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Abstract

This paper studies optimal investment and dynamic behavior in stochastically growing economies. We
assume neither convex technology nor bounded support of the productivity shocks. A humber of basic
results concerning the investment policy and the Ramsey—Euler equation are established. We also prove a
fundamental dichotomy pertaining to optimal growth models perturbed by standard econometric shocks:
either an economy is globally stable or it is globally collapsing to the origin.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The stochastic optimal growth mod@&rock and Mirman, 1972} a foundation stone of mod-
ern macroeconomic and econometric research. To accommodate the data, however, economists
are often forced to go beyond the convex production technology used in these original studies.
Nonconvexities lead to technical difficulties which applied researchers would rather not confront.
Value functions are in general no longer smooth, optimal policies contain jumps, and the Euler
equation may not hold. This reality precludes the use of many standard tools. Further, convergence
of state variables to a stationary equilibrium is no longer assured. The latter is a starting point
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of much applied analysis (see, elgydland and Prescott, 198@r Long and Plosser, 198and
fundamental to the rational expectations hypoth@sisas, 1986)

Although nonconvexities are technically challenging, the richer dynamics that they provide
help to replicate key time series. For example, nonconvexities often lead to the kind of regime-
switching behavior found in aggregate income data (Exgscott, 2003 or the growth miracles
and growth disasters in cross-country income panels. Also, nonconvexities can arise directly from
micro-level modeling, taking the form of fixed costs, threshold effects, ecological properties of
natural resource systems, economies of scale and scope, network and agglomeration effects, an
so on.

The objective of this paper is to investigate in depth the fundamental properties of stochastic
nonconvex one-sector models and the series they generate using assumptions which facilitate
integration with empirical research.

Previously, in the deterministic case, optimal growth models with nonconvex technology were
studied in continuous time b§kiba (1978)In discrete timeMajumdar and Mitra (19828xam-
ined efficiency of intertemporal allocatiori3echert and Nishimura (1983judied the standard
discounted model with convex/concave technology, and characterized the dynamics of the model
for every value of the discount factor. More recenfiir et al. (1991 )used lattice programming
techniques to study solutions of the Bellman equation and associated comparative dynamics.
Kamihigashi and Roy (in pressjudy nonconvex optimal growth without differentiability or even
continuity.

In the stochastic case, a rigorous early treatment of optimal growth with nonconvex technol-
ogy is given inMajumdar et al. (1989)Amir (1997) studies optimal growth in economies that
have some degree of convexity. Using martingale arguméosi (1997 pnalyzes the classical
turnpike properties when technology is nonstation8chenk-Hopp (2005)considers dynamic
stability of stochastic overlapping generations models with S-shaped production fuiitian.
and Roy (2006ktudy nonconvex renewable resource exploitation and stability of the resource
stock.

The above papers assume that the shock which perturbs activity in each period has compact
support. We extend their analysis by assuming instead that the shock is multiplicative, and its
distribution has a density—which may in general have bounded or unbounded support. This
formulation is relatively standard in quantitative applications. It provides considerable structure,
which can be exploited when investigating optimality and dynamics.

Without convexity many standard results pertaining to the optimal policy and the value function
can fail. In this study the density representation of the shock is used to prove interiority of the
optimal policy and Ramsey—Euler type results. Based on these findings and some additional
assumptions, we then obtain a fundamental dichotomy: every economy is either globally stable
in a strong sense to be made precise, or globally collapsing to the origin. This result (a version
of the Foguel Alternative) simplifies greatly the range of possible dynamics. We connect the two
possibilities to the discount rate, and also provide conditions to determine which outcome prevails
for specific parameterizatiors.

One caveat is that we consider only one-sector models. Multi-sector models are common in
applications, but their dynamics are vastly more complex. Thus, it is an important open question

1 We consider only optimal dynamics. There are many studies of nonoptimal competitive dynamics in nonconvex
environments. See, for examphMirman et al. (2005)

2 For further discussion of dynamics, including a specific condition on the primitives that ensures global stability, see
Nishimura and Stachurski (2005)
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whether or not the results on dynamics presented in this paper can be extended to multi-sector
models.

Section2 introduces the model. Secti@discusses optimization and properties of the optimal
policies. Sectiort considers the dynamics of the processes generated by these policies (i.e., the
optimal paths). All of the proofs are given in SectidandAppendix A

2. Outline of the model

Let R} := [0, oo) and letB be the Borel subsets &, . At the start of each perioda rep-
resentative agent receives current income R and allocates it between current consumption
¢; and savings. On current consumptiothe agent receives instantaneous utilify). Savings
determines the stodk of available capital, where & k; + ¢; < y,. Production then takes place,
delivering at the start of the next period output

Vir1 = flki)er, 1)

which is net of depreciation. Heeg is a shock taking values IR, .

The productivity shockssf);°, form an independent and identically distributed sequence on
probability space, F, P). When the time savings decision is made shocks. .., &1 are
observable. The distribution af is represented by density® We letE[e,] = [ z¢(z) dz = 1.

The bold symbob is used to denote the probability measuréncorresponding to the density
@, so thatyp (dz) andg(z) dz have the same meaning.

The agent seeks to maximize the expectation of a discounted sum of utilities. Future utility is

discounted according to € (0, 1).

Assumption 2.1. The functionu is strictly increasing, strictly concave, and continuously differ-
entiable on (Qo0). It satisfies (U1) lim_.o u’(c) = oo; and (U2)u is bounded with:(0) = 0.

The condition (U1) is needed to obtain the Ramsey—Euler equation. Strict concavity is criti-
cal to the proof of monotonicity of the optimal policy, on which all subsequent results depend.
Note that ifu is required to be bounded, then assumi@) = O sacrifices no additional gener-
ality.

Assumption 2.2. The production functioyfiis strictly increasing and continuously differentiable
on (0, 00). In addition, (F1)f(0) = 0; (F2) lim;_  f/(k) = 0; and (F3) lim_.o f/(k) > 1.

Condition (F2) is the usual decreasing returns assumption. Actually for the proofs we require
only thatfis majorized by an affine function with slope less than one. This is implied by (F2), as
can be readily verified from the Fundamental Theorem of Calculus.

An economy is defined by the collection,(f, ¢, 0), for which Assumptions 2.1 and 2&re
always taken to hold.

By a control policy is meant a functiom : Ry > y — k € Ry associating current in-
come to current savings. The policy is called feasible if iBisneasurable and & n(y) <y
for all y. An initial condition and a feasible policy complete the dynamics of the model
(1), determining a stochastic process)o on (2, F, P), where y;1 = f((y:))e; for all
t>0.

