. In this section, the second column of X will be
denoted by x. As we saw in (8.14) on page 224, the least squares estimates are

β̂2 =
∑N

n=1(xn − x̄)(yn − ȳ)

∑N
n=1(xn − x̄)2

and β̂1 = ȳ− β̂2 x̄
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where x̄ is the sample mean of x and ȳ is the sample mean of y. We can rewrite the
slope coefficient β̂2 more succinctly as

β̂2 = [(x− x̄1)ᵀ(x− x̄1)]−1(x− x̄1)ᵀ(y− ȳ1) (11.28)

By the FWL theorem (equation 11.25), we also have

β̂2 = [(Mcx)ᵀMcx]−1(Mcx)ᵀMcy (11.29)

where Mc is the residual projection associated with the linear subspace S = span{1},
as defined in (3.10) on page 61. For this residual projection Mc and any z, we have
Mcz = z− z̄1. Hence the right-hand sides of (11.28) and (11.29) coincide.

11.2.3 Centered Observations

Let’s generalize the preceding discussion to the case where there are multiple noncon-
stant regressors. The only difference is that instead of one column x of observations
on a single nonconstant regressor, we have a matrix X2 containing multiple columns,
each a vector of observations on a nonconstant regressor. If the least squares estimate
β̂ is partitioned into (β̂1, β̂2), then we can write

Xβ̂ = 1β1 + X2β̂2

Applying the FWL theorem (equation 11.25) once more, we can write β̂2 as

β̂2 = [(McX2)
ᵀMcX2]

−1(McX2)
ᵀMcy

where Mc is the residual projection in (3.10). As we saw in the last section, Mcy is y
centered around its mean. Similarly, McX2 is a matrix formed by taking each column
of X2 and centering it around its mean. It follows that in a least squares regression
with an intercept, the estimated coefficients of the nonconstant regressors are equal to
the estimated coefficients of a zero-intercept regression performed after all variables
have been centered around their mean.

Let’s use some related ideas to discuss an alternative to the coefficient of deter-
mination introduced in (11.13). There are several versions of R2 reported in common
regression packages. One of these is so called centered R2. The version in (11.13) will
henceforth be called the uncentered R2 for clarity.

One motivation for introducing an alternative to uncentered R2 is that it fails to
be invariant to certain changes of units. While it is invariant to changes of units that
involve rescaling of the regressand y (see ex. 11.4.2), it is not invariant to changes of
units that involve addition or subtraction (actual inflation versus inflation in excess
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of a certain level, income versus income over a certain threshold, etc.) whenever X
contains an intercept. Exercise 11.4.3 asks you to prove this.

This is one reason many econometricians use the centered R2 rather than R2, at
least when the regression contains an intercept. For the purposes of this section, let’s
assume that this is the case (or, more generally, that 1 ∈ colspace X). Centered R2 is
defined as

R2
c :=

‖PMcy‖2

‖Mcy‖2 =
‖McPy‖2

‖Mcy‖2 (11.30)

Mc is as defined in (3.10) on page 61. The equality of the two expressions for R2
c is left

as an exercise (ex. 11.4.6). Adding a constant to each element of y will have no effect
on R2

c because Mc maps constant vectors to 0 (see example 3.3.1).
Centered R2 can be rewritten (ex. 11.4.7) as

R2
c =

∑N
n=1(ŷn − ȳ)2

∑N
n=1(yn − ȳ)2

(11.31)

It is a further exercise (ex. 11.4.5) to show that, in the case of the simple regression, the
R2

c is equal to the square of the sample correlation between the regressor and regres-
sand, as defined in (8.5) on page 218. Thus R2

c is a measure of correlation.

11.3 Further Reading

For additional references on the material covered in this chapter see, for example,
Friedman et al. (2009), Ruud (2000), Cameron and Trivedi (2005), or Davidson and
MacKinnon (2004).

11.4 Exercises

Ex. 11.4.1 Let x := (z, az)ᵀ, where a ∈ R and z is any scalar random variable. Show
that Exxᵀ is nonnegative definite but fails to be positive definite.

Ex. 11.4.2 Show that uncentered R2 is invariant to changes of units that involve rescal-
ing of the regressand y (dollars versus cents, kilometers versus miles, etc.)

