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Abstract

This paper studies optimal investment and dynamic behavior in stochastically growing economies. We
assume neither convex technology nor bounded support of the productivity shocks. A number of basic
results concerning the investment policy and the Ramsey–Euler equation are established. We also prove a
fundamental dichotomy pertaining to optimal growth models perturbed by standard econometric shocks:
either an economy is globally stable or it is globally collapsing to the origin.
© 2005 Elsevier B.V. All rights reserved.

JEL classification: C61; C62; O41

Keywords: Optimal growth ; Nonconvexities ; Stability ; Instability

1. Introduction

The stochastic optimal growth model(Brock and Mirman, 1972)is a foundation stone of mod-
ern macroeconomic and econometric research. To accommodate the data, however, economists
are often forced to go beyond the convex production technology used in these original studies.
Nonconvexities lead to technical difficulties which applied researchers would rather not confront.
Value functions are in general no longer smooth, optimal policies contain jumps, and the Euler
equation may not hold. This reality precludes the use of many standard tools. Further, convergence
of state variables to a stationary equilibrium is no longer assured. The latter is a starting point
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of much applied analysis (see, e.g.,Kydland and Prescott, 1982; or Long and Plosser, 1983) and
fundamental to the rational expectations hypothesis(Lucas, 1986).

Although nonconvexities are technically challenging, the richer dynamics that they provide
help to replicate key time series. For example, nonconvexities often lead to the kind of regime-
switching behavior found in aggregate income data (e.g.,Prescott, 2003), or the growth miracles
and growth disasters in cross-country income panels. Also, nonconvexities can arise directly from
micro-level modeling, taking the form of fixed costs, threshold effects, ecological properties of
natural resource systems, economies of scale and scope, network and agglomeration effects, and
so on.

The objective of this paper is to investigate in depth the fundamental properties of stochastic
nonconvex one-sector models and the series they generate using assumptions which facilitate
integration with empirical research.1

Previously, in the deterministic case, optimal growth models with nonconvex technology were
studied in continuous time bySkiba (1978). In discrete time,Majumdar and Mitra (1982)exam-
ined efficiency of intertemporal allocations.Dechert and Nishimura (1983)studied the standard
discounted model with convex/concave technology, and characterized the dynamics of the model
for every value of the discount factor. More recently,Amir et al. (1991)used lattice programming
techniques to study solutions of the Bellman equation and associated comparative dynamics.
Kamihigashi and Roy (in press)study nonconvex optimal growth without differentiability or even
continuity.

In the stochastic case, a rigorous early treatment of optimal growth with nonconvex technol-
ogy is given inMajumdar et al. (1989). Amir (1997)studies optimal growth in economies that
have some degree of convexity. Using martingale arguments,Joshi (1997)analyzes the classical
turnpike properties when technology is nonstationary.Schenk-Hopṕe (2005)considers dynamic
stability of stochastic overlapping generations models with S-shaped production function.Mitra
and Roy (2006)study nonconvex renewable resource exploitation and stability of the resource
stock.

The above papers assume that the shock which perturbs activity in each period has compact
support. We extend their analysis by assuming instead that the shock is multiplicative, and its
distribution has a density—which may in general have bounded or unbounded support. This
formulation is relatively standard in quantitative applications. It provides considerable structure,
which can be exploited when investigating optimality and dynamics.

Without convexity many standard results pertaining to the optimal policy and the value function
can fail. In this study the density representation of the shock is used to prove interiority of the
optimal policy and Ramsey–Euler type results. Based on these findings and some additional
assumptions, we then obtain a fundamental dichotomy: every economy is either globally stable
in a strong sense to be made precise, or globally collapsing to the origin. This result (a version
of the Foguel Alternative) simplifies greatly the range of possible dynamics. We connect the two
possibilities to the discount rate, and also provide conditions to determine which outcome prevails
for specific parameterizations.2

One caveat is that we consider only one-sector models. Multi-sector models are common in
applications, but their dynamics are vastly more complex. Thus, it is an important open question

1 We consider only optimal dynamics. There are many studies of nonoptimal competitive dynamics in nonconvex
environments. See, for example,Mirman et al. (2005).

2 For further discussion of dynamics, including a specific condition on the primitives that ensures global stability, see
Nishimura and Stachurski (2005).
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whether or not the results on dynamics presented in this paper can be extended to multi-sector
models.

Section2 introduces the model. Section3 discusses optimization and properties of the optimal
policies. Section4 considers the dynamics of the processes generated by these policies (i.e., the
optimal paths). All of the proofs are given in Section5 andAppendix A.