3 That is,P[; 1(B)] = fB ¢(z)dz for all B € B. Here and in what follows, by a density is meant a nonnegdive
measurable function dR. that integrates to unity.
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Investment behavior is determined by the solution to the problem

SUpk
T

o
> ouly - n(yz))] : @)
t=0

whereE denotes integration ove® with respect tdP, an initial conditionyg is given, and the
supremum is over the set of all feasible policies. By (U2) the functional inside the integral is
bounded independent af, and the supremum always exists. A policy is called optimal if it is
feasible and attains the suprem{).

3. Optimization

In this section we solve the optimization problem by dynamic programming, and characterize
the properties of the value function and control policy. To begin, define as usual the value function
V by settingV(y) as the real number given {{2) wheny = yq is the initial condition. Le®B
be the space of real boundBemeasurable functions dR, . Define also the Bellman operatbr
mappingbB into itself by

() = sup {u(y ~0+o [ e (dz)} | @)
<k<y

It is well-known thatT is a uniform contraction ohS in the sense of Banach, and that the value

functionV is the unique fixed point of'in b55.

Lemma 3.1. Forany economy (u, f, ¢, 0), the value function V is continuous, bounded and strictly
increasing. An optimal policy 1 exists. Moreover, if 1w is optimal, then

V() =uly —n(y) +e / VIf(z()zle(dz), VyeR;.

The proof does not differ from the neoclassical case (see, for exa8tipley et al., 1982and
is omitted.
As a matter of notation, define

X(y) = argmax<i<y {u(y — k) + Q/ V[f(k)Z]w(dZ)} :

so thaty — X(y) is the optimal correspondence, amds an optimal policy if and only if it is a
B-measurable selection fro.

3.1. Monotonicity

Monotone policy rules play an important role in economics, particularly with regards to the
characterization of equilibria. That monotonicity of the optimal investment function holds in de-
terministic one-sector nonconvex growth environments was establisizetnert and Nishimura
(1983)and is now well-known. Indeed, monotone controls are a feature of many very general
environments. See, for exampMirman et al. (2005pndKamihigashi and Roy (in presspur
model is no exception:

Lemma 3.2. Let an economy (u, f, ¢, 0) be given, and let 7 be a feasible policy. If w is optimal,
then it is nondecreasing on R .
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Put differently, one cannot construct a measurable selection from the optimal correspatidence
that is not nondecreasing. (On the other hand, in nonconvex models consumptioggserally
monotone with income.)

One supposes that asdecreases the propensity to save will fall. The following result was
established for the stochastic neoclassical casPanthine and Donaldson (1981, Theorem
5.1), and in the nonconvex, deterministic case Amir et al. (1991)using lattice program-
ming.

Lemma 3.3. The optimal policy is nondecreasing in the discount factor @, in the sense that if
(u, f, @, 00) and (u, f, ¢, 01) are two economies, and if 7o (resp. 71) is optimal for the former
(resp. latter), then 01 > oo implies w1 > 1o pointwise on R .

In fact we can say more.

Lemma 3.4. Foru, fand ¢ given, let (0,,) be a sequence of discount factors in (0, 1), and for each
n let , be a corresponding optimal policy. If o, | O,then wr, | O pointwise, and the convergence
is uniform on compact sets.

3.2. Derivative characterization of the policy

Optimal behavior in growth models is usually characterized by the Ramsey—Euler equation. In
stochastic models, where sequential arguments are unavailable, the obvious path to the Ramsey—
Euler equation is via differentiability of the value function and a well-known envelope condi-
tion (Mirman and Zilcha, 1975, Lemma 1pee alsBlume et al. (1982)who demonstrated
differentiability of the optimalpolicy under convexity and absolute continuity of the shock by
way of the Implicit Function TheoremAmir (1997) considered a weaker convexity require-
ment.

Without any convexity there may be jumps in the optimal policy, which in turn affect the
smoothness of the value function. The validity of the Ramsey—Euler characterization is not clear.
However,Dechert and Nishimura (1983, Theorem 6, Lemmat&)wed that in their model the
value function has left and right derivatives at every point, and that these agree off an at most
countable set. These results were extended to the stochastic cadéaymdar et al. (1989)

In addition to the above results concerning the value function, they were able to show that the
Ramsey—Euler equation holesrywhere, irrespective of jumps in the optimal policy. We extend
their analysis, starting from the essential idedBafme et al. (1982)but without convexity or
compact state. From this we prove interiority of the policy and the Ramsey—Euler equation for
standard econometric shocks.

Assumption 3.1. The shocke; is such that (S1) the densigyis continuously differentiable on
(0, 00); and (S2) the integraf z|¢'(z)| dz is finite.

The set of densities satisfying (S1) and (S2) is norm-dense in the set of all densities when the
latter are viewed as a subsetiof(R.). They also hold for many standard econometric shocks
onR,, such as the lognormal distribution. With these assumptions in hand we can establish the
following without convexity or bounded shocks.

4 The intuition is that nondifferentiability of the value function coincides pointwise with jumps in optimal investment.
But by Lemma 3.2the only optimal jumps are increases. To each jump, then, can be associated a distinct rational, which
precludes uncountability.
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Proposition 3.1. Let (u, f; ¢, 0) satisfy Assumptions 2.1-3.1

. If policy 7 is optimal, then it is interior. That is, 0 < 7(y) < y for all y € (0, 00).

. The value function V has right and left derivatives V' and V' everywhere on (0, 00).

. If policy m is optimal, then it satisfies V' (y) < u'(y — n(y)) < V() for all y € (0, 00).
. The functions V! and V', disagree on an at most countable subset of R ..

A WN B

In the stochastic nonconvex case, Part Pafposition 3..was proved byMajumdar et al.
(1989, Theorem 4)Their proof requires that the shock has compact support bounded away from
zero, and there exists an> 0 such thaff (k)e > k with probability one whenevar € (0, a). Part
2 was proved in the deterministic case by Dechert and Nishimura, as was Part 4 (1983, Theorem
6 and Lemma 8Y.Part 3 is due in the stochastic neoclassical caséitman and Zilcha (1975,
Lemma 1) and the proof for the nonconvex case is the sme.

Corollary 3.1. For a given economy (u, f;, ¢, 0), any two optimal policies are equal almost
everywhere.