Ex. 11.4.3 Fix X, y and consider regressing y on X. Suppose that X contains the inter-
cept, in the sense that 1 ∈ colspace X. Let R2 represent the uncentered coefficient of
determination. Let R2

α represent the same when y is replaced by y + α1. Show that
R2

α → 1 as α→ ∞.

Ex. 11.4.4 Show that R2 is invariant to a rescaling of the regressors.
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Ex. 11.4.5 Show that, in the case of the simple regression model in §11.2.2.1, R2
c is

equal to the square of the sample correlation between x and y.

Ex. 11.4.6 Confirm the equality of the two alternative expressions for R2
c in (11.30).

Ex. 11.4.7 Verify the expression for R2
c in (11.31).

Ex. 11.4.8 Prove fact 11.1.2 on page 306.

Ex. 11.4.9 Verify expression (11.17).

Ex. 11.4.10 Let’s show that β̂ solves the least squares problem in a slightly different
way: Let b be any K× 1 vector, and let β̂ := (XᵀX)−1Xᵀy.

(i) Show that ‖y− Xb‖2 = ‖y− Xβ̂‖2 + ‖X(β̂− b)‖2.

(ii) Using (i), argue that β̂ is the minimizer of ‖y− Xb‖2 over all K× 1 vectors b.

Ex. 11.4.11 Verify that ∑N
n=1(yn − bᵀxn)2 = ‖y− Xb‖2.

Ex. 11.4.12 Show carefully that any solution to minb∈RK ‖y− Xb‖2 is also a solution
to minb∈RK ‖y− Xb‖, and vice versa.

Ex. 11.4.13 Confirm that P1 = 1 whenever 1 ∈ colspace X.

Ex. 11.4.14 Show that, for any regression containing the intercept, the vector of resid-
uals must sum to zero.

Ex. 11.4.15 Show that, for any regression containing the intercept, the mean of the
fitted values ŷ = Py is equal to the mean of y.

Ex. 11.4.16 Show that PM = MP = 0. Using this fact (instead of the orthogonal
projection theorem), show that the vector of fitted values and the vector of residuals
are orthogonal.

Ex. 11.4.17 Show that if R2 = 1, then the vector of residuals is identically zero, Py = y,
and y ∈ colspace X.

Ex. 11.4.18 Suppose that the regression contains an intercept. Let ȳ be the sample
mean of y, and let x̄ be a 1× K row vector such that the kth element of x̄ is the sample
mean of the kth column of X. Show that ȳ = x̄β̂.

Ex. 11.4.19 Suppose the regression contains an intercept. Let Mc be as defined in
(3.10). Show that the following identity always holds:

‖My‖2 = ‖Mcy‖2 − ‖PMcy‖2 (11.32)
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Ex. 11.4.20 Let Xa and Xb be N × Ka and N × Kb respectively. Suppose that every
column of Xa is also a column of Xb. Show that colspace Xa ⊂ colspace Xb.

Ex. 11.4.21 Let x := (x1, . . . , xN) and y := (y1, . . . , yN) be sequences of scalar random
variables. Show that the sample correlation $̂ between x and y (defined in (8.5) on
page 218) can be written as

$̂ =
(Mcx)ᵀ(Mcy)
‖Mcx‖‖Mcy‖

Ex. 11.4.22 Show that the two expressions for β̂2 in (11.23) and (11.25) are equal.4

Ex. 11.4.23 At the end of the proof of theorem 11.2.1, it was claimed that the matrix
Xᵀ

2 M1X2 is nonsingular. Verify this claim.

Ex. 11.4.24 (Computational) Build an arbitrary data set X, y by simulation. Run
a regression with the intercept, and record the values of the estimated coefficients
of the nonconstant (i.e., k > 2) regressors. Confirm that these values are equal to
the estimated coefficients of the no-intercept regression after all variables have been
centered around their mean.