2. Outline of the model

Let R+ := [0, ∞) and letB be the Borel subsets ofR+. At the start of each periodt a rep-
resentative agent receives current incomeyt ∈ R+ and allocates it between current consumption
ct and savings. On current consumptionc the agent receives instantaneous utilityu(c). Savings
determines the stockkt of available capital, where 0≤ kt + ct ≤ yt . Production then takes place,
delivering at the start of the next period output

yt+1 = f (kt)εt, (1)

which is net of depreciation. Hereεt is a shock taking values inR+.
The productivity shocks (εt)∞t=0 form an independent and identically distributed sequence on

probability space (Ω,F, P). When the timet savings decision is made shocksε0, . . . , εt−1 are
observable. The distribution ofεt is represented by densityϕ.3 We let E[εt ] = ∫

zϕ(z) dz = 1.
The bold symbolϕ is used to denote the probability measure onR+ corresponding to the density
ϕ, so thatϕ (dz) andϕ(z) dz have the same meaning.

The agent seeks to maximize the expectation of a discounted sum of utilities. Future utility is
discounted according to� ∈ (0, 1).

Assumption 2.1. The functionu is strictly increasing, strictly concave, and continuously differ-
entiable on (0, ∞). It satisfies (U1) limc→0 u′(c) = ∞; and (U2)u is bounded withu(0) = 0.

The condition (U1) is needed to obtain the Ramsey–Euler equation. Strict concavity is criti-
cal to the proof of monotonicity of the optimal policy, on which all subsequent results depend.
Note that ifu is required to be bounded, then assumingu(0) = 0 sacrifices no additional gener-
ality.

Assumption 2.2. The production functionf is strictly increasing and continuously differentiable
on (0, ∞). In addition, (F1)f (0) = 0; (F2) limk→∞ f ′(k) = 0; and (F3) limk→0 f ′(k) > 1.

Condition (F2) is the usual decreasing returns assumption. Actually for the proofs we require
only thatf is majorized by an affine function with slope less than one. This is implied by (F2), as
can be readily verified from the Fundamental Theorem of Calculus.

An economy is defined by the collection (u, f, ϕ, �), for which Assumptions 2.1 and 2.2are
always taken to hold.

By a control policy is meant a functionπ : R+ � y �→ k ∈ R+ associating current in-
come to current savings. The policy is called feasible if it isB-measurable and 0≤ π(y) ≤ y

for all y. An initial condition and a feasible policy complete the dynamics of the model
(1), determining a stochastic process (yt)t≥0 on (Ω,F, P), where yt+1 = f (π(yt))εt for all
t ≥ 0.

3 That is,P[ε−1
t (B)] =

∫
B

ϕ(z) dz for all B ∈ B. Here and in what follows, by a density is meant a nonnegativeB-
measurable function onR+ that integrates to unity.
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Investment behavior is determined by the solution to the problem

sup
π

E

[ ∞∑
t=0

�tu(yt − π(yt))

]
, (2)

whereE denotes integration overΩ with respect toP, an initial conditiony0 is given, and the
supremum is over the set of all feasible policies. By (U2) the functional inside the integral is
bounded independent ofπ, and the supremum always exists. A policy is called optimal if it is
feasible and attains the supremum(2).

3. Optimization

In this section we solve the optimization problem by dynamic programming, and characterize
the properties of the value function and control policy. To begin, define as usual the value function
V by settingV (y) as the real number given in(2) wheny = y0 is the initial condition. LetbB
be the space of real boundedB-measurable functions onR+. Define also the Bellman operatorT
mappingbB into itself by

(Tv)(y) = sup
0≤k≤y

{
u(y − k) + �

∫
v[f (k)z]ϕ (dz)

}
. (3)

It is well-known thatT is a uniform contraction onbB in the sense of Banach, and that the value
functionV is the unique fixed point ofT in bB.

Lemma 3.1. For any economy (u, f, ϕ, �), the value function V is continuous, bounded and strictly
increasing. An optimal policy π exists. Moreover, if π is optimal, then

V (y) = u(y − π(y)) + �

∫
V [f (π(y))z]ϕ(dz), ∀y ∈ R+.

The proof does not differ from the neoclassical case (see, for example,Stokey et al., 1989) and
is omitted.

As a matter of notation, define

Σ(y) := argmax0≤k≤y

{
u(y − k) + �

∫
V [f (k)z]ϕ(dz)

}
,

so thaty �→ Σ(y) is the optimal correspondence, andπ is an optimal policy if and only if it is a
B-measurable selection fromΣ.