Proof. Immediate from Parts 3 and 4.0

It will turn out that under the maintained assumptions, differences on null sets do not really
concern us (seeemma 4.). So we can in some sense talk abdut optimal policy (when
a.e.-equivalent policies are identified).

One of our main results is that undéssumptions 2.1-3.the Ramsey—Euler equation can
still be established.

Proposition 3.2. Let Assumptions 2.1-3.Aold. If  is optimal for (u, f, ¢, 0), thenforall y > 0,

W'y —n())=c / W fr()z — 2(fEONDLf (w(3)ze(dz).

UsingProposition 3.2ve can strengthen the monotonicity result for the optimal poliey{ma
3.2). The proof is straightforward and is omitted.

Corollary 3.2. For a given economy (u, f, ¢, 0), every optimal policy is strictly increasing.
4. Dynamics

Next we discuss the dynamics of the optimal procegs-(o. For the nonconvex deterministic
case a detailed characterization of dynamics was giveRdnhert and Nishimura (1983)\ot
surprisingly, for some parameter values multiple equilibria obtain. On the other hand, for the
convex stochastic growth modéllirman (1970)andBrock and Mirman (1972proved that the
sequence of marginal distributions for the process converge to a unique limit independent of the
initial condition. Subsequently this problem has been treated by many adthors.

Our main contribution in this paper is to show that many convex and nonconvex optimal
processes satisfy a fundamental dichotomy: either they are globally stable, or they are globally

5 On Part 2 see alsaskri and Le Van (1998, Proposition 3.2ndMirman et al. (2005)

6 Note that if V is concave on some open interval, then the subdifferentials exist everywhere on that interval, and
v, < V'.Iffollows from Part 3 of the Proposition, then, that concavity immediately gives differentiability, and, moreover,
V/(y) = u'(y — n(y)). SeeMirman and Zilcha (1975, Lemma. 1)

7 SeeNishimura and Stachurski (2008hd references.
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collapsing to the origin, independent of the initial condition. This result reduces considerably
the possible range of asymptotic outcomes. For example, path dependence never holds. More
importantly, global stability can now be established by showing only that an economy does not
collapse to the origin.

To begin, letP be the set of probability measures &(, B). LetE := (u, f, ¢, 0) be given. For
a fixed policysr and initial conditionyg, we consider the evolution of the income proces§ {o
satisfyingy;+1 = f((y:))e:, and the corresponding sequence of marginal distributé)s(o C
P.8 Evidently the process is Markovian, with independent of,. From this independence it
follows that for any bounded Borel functiagn: R, — R we have

Eh(yis1) = ERLf (x(yn))er] = / / HLF ()< 0(d2) ¥, (d).

Specializing to the case= 15 and usingy; ~ ¥, gives the recursion

Vioa(B) = / { / ﬂB[f(n(y»z]q)(dz)} ¥i(h). (4)

Whens is optimal forE, the sequence of marginal distributiogs Y defined inductively by4)
is called an optimal path forH, ). Every initial conditionyg ~ ¥ defines a (unique) optimal
path. If initial income is zero the dynamics require no additional investigation. Henceforth, by an
initial condition is meant a distributiogyy € P for yp which puts no mass ofd}. This convention
makes the results neater, and is maintained throughout the proofs without further comment.
When studying convergence of probabilities two topologies are commonly used. One is the
so-called weak topology, under which distribution functions converge if and only if they converge
pointwise at all continuity points. The other is the norm topology, or strong topology, generated
by the total variation norm. Under the latter, the distance betwesmdy in P is supsz |(B) —
v(B)|.

Definition 4.1. Let an economyE := (u, f, ¢, 0) be given, and let be an optimal policy foF.
A (nontrivial, stochastic) steady state fdr,(r) is a measurg™ € P, such thaty*({0}) = 0 and

/ [ / 1L (r())2lo(dd) | ¥ (dy) = ¥*(B). VB e B (5)

The policy z is called globally stable if for E, =) there is a unique steady staf& < P, and
the (E, m)-optimal path ¢,) satisfiesyy, — ¥* in the norm topology as — oo for all initial
conditionsy,.

Itis clear from(4) to (5)thatify, ~ ¥*, theny,., ~ ¥* forallk > 0. Note also that the stability
condition inDefinition 4.1is particularly strong. It implies many standard stability conditions for
Markov processes, such as recurrence, and also convergence of the marginal distributions in the
weak topology’

Instability of stochastic growth models has been studied less than stability. There are various
notions which capture instability; we borrow a relatively strong one from the Markov process
literature referred to as sweepitg.

8 Asbefore, §;);>0 is a stochastic process a2(F, P). By the marginal distributiosr, € P of y; is meantits distribution
onR; in the usual sense. Precisefy, :=P o y[l, the image measure induced dy(, B) by y;.

9 In the present case it also implies uniform convergence of distribution functions, which is the criteBimthkfand
Mirman (1972) SeeDudley (2002, p. 389)

10 see, for exampld,asota and Mackey (1994, Section .9
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Definition 4.2. Let an economt = (u, f, ¢, 0) be given, and letr be an optimal policy. Let
Bo C B. In general, the Markov process generated Byx) is called sweeping with respect to
By if each optimal pathy,) satisfies lim_, o ¥,(A) = O for all A € Bp and all initial conditions
¥o. We say that £, ) is globally collapsing to the origin if it is sweeping with respect to the
collection of intervald3g := {[ a, o0) : @ > 0}.

Nonconvex technology introduces the possibility that many optimal policies exist for the one
economy. For these models it has been shd»ethert and Nishimura, 1983, Lemmpgtbat dif-
ferent optimal trajectories can have very different dynamics, even from the same initial condition.
Indeed, there may be two optimal policiesand =’ for E such that the optimal path frong
generated byK, ) sustains a nontrivial long run equilibrium, whereas that generatefi by}
leads to economic collapse. For our stochastic model this is not possible:

Lemma 4.1. Let an economy E ‘= (u, f, ¢, 0) be given. If (E, 7) is globally stable for some
optimal 7, then (E, n') is globally stable for every optimal policy w'. Similarly, if (E, ) is
globally collapsing to the origin, then so is (E, ') for every optimal policy 7'.

As aresultwe may simply say th&ts globally stable or globally collapsing, without specifying
the particular optimal policy. Next, we introduce a new assumption as a preliminary to our main
dynamics result.

Assumption 4.1. The densityy of the productivity shock is strictly positive (Lebesgue almost)
everywhere ofR ;..