11.4.1 Solutions to Selected Exercises

Solution to Ex. 11.4.1. The expressionExxᵀ is nonnegative definite for any x because,
given c ∈ RK, we have

cᵀExxᵀc = E(cᵀx)(xᵀc) = E(xᵀc)2 > 0

Here we used the fact that the transpose of a scalar is equal to the scalar. However, if
x := (z, az)ᵀ, then

Exxᵀ = Ez2
(

1 a
a a2

)
The second column is a multiple of the first, so the matrix is singular and the determi-
nant is zero. As such it cannot be positive definite (see fact 3.2.9 on page 60).

Solution to Ex. 11.4.2. If y is scaled by α ∈ R, then

‖Pαy‖2

‖αy‖2 =
‖αPy‖2

‖αy‖2 =
α2‖Py‖2

α2‖y‖2 =
‖Py‖2

‖y‖2

Hence the uncentered R2 is unchanged.

4. Hint: Use the symmetry and idempotence of the matrix M1.
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Solution to Ex. 11.4.3. Fix α ∈ R. By definition, R2
α is

‖P(y + α1)‖2

‖y + α1‖2 =
‖Py + αP1‖2

‖y + α1‖2 =
‖Py + α1‖2

‖y + α1‖2 =
α2‖Py/α + 1‖2

α2‖y/α + 1‖2 =
‖Py/α + 1‖2

‖y/α + 1‖2

where the second inequality follows from the fact that 1 ∈ colspace X. Taking the limit
as α→ ∞, we find that R2

α → 1 as α→ ∞.

Solution to Ex. 11.4.4. This follows immediately from the definition of R2, and the
fact that, for any α 6= 0,

P = X(XᵀX)−1Xᵀ
=

α2

α2 X(XᵀX)−1Xᵀ
= (αX)((αX)ᵀ(αX))−1(αXᵀ

)

Solution to Ex. 11.4.5. From exercise 11.4.21, the squared sample correlation between
x and y can be written as

$̂2 =
[(Mcx)ᵀ(Mcy)]2

‖Mcx‖2‖Mcy‖2

Also, R2
c = ‖McPy‖2/‖Mcy‖2. Hence it suffices to show that, for the simple linear

regression model in §11.2.2.1, we have

‖McPy‖ = |(Mcx)ᵀ(Mcy)|
‖Mcx‖ (11.33)

Let X = (1, x) be the design matrix, where the first column is 1 and the second column
is x. Let

β̂1 := ȳ− β̂2 x̄ and β̂2 :=
(Mcx)ᵀ(Mcy)
‖Mcx‖2

be the least squares estimators of β1 and β2 respectively (see §11.2.2.1). We then have

Py = Xβ̂ = 1β̂1 + xβ̂2

∴ McPy = McXβ̂ = Mcxβ̂2

∴ ‖McPy‖ = ‖Mcxβ̂2‖ = |β̂2|‖Mcx‖ = |(Mcx)ᵀ(Mcy)|
‖Mcx‖2 ‖Mcx‖

Canceling ‖Mcx‖ we get (11.33). This completes the proof.

Solution to Ex. 11.4.6. It is sufficient to show that PMc = McP. Since 1 ∈ colspace X
by assumption, we have P1 = 1, and 1ᵀP = (Pᵀ1)ᵀ = (P1)ᵀ = 1ᵀ. Therefore P11ᵀ =
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11ᵀP, and

PMc = P− 1
N

P11ᵀ = P− 1
N

11ᵀP = McP

Solution to Ex. 11.4.7. It suffices to show that ‖PMcy‖2 = ∑N
n=1(ŷn − ȳ)2. This holds

because

N

∑
n=1

(ŷn − ȳ)2 = ‖Py− 1ȳ‖2 = ‖Py− P1ȳ‖2 = ‖P(y− 1ȳ)‖2 = ‖PMcy‖2

Solution to Solution 11.4.8. Adopt the notation and assumptions of fact 11.1.2 on
page 306. Let y be given. Let Pa and Pb be the projections onto the column spaces
of Xa and Xb respectively, so that R2

i = ‖Piy‖2/‖y‖2 for i ∈ {a, b}. From fact 2.2.7 on
page 32 we have PaPby = Pay. Using this fact, and setting yb := Pby, gives

R2
a

R2
b
=

(‖Pay‖
‖Pby‖

)2

=

(‖PaPby‖
‖Pby‖

)2

=

(‖Payb‖
‖yb‖

)2

6 1

where the final inequality follows from theorem 2.2.2 on page 31. Hence R2
b > R2

a, and
regressing with Xb produces (weakly) larger R2.