Many standard shocks d, have this property. An example is the lognormal distribution. The
following result indicates that when this assumption holds there is a fundamental dichotomy for
the dynamic behavior of the economy. The proof is based on the Foguel Alternative for Markov
chains(Foguel, 1969; Rudnicki, 1995Monotonicity and interiority of the optimal policy also
play key roles.

Proposition 4.1. Let an economy E := (u, f, ¢, 0) be given. If in addition to Assumptions 2.1—
3.1, Assumption 4.Xklso holds, then there are only two possibilities. Either

1. Eis globally stable, or
2. E is globally collapsing to the origin.

Remark. Assumption 4.an be weakened at the cost of more complicated proof<RGeweicki
(1995, Lemma 3 and Theorem.2)

It follows that multiple long run equilibria are never observed, regardless of nonconvexities
in production technology. Instead long run outcomes are completely determined by the structure
of the model, and historical conditions are asymptotically irrelevant. However, the steady state
distribution may well be multi-modal, concentrated on areas that are locally attracting on average.

We have seen that a decrease iis associated with lower savings and investment, which in
turn should increase the likelihood of collapse to the origin. Conversely, higstesuld increase
the likelihood that the economy is stable. Indeed,

Lemma 4.2. For economies Eo := (u, f, ¢, 00) and E1 := (u, f, ¢, 01) with 0o < 01, the follow-
ing implications hold.
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1. If E1 is globally collapsing to the origin, then so is Eo.
2. If Eg is globally asymptotically stable, then so is E1.

Combining the above results we can deduce that the dynamic behavior of the stochastic optimal
growth model has only three possible types. Precisely,

Proposition 4.2. For u, f, and ¢ given, either

1. (, f ¢, 0) is globally stable for all o € (0, 1),

2. (u, f, ¢, 0) is globally collapsing for all ¢ € (0, 1), or

3. thereisa g € (0, 1)suchthat (u, f, ¢, 0)is globally stable forall o > 0, and globally collapsing
forall o < p.

Under the current hypotheses one cannot rule out either of the first two possibilities. For
exampleKamihigashi (20033hows that very general one-sector growth models converge almost
surely to zero whery’(0) < oo and shocks are sufficiently volatile. Determining which of the
above three possibilities holds is far from trivial. However, we now show that one need only
consider behavior of the model in the neighborhood of the origin.

Assumption 4.2. The shock satisfieB|In¢| = [ |In z|p(dz) < co.

Proposition 4.3. Let E .= (u, f, ¢, 0) be given, and let w be an optimal policy. Suppose that
Assumptions 2.1-4.Rold. Define

A®)) SO

y

p = limsup

q = liminf
y—0 y—>0

1. If p < exp(=EIn¢), then E is globally collapsing to the origin.
2. If ¢ > exp(=EIn¢g), then E is globally stable.

Also, in the light ofLemma 3.4 0ne might suspect that even in the situation where an economy
is globally stable for every, the stationary distribution will become more and more concentrated
around the origin whep | 0. In this connection,

Proposition 4.4. Let u, f and ¢ be given. Suppose that (u, f, ¢, 0) is globally stable for all
0 €(0,1).Ifon — O,then ¥ — 380 in the weak topology, where ¥ is the stationary distribution
corresponding to o,, anddg is the probability measure concentrated at zero.

Remark. As 5o andy; are mutually singular, norm convergence is impossible.
5. Proofs

In the proofs,L1(X) refers as usual to all integrable Borel functions on given spaand
C"(X) is then times continuously differentiable functions.

5.1. Monotonicity

The proof of monotonicity of the optimal policy is as follows.

Proof. [Proof ofLemma 3.2 Let = be optimal, and take any nonnegatives y'. If y = y’ then
monotonicity is trivial. Suppose the inequality is strict. By way of contradiction, suppose that
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7(y) > m(y’). Definec := y — n(y), ¢’ := y — n(y/), andc := n(y) — n(y’) > 0. Note first that
==y —n()>y—n(y)=c=0. (6)
Also, sincec + ¢ + n(y') = y, we have
u@)+ e [ VUAEO)0le) = ule+ )+ o [ VISt )olck)
and since’ — ¢ + #(y) = ¥/,
ue) +o [ VIFGOed) = ule 8+ ¢ [ VIS Gt)ile(do)

u(d) —u(c =) = u(c+¢&) — u(e).
As ¢’ — ¢ > ¢ by (6), this contradicts the strict concavity of [
Proof. [Proof of Lemma 3.3Pick anyy > 0. Letkg := mo(y) andky := m1(y). By definition,

u(y = k) + o [ VU E0)do(ds) = uly — k) + eo [ Vrka)2)o(e)
and

u(y = k) + 1 [ VU E)IOE) = uls ~ ko) + e [ VFokdo(cd)
Multiplying the first inequality byp; and the second hbyo and adding gives

01u(y — ko) + oou(y — k1) > o1u(y — k1) + oou(y — ko).

. (01 — 00)(u(y — ko) — u(y — k1)) > 0.

o1z 0= u(y—ko)—u(y—ki1) =0= k1 >ko. U
Proof. [Proof of Lemma 3.4 Sinceu is concave, for any > 0 and any < y,

u(y — k) < u(y) —u'(y)k. )
Also, sinceu(y) < M < oo for all y,

V(y) = supkt [Z o'u(yr — n(yt))] < :QM. (8)

=0
Sincern(y) = O is feasible,

u(y — 7)) + 0 / V((0)e(d) = u(y) + 0 / V(f0))e(d:) = u(y).

cou(y) —u(y—n(y) e / V(f(r(»)2)e(dz) < 1% M.
Q
Using the bound7) gives us

W) < —2—M, Vy> 0.
l-o0

. e M _ . .
sor(y) = T_ou(y) — b(y; 0).

The functiony — b(y, o) is continuous and converges pointwise to zerg as 0. The statement
follows (uniform convergence on compact sets is by Dini's Theorern).
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5.2. The Ramsey—Euler equation

Next Propositions 3.1 and 3.@re established. We use the following lemma, which can be
thought of as a kind of convolution argument designed to verify precisely the conditions necessary
for the Ramsey—Euler equation to hold. The proof is rather long, and is relegated\optedix
A.

Lemma 5.1. Let g and h be nonnegative real functions on R. Define

u(r) = /OO h(x + r)g(x) dx. 9)

Consider the following conditions:

() g€ Li(R)NCHR), & € L1(R)
(ii) his bounded
(iii) & is nondecreasing
(iv) h is absolutely continuous on compact intervals
(V) K’ is bounded on compact subsets of R,

where h' is defined as the derivative of h when it exists and zero elsewhere. If (i) and (ii) hold,
then u € CY(R), and

o
WO == [ g (10)
—00
If, in addition, (iii))—(v) hold, then u' also has the representation
(o)
W = [ W s )
—00

Remark. Note that higher order derivatives are immediatg Has high order derivatives that
are all integrable. In the first part of the proof, where differentiability and the representation
w'(r) = — [ h(x + r)g'(x) dx are established we do not use nonnegativitg-efit may be any

real function. So now suppose thzds twice differentiable, and thgt’ € L1(R). Then by applying

the same result, this time usiggfor g, differentiability of u’ is verified.

To proveProposition 3.1the following preliminary observation is important.

Lemma 5.2. Assume the hypotheses of Proposition 3.land let V be the value function. The map
k — [ V[ f(k)z]e(dz) is continuously differentiable on the interior of Ry.

Proof. By a simple change of variable,
A Wﬂmw@m=[_mew®+mw&@m

Leth(x) := V[exp()], g(x) := ¢(e*)e*, and letu be defined as i(@). Then [ V[ f(k)z]e(z) dz =
u[ln 7 (k)]. Regardingu, conditions (i) and (ii) oLemma 5.lare satisfied by (U2), (S1) and (S2).
Hence[ V[ f(k)z]¢(z) dz is continuously differentiable as claimed.

Now let us consider the interiority result.
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Proof. [Proof of Proposition 3.1Part 1] Pick any > 0. Consider first the claim that(y) # 0.
Suppose instead thatd 2(y), so that

V) =uly) —e / VIf(0)c]e(dz) = u(y), 12)
where we have used0) = 0 in (U2). Define also
Veimuly—8)+ o [ VIF@ddo(do). 13)

wheret is a positive number less thanBy (F3), there exists& > 0 such thalf (&) > & whenever
& < 8. Therefore,

%zwwa@/wmw@,V@w. (14)

In addition,V > u everywhere o . Using this bound along witfil2) and (14)gives

VYO Ve _uQ)—uly—8) [ uz) -
0< : < : Q/ : o(dz), V& <. (15)

Take a sequencg, | 0. If H,(z) = u(&,z)/&,, thenH, > 0 onR, and H,+1(z) > Hy,(z) for
all z and alln. Moreover lim,_, o, H, = oo almost everywhere. By the Monotone Convergence
Theorem, then,

lim / uEn?) ) = / 00 p(dz) = o,

n—00 %_n

which induces a contradiction {d5).
Now consider the claim that(y) # y. Let

v(k) i=uly — k) + wk),  w(k) = Q/ VIf(K)z]e(dz), k€0, y].
If y € 2(y), then for all positives,
- v(y) —v(y —¢) :_@+ w(y) —wly — &) (16)
& & &

Sincew(k) is differentiable ay (Lemma 5.2, the second term on the right-hand side converges
to a finite number as | 0. In this case clearly there will be a contradiction of inequé(itg).
This completes the proof that¢ X(y). O

0

Proof. [Proof of Proposition 3.1Part 2] Regarding the existence of left and right derivatives, pick
anyy > 0, any¢, | 0,&, > 0, and any optimal policyt. By monotonicity,z(y + &,) converges

to some limitk,, and the valué, is independent of the choice of sequengg.(Moreover, upper
hemi-continuity ofr implies thatt is maximal ap. It follows from this and interiority of optimal
policies that O< k; < y and

ww=u@—k»+@/vww9dmm>

Also, foralln € N,

V(y+&) =uly+& —n(y +&)) + Q/ VIf((y + &))zle(dz) > u(y — ki + &)

+9/waﬁdw&)
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sou(y—kp+8&) —uly —ky) =V +8)-V(Q), VnelN
On the other hand, sinegy + &,) | k+ < y, there exists aw € N such that

V) zuly —n(y+&)) +e / VIf((y +&n))zle(dz),  Vn = N.

SVOHE)-VO) Suly+& -y + &) —uly —m(y+&)), Yn=N.
VO +E)=VO) U (v =7y + 8, Vn =N,

where the last inequality is by concavity mfln summary, then,
u(y —ky +&) —u(y —ky) < V(y+ &) = VQ) < u'(y — 7(y + &))én

for all n sufficiently large. Dividing through b§, > 0and taking limits give¥, (y) = u'(y — k),
which is of course finite by, < y.1!

Now consider the analogous argument ¥gr. Let y, (£,) andz be as above. Again, asis
monotoney(y — &,) 1 k—, wherek_ is independent of the precise sequerg:g, (maximal aty
and satisfies & k_ < y. Sincek_ > 0, the sequence(y — &,) will be positive for large enough
n and we can assume this is so foralBy maximality,

V() = uly — k) + o / VL (k)elo(de).

Also, sincek_ < y, there exists atv € Nwithk_ <y —§&, foralln > N. Hence¥n > N,

VO — &) = u(y — &0 — 70y — ) + 0 / VLAl — £))de(d) = u(y — k- — &)
‘o / VLA (k)o(dz).

cou(y —k- =) —u(y—k) =V(y—&)-V(), Vn=N.
One the other hand, sinceOx(y — &,) + k- < y,

V) zuly —n(y—&)) +e / VIf((y — &))zle(dz).  Vn eN.

VO =&)=VO) =uly =& — 7y — &) —uly —m(y — &), VneN.
SV =8)=V0) = —u'(y -7y — &), VneN,

where again the last inequality is by concavityuofutting the inequalities together gives
u(y —k— — &) —u(y —k=) = V(y — &) = V() < u'(y — n(y — &))(~&n)

for all n sufficiently large. Dividing through by-£, and taking limits gived’ (y) = u/(y — k_).
(I

Proof. [Proof of Proposition 3.1Part 3] The proofis identical to that givenhfirman and Zilcha
(2975, Lemmal) O

11 We are using continuity af’, which is guaranteed bssumption 2.1
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Proof. [Proof of Proposition 3.1Part 4] The proof is essentially the same as thatajumdar et

al. (1989, Lemma 4Briefly, it is clear from the proof of Part 2 ¢froposition 3.xhatV’ (y) and

V! (y) will agree wheneveE(y) is a singleton. Ify; andy; are any two distinct points wheieis
multi-valued, therE(y;) andX(y2) can intersect at at most one point, otherwise we can construct
a non-monotone optimal policy, contradictihgmma 3.2 1t follows that for eacty whereX(y)

is multi-valued,X(y) can be allocated a unique rational numbef]

Next we come to the proof of the Ramsey—Euler equation. We need the following lemma,
which was first proved (under different assumptionsMajumdar et al. (1989, Lemma 2A)

Lemma 5.3. For every compact K C (0, 00), inf{y — m(y) : y € K} is strictly positive.