Solution to Ex. 11.4.10. Part (ii) follows immediately from part (i). Regarding part (i),
observe that

‖y− Xb‖2 = ‖y− Xβ̂ + X(β̂− b)‖2

By the Pythagorean law, the claim

‖y− Xb‖2 = ‖y− Xβ̂‖2 + ‖X(β̂− b)‖2

will be confirmed if y − Xβ̂ ⊥ X(β̂ − b). This follows from the definition of β̂,
because for arbitrary a ∈ RK we have

(Xa)ᵀ(y− Xβ̂) = aᵀ(Xᵀy− XᵀX(XᵀX)−1Xᵀy) = aᵀ(Xᵀy− Xᵀy) = 0

Solution to Ex. 11.4.12. Let β̂ be a solution to minb∈RK ‖y−Xb‖2, which is to say that

‖y− Xβ̂‖2 6 ‖y− Xb‖2 for any b ∈ RK

If a and b are nonnegative constants with a 6 b, then
√

a 6
√

b, and hence

‖y− Xβ̂‖ 6 ‖y− Xb‖ for any b ∈ RK

In other words, β̂ is a solution to minb∈RK ‖y − Xb‖. The “vice versa” argument
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follows along similar lines.

Solution to Ex. 11.4.14. To see why the vector of residuals sums to zero, observe that

1ᵀMy = 1ᵀy− 1ᵀPy = 1ᵀy− (Pᵀ1)ᵀy = 1ᵀy− (P1)ᵀy

where the last equality uses the fact the P is symmetric. Moreover, by exercise 11.4.13,
we have P1 = 1 whenever 1 is a column of X. Therefore

1ᵀMy = 1ᵀy− (P1)ᵀy = 1ᵀy− 1ᵀy = 0

Solution to Ex. 11.4.15. Since 1 ∈ colspace X, we have P1 = 1. It follows that

1
N

N

∑
n=1

ŷn =
1
N

1ᵀŷ =
1
N

1ᵀPy =
1
N

1ᵀy =
1
N

N

∑
n=1

yn

Solution to Ex. 11.4.17. If R2 = 1, then, by (11.12) on page 303, we have ‖My‖2 = 0,
and hence have û = My = 0. Since My + Py = y, this implies that Py = y. But then
y ∈ colspace X by (vi) of theorem 2.2.2.

Solution to Ex. 11.4.19. Fact 2.2.8 tells us that for any conformable vector z we have
z = Pz + Mz, where the two vectors on the right-hand side are orthogonal. Letting
z = Mcy, we obtain

Mcy = PMcy + MMcy

From fact 2.2.9 we have MMcy = My. Using this result, orthogonality, and the
Pythagorean law, we obtain

‖Mcy‖2 = ‖PMcy‖2 + ‖My‖2

Rearranging gives (11.32)

Solution to Ex. 11.4.20. This is just fact 2.1.3 on page 16.

Solution to Ex. 11.4.23. By fact 3.2.9, to show that Xᵀ
2 M1X2 is nonsingular, it suffices

to show that the matrix is positive definite. By idempotence and symmetry of M1,

Xᵀ
2 M1X2 = Xᵀ

2 M1M1X2 = Xᵀ
2 Mᵀ

1 M1X2 = (M1X2)
ᵀM1X2

Take any a 6= 0. We need to show that

aᵀ(M1X2)
ᵀM1X2a = (M1X2a)ᵀM1X2a = ‖M1X2a‖2 > 0
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Since the only vector with zero norm is the zero vector, it now suffices to show that
M1X2a is nonzero. From fact 2.2.8 on page 33, we see that M1X2a = 0 only when X2a
is in the column span of X1. Thus, the proof will be complete if we can show that X2a
is not in the column span of X1.

Indeed, X2a is not in the column span of X1. If it were, then we could write X1b =
X2a for some b ∈ RK1 . Rearranging, we get Xc = 0 for some nonzero c (recall a 6= 0).
This contradicts linear independence of the columns of X.