Proof. Suppose to the contrary that on some compackset (0, co), there exists for eacha

yo With 7(y,) > y, — 1/n. By compactnessy,) has a convergent subsequence, and without loss
of generality we assume that the whole sequence convergésdd. The bounded sequence
m(y,) itself has a convergent subsequenésg,;)) — k* asi — oo. Since the subsequenog ))
converges to* too, k* is optimal aty* by upper hemicontinuity. But thep* — Wll) <k*<y*

for all i € N. This contradicts the interiority of the optimal policy, which has already been estab-
lished. O

The next lemma is fundamental to our results.

Lemma 5.4. Define V' to be the derivative of V when it exists and zero elsewhere. For all k > 0,

% / VIF(R)lol2) de = / VI(F()2) f (R)20(z) .

Proof. We change variables to shift the problem to the real line. Our objective is to bppiyna
5.1 Letw(k) := | V[ f(k)z]¢(z) dz. As before, we can use a change of variable to obtain

w(k) = /_ V(f (e )p(e)erd = / B+ In £(k)g(x)dr,

whereg(x) := ¢(e")e* andh(x) := V(e*). All of the hypotheses ofemma 5.1are satisfied?
Therefore, using the representatidn),

NON
F®) J oo

Changing variables again gives the desired result:

w'(k)

h(x+1In fk)g(x)dy = f'(k) /_oo V(€' f(k)e"g(x) dx.

w(k) = /O VI(FK)2) £ (K)g(in z) dz = /0 V(R f Rp@d. O

Now the proof of the Ramsey—Euler equation can be completed.

12 |n particular,i’ is bounded on compact sets, becatige) = V'(e*)e*, andV’(y) = u'(y — n(y)) when it exists (i.e.,

when the functionV’ is not set to zero). The latter is bounded on compact setsebyma 5.3 Also, V is absolutely
continuous because countinuous functions of bounded variation (provided by monotonicity here) fail to be absolutely
continuous only if they have infinite derivative on an uncountabléSsts, 1937, p. 128This is impossible bfProposition

3.1 Part 4.
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Proof. [Proof of Proposition 3.REvidently 7(y) solves

d
W0 - og [ VI & =0
The result now follows fronbemma 5.4 given thatV’(y) = u'(y — #(y)) Lebesgue almost ev-
erywhere. [

5.3. Dynamics

In the following discussion let an optimal poliaybe given. We simplify notation by defining
the mapsS by S(y) := f(z(y)). The mostimportant properties 8&re thatS is nondecreasing and
S(y) = 0 impliesy = 0 (seeLemma 3.2andProposition 3.1Part 1). Also, letD be ally € P
that are absolutely continuous with respect to Lebesgue measure.

Define the Markov operatdvl : P > ¢y — My € P corresponding tar by

mwm=//ummmwwm. (17)

It is immediate from(4) that the sequence of marginal distributions)(for income satisfies
¥, 1 =My, forallr > 0.

We note the following facts, which are easy to verify. Firstyif{0}) = 0, thenMy € D.
It follows immediately thatM(D) C D, and that {,), the sequence of marginal distributions
for income, satisfiesy, € D for all + > 1. Also, if ¢ € D, then the simple change of variable
Y = S(y)z gives

o) = [ [ ko) v, (18)
where d’ is of course integration with respect to Lebesgue measure, and
Y 1
) =o (55 ) 505 (19)
S/ SG)

Itisimmediate fronDefinition 4.1that a steady state is a fixed point of the Markov operator in
‘P which puts zero mass d@}. Since such distributions are mapped ity M, when a steady
statey™ exists it must be irD.

The next lemma is just elementary manipulation of the definitions.

Lemma 5.5. Let r be a fixed optimal policy, and let M be the corresponding Markov operator.

1. The economy is globally stable in the sense of Definition 4.1if and only if there is a unique
¥v* € DwithMy™* = ¥* and M'y — ¥* in norm as t — oo for every ¥ € D.

2. The economy is globally collapsing to the origin in the sense of Definition 4.2if and only if
My ([a, o0)) — O for every ¥ € D and every a > 0.

Proof. [Proof of Lemma 4.] By Corollary 3.1 any pair of optimal policies is equal almost
everywhere. Inspection ¢18) and (19)ndicates that they will have identical Markov operators
onD, in the sense that NI corresponds to one optimal policy avH to another, theMy = M’y

for all ¥ € D. The rest of the proof of Part 1 follows immediately framma 5.5 The proof of
Part 2 is similar. O
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Proof. [Proof of Proposition 4.1Let M be the Markov operator corresponding#toand letk be
as in(19). Consider the following two conditions:

(i) My dominates the Lebesgue measuvBi-null sets are Lebesgue null) for all e D.
(i) V9 > 0,3e > 0andn > 0 with [ n(x)dx > 0 and

k(. y) = 00 G-e5+0 ), Yy, Y.

Here byRudnicki (1995, Theorem 2 and Corollary, 8) and (ii) imply the Foguel Alternative; in
particular that eitheM has a unique fixed point* € D andM’y — ¥™* in norm for allyy € D,
or alternativelyM is sweeping with respect to the compact sets, so thatligM’¥([a, b]) = 0
forany¢ € D and any O< a < b < co. In the light ofLemma 5.5 then, to proveProposition
4.1itis sufficient to check (i), (ii) and, in addition,

lim limsup [ M'y([b,0)) =0, V¢ €D, (20)
b—>oo 150
where(20) demonstrates that sweeping occurs not just with respect to any intersl§ > 0,
but in fact to any intervald, co).
Condition (i) is immediate from the assumption thais everywhere positive, in light of
(18) and (19) Regarding condition (ii), pick any > 0 and anye such thaty™— ¢ > 0. Also let

0 < yp < y1 < o0. Define

Y0 Y1

80 i= —= , 01 .= —= .
SO +e) SG—e)

Note that inf¢[s,,5,] ¢(z) > 0 by (S1) and strict positivity. Set

_ Infocrs0.50) 9(2)
' SO +¢)
Thenn has the required properties.

Regarding(20), from (F2) there exists a € (0, 1) andm < oo such thatS(y) < ay + m for
ally e R;. Then

o =g

Vi1 < (@Yrtm)er. (21)

Sincey; ande; are independent arige = 1 we have

Eyi41 < aEy; + m. (22)
Using an induction argument gives

Ey, < 'Eyo+ A +a+ - +ao Hm §oe’IEyo+1T—a. (23)
Suppose thdEyg < oo. Then from(23) it follows that

|m§ym5i?; (24)

By the Chebychev inequality’ y([ b, o0)) < Ey,b~1. From(24)it then follows tha{(20) holds
for all y with Eyo := [ y¥(dy) < co. This set (all densities with finite first moments) is norm-
dense inD, andM is an L contraction oriD. Together, these facts imply that conditi(#0) in
fact holds for everyr € D (Lasota and Mackey, 1994, p. 126)



90 K. Nishimura et al. / Journal of Mathematical Economics 42 (2006) 74-96

Proof. [Proof of Lemma 4.2 Regarding Part 1, letg (resp.71) be an optimal policy forEq
(resp.E1), let Mg andM; be the corresponding Markov operators and jébtgo and (1)=o0
be the respective income processeslBynmas 4.1 and 5.5 is sufficient to show that for any
¥ € Dand anyz > 0 we have

Jlim My ([ a, 00)) = 0. (25)

FromLemma 3.3ve haver; > mg pointwise onR, so it is clear (by induction) that

y} > y0 pointwise on for anyr.

L2z ac iyl = a)

My ([a. 00)) = P{y) > a} < P(y} > a} = Mjy([a, ).
By Lemma 5.5and the hypothesis, the right hand side converges to zeresaso, which proves
(25). O

Proof. [Proof of Proposition 4.BFor this proof we sek; := In y;, and definex := Elne,  :=
Ine —aandT : R 3 x — In f(n(eY)) + «, so thaty,+1 = T(x;) + 1, whereEn, = 0.

(Part 1) By the condition, lim sup, _ (T (x) — x) < 0, implying the existence of am € R
anda > 0 such thafl'(x) < x — 2a, for all x < m.

Xkl S X+ — 2a, Vx; < m.
Letx; ;= x, —m and#; :=n, —a. Then
-%t—‘,-l < th + 7”\][ —da, V)AC, < 0. (26)

Definef2 := {w € £ : supr~o Z;T:o n:(w) < 0}. SinceE#n; = —a < 0, it follows thatP(£2p) >
0 (Borovkov, 1998, Chapter 11From(26) we have

X <Xo+nho+:--+n-1—taforw e 2,
so ifP{xg < 0} = 1, thenP{x, < —at} > P(£20) > O for allz. Since{x; < —at} = {y, < €79},
we have shown the existence of an initial conditigr{P{xo < 0} = 1if yg is chosen s.®P{yg <
€"} = 1) with the property

lim inf P{y, < c} = lim inf ¥,([0, c]) > P(£20) > O.

11— 00 —00

But theny, cannot converge in norm to anf* € D. (If ¥, — ¢¥* € D then ¢¥,([0, c]) —
¥*([0, c]), so choosing: > 0 such thaty*([0, c]) < P(§20) leads to a contradiction.) Therefore,
the economy is not globally stable, and it follows frétroposition 4.1hat it must be collapsing
to the origin.

(Part 2) By the condition, liminf., _-(7(x) — x) > 0, there is amim € R anda > 0 such
that7(x) > x + a whenever < m. Letx := x —m andq := n + a. Thenx;+1 > x; + 7, when-
everx; < 0. Also, sinceT' is nondecreasing, > 0 impliesT(x) > m + a. Thereforex; > 0 —
X1 > s

X = =X e > (=X + 007 (27)
where we are using the standard notation.= — min(0, x) andx™ := max(Q x).

Assume to the contrary that the economy is not globally stable, in which case it must be

sweeping from the setg[oc0), all a > 0, so that for each € R we have

lim P{%, <c¢} =1 (28)
— 00
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Let us introduce now the process)(defined byzo := —X;, 2141 := —(z: + 7;) . By (27) we
havez, < %, for all 7. Sincerp is P-integrable, there is ah > 0 such thaff(jo — L)t < a/3.
Let yo be chosen so thaty’is also integrable. TheR|zg| < oo, and in factE|z;| < oo for all r.
From(28)andz, < x; we have

lim P{z; < -L} =1
t—00

Chooser so thatP{z; > —L} < a/(3L) whent > tg. Sincez; < 0, then,s > o impliesE(z, +
L)T < a/3. Therefore,

Ezi41 = —E(z + 71)” = E(z + 1) — E(z¢ + 11)" = Ez; + Efjy — E(z + L)*
~E( — L)* > Bz + 2,
which contradictg; < Oforallz. O

Proof. [Proof of Proposition 4.4 By the Portmanteau Theoref$hiryaev, 1996, Theorem
.1.1), ¥} — 8o weakly if and only if

lim iﬂLo'ﬁZ(G) > 80(G) for every open sef C R;.
Here by “open” we refer to the relative topology®n . Evidently the above condition is equivalent
to liminf,_, .. ¥ (G) = 1 for all openG containing 0, which in turn is equivalent to

Iimoo ¥r(la,00)) =0, Va=>D0.
Take (r,) to be any sequence of optimal policies corresponding,te> 0. Let (y}) be the
Markov chain generated by, and fixed initial distributionyo ~ ¥ (i.€., ¥/, 1 = f(m.(1))e:)-

Hereyo = yj is chosen so thalyg < oo.
Consider the probability that® exceeds:. For each reak we have

P{y/ > a} =P({y; > a} N {y.1 < R +P({yy = a}N{y_1 > R}). (29)
Consider the second term. We claim that
Vr > 0, 3R € Rs.t. supsupP{y; > R} < r. (30)
neN >0

To see this, fix > 0, and pick any: € N. Define a sequencéf of random variables orf%, F, P)
by &0 = yo, &1+1 = (a&; + B)er, Wwherey — ay + gis an affine function dominatingonR, and
satisfyinge < 1 (see the comment aft&ssumption 2.2 From the definition of}, the fact that
mn(y) < yand f(y) < ay+ B, itis clear thaty? < & pointwise ons2 for all 7, and hence

VReR, {y'>R}C{&> R}
S Plyl > R} <P{§ >R}, Vt>0. (31)
Since&; andeg; are independenEé; 1 = K&, + . It follows that

Ef < o'Eéo+ —0— <Eig+ ——
l1-«o 11—«
for all . SinceE&y = Eyg < oo we see thalg, < C for all 7, whereC is a finite constant. By the
Chebychev inequality, then,
EE; C

P, > R} < =g V= 0. (32)
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Combining(31) and (32)givesP{y} > R} < C/R for all r andn. Sincer is arbitrary the claim
(30)is established.

Our objective was to bound the second tern{dif). So fixr > 0. By (30) we can choos® so
large that

P! > a) =P({y! = a} N {y" 1 < R}) + g (33)

for all r and alln. It remains to bound the first term. Lef{) C P be the sequence of marginal
distributions associated with{). From the well-known expression for the finite dimensional
distribution of Markov chains on measurable rectangles (€Sfpiryaev, 1996, Theorem 11.9.2
we have

R [e’s) y/
P({y?zam{yf_lsm):/()/ ¢(

1
dy’ dy).
f(ﬂn(y))> Fenon > V@)

A change of variable gives

> y 1 o
/a ¢ (f(n,,(y))) T 0) dy’ = o([a/f (. (y)), o0)).

From the proof ol,emma 3.4 we know thatr, is dominated by an increasing functiép
which converges pointwise to zero. Therefofe, 7, is dominated byf o b,,, again an increasing
function, which must by continuity gfconverge pointwise and hence uniformly to zero ar{p
Combining this with the fact that > 0 andeg is a finite measure, there is ah e N such that
n > N implies

o([Smonx)) <5 wenn.
But then
R r r
POF Zal N =R < [ Dval) <),
0

Using this inequality together witf29) and (33)we conclude that for al > O thereisanv € N
such that: > N and¢ > 0 impliesP{y! > a} = ¢/ ([a, 00)) < r. Sincey} — ¢ in norm it
follows thaty? ([a, 00)) — ¥} ([a, 00)) iNn R ast — oo, so thaty}: ([a, 00)) < r is also true. That
is, lim, o ¥} ([a, 00)) = 0, as was to be proved. O
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Appendix A.

First we need the following lemma regarding continuity of translationssimwhich is well-
known.
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Lemma A.1. Let g be in L1(R). If t(r) := |lg(x — 1) — g(x)||, then T is bounded on R, and
(t) > Oast — O.

Now define the real number'(r) to be— [ h(x + r)g’(x) dx, which is clearly finite. By the
Fundamental Theorem of Calculus,

MO+O—MH—MWV=/ﬁ&+0@@—0—ﬂw+§m0w
1
=—t [ h r '(x — ut) — g'(x)) du dx.
[0 [ 6= ) = g (o)
Taking absolute values, using (ii) and Fubini’s theorem,

‘ u(r + ti —u(r) 20

1 .
M /0 / 1/ (x — ur) — ¢/(x)] cr e (A1)

for someM. By Lemma A.1 [ |g'(x — ur) — g'(x)| dx is uniformly bounded inc and converges
to zero ag — O for eachu € [0, 1]. By Lebesgue’s Dominated Convergence Theorem the term
on the right hand side ¢fA.1) then goes to zero and

W) = — / hx + g (x) d.

Regarding continuity of the derivative, we have

WG+ 1) — W) < / h)lg' (= r — 1) — g/(x — A dv < M / 1§ — 1) — g/l dx.

Continuity now follows fromLemma A.1
Next we argue that under (iii)—(v),

W) = / W (x + )g(x) dr (A2)

is also valid. To begin, defing; (r) to be the right hand side ¢A.2). This number exists iiR,
because

hx+r+1t)—h(x+r)
t

" = liminf
(x+r)=Iim |[r10
almost everywhere by either (iii) or (iv), and hence

() = /Iimit%h(x-i_r_'_ti_h(x-’_r)g(x)dx

g(x) dx = (7).

- Iiminf/h()c+r+t)—h(x+r)
t}0 t

Here the inequality follows from the assumption thas increasing, which gives nonnegativity
of the difference quotient, and Fatou’s Lemma.
By (iv) the Fundamental Theorem of Calculus applies,tand
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w(r +1) = ulr) — () = /(h(x +1) = h(x) — B (x)t)g(x — r) dx

= t//ol(h/(x + ut) — h'(x))g(x — r) dx du.
Some simple manipulation gives
i) =0y =tm [ [ e+ ) — W) — ) el
Thus, it is sufficient to now show that
t“—>mo/ol/ | (x + ut) — h'(x)|g(x — r) dx du = 0.
The inner integral is bounded independeniobecause it is less than
[ ungte— et [ KWl —rde w4+ un) + w6)

which is bounded for € [0, 1] by continuity ofu’. Thus, by Lebesgue’s Dominated Convergence
Theorem we need only prove that

t”—r>n0/ |7 (x + ut) — h'(x)|g(x — r)dx = 0.

Adding and subtracting appropriately, this integral is seen to be less than

/ |W (x + ut)g(x — r + ut) — h'(x)g(x — r)|dx

+ / |7 (x + ut)g(x —r) — h'(x + ut)g(x — r + ut)| dx. (A.3)

Consider the first integral in the sum. Bgmma A.] we can choose & > 0 such thafs| < &g
implies

/ |W (x +ut)g(x — r +ut) — h'(x)g(x — r)|dx < g
The second integral in the sum can be written as

/ |W (x +ut)g(x —r) — h'(x + ut)g(x — r + ut)| dx
[x|<R

+ / |W (x + ut)g(x —r) — h'(x + ut)g(x — r + ut)| dx.
[x|>R

By the usual property af 1 functions, we can choogesuch that the integral ovér| > Risless
thane/3 for all r with |z] < &o.
To summarize the results so far, we hawe< 5o implies

/ | (x 4+ ut) — h'(x)|g(x — r)dx < 2—38

+ / |W (x + ut)g(x —r) — h'(x + ut)g(x — r + ut)| dx.
[x|<R
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Finally, sinceh’ is bounded on compact sets,
W (x+ut) <M, Vx, twith|x| <R, |t| < do.
Thereforgt| < &g implies

/|h/(x+ut)—h/(x)|g(x—r)dx< %+M/|g(x—r)—g(x—r+ut)|dx.

By Lemma A.1there is &7 > 0 such that
M/|g(x—r)—g(x—r+ut)|dx < %
whenevelt| < §1. Now settings := 8o A 81 gives
It < 8§ = / |W (x +ut) — W' (x)|glx —r)dx < ¢

as required.
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