3.1. Monotonicity

Monotone policy rules play an important role in economics, particularly with regards to the
characterization of equilibria. That monotonicity of the optimal investment function holds in de-
terministic one-sector nonconvex growth environments was established byDechert and Nishimura
(1983)and is now well-known. Indeed, monotone controls are a feature of many very general
environments. See, for example,Mirman et al. (2005)andKamihigashi and Roy (in press). Our
model is no exception:

Lemma 3.2. Let an economy (u, f, ϕ, �) be given, and let π be a feasible policy. If π is optimal,
then it is nondecreasing on R+.
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Put differently, one cannot construct a measurable selection from the optimal correspondenceΣ

that is not nondecreasing. (On the other hand, in nonconvex models consumption isnot generally
monotone with income.)

One supposes that as� decreases the propensity to save will fall. The following result was
established for the stochastic neoclassical case inDanthine and Donaldson (1981, Theorem
5.1), and in the nonconvex, deterministic case byAmir et al. (1991)using lattice program-
ming.

Lemma 3.3. The optimal policy is nondecreasing in the discount factor �, in the sense that if
(u, f, ϕ, �0) and (u, f, ϕ, �1) are two economies, and if π0 (resp. π1) is optimal for the former
(resp. latter), then �1 ≥ �0 implies π1 ≥ π0 pointwise on R+.

In fact we can say more.

Lemma 3.4. For u, f and ϕ given, let (�n) be a sequence of discount factors in (0, 1),and for each
n let πn be a corresponding optimal policy. If �n ↓ 0, then πn ↓ 0 pointwise, and the convergence
is uniform on compact sets.

3.2. Derivative characterization of the policy

Optimal behavior in growth models is usually characterized by the Ramsey–Euler equation. In
stochastic models, where sequential arguments are unavailable, the obvious path to the Ramsey–
Euler equation is via differentiability of the value function and a well-known envelope condi-
tion (Mirman and Zilcha, 1975, Lemma 1). See alsoBlume et al. (1982), who demonstrated
differentiability of the optimalpolicy under convexity and absolute continuity of the shock by
way of the Implicit Function Theorem.Amir (1997) considered a weaker convexity require-
ment.

Without any convexity there may be jumps in the optimal policy, which in turn affect the
smoothness of the value function. The validity of the Ramsey–Euler characterization is not clear.
However,Dechert and Nishimura (1983, Theorem 6, Lemma 8)showed that in their model the
value function has left and right derivatives at every point, and that these agree off an at most
countable set.4 These results were extended to the stochastic case byMajumdar et al. (1989).
In addition to the above results concerning the value function, they were able to show that the
Ramsey–Euler equation holdseverywhere, irrespective of jumps in the optimal policy. We extend
their analysis, starting from the essential idea ofBlume et al. (1982), but without convexity or
compact state. From this we prove interiority of the policy and the Ramsey–Euler equation for
standard econometric shocks.

Assumption 3.1. The shockεt is such that (S1) the densityϕ is continuously differentiable on
(0, ∞); and (S2) the integral

∫
z|ϕ′(z)| dz is finite.

The set of densities satisfying (S1) and (S2) is norm-dense in the set of all densities when the
latter are viewed as a subset ofL1(R+). They also hold for many standard econometric shocks
on R+, such as the lognormal distribution. With these assumptions in hand we can establish the
following without convexity or bounded shocks.

4 The intuition is that nondifferentiability of the value function coincides pointwise with jumps in optimal investment.
But byLemma 3.2, the only optimal jumps are increases. To each jump, then, can be associated a distinct rational, which
precludes uncountability.
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Proposition 3.1. Let (u, f, ϕ, �) satisfy Assumptions 2.1–3.1.

1. If policy π is optimal, then it is interior. That is, 0 < π(y) < y for all y ∈ (0, ∞).
2. The value function V has right and left derivatives V ′− and V ′+ everywhere on (0, ∞).
3. If policy π is optimal, then it satisfies V ′−(y) ≤ u′(y − π(y)) ≤ V ′+(y) for all y ∈ (0, ∞).
4. The functions V ′− and V ′+ disagree on an at most countable subset of R+.

In the stochastic nonconvex case, Part 1 ofProposition 3.1was proved byMajumdar et al.
(1989, Theorem 4). Their proof requires that the shock has compact support bounded away from
zero, and there exists ana > 0 such thatf (k)ε > k with probability one wheneverk ∈ (0, a). Part
2 was proved in the deterministic case by Dechert and Nishimura, as was Part 4 (1983, Theorem
6 and Lemma 8).5 Part 3 is due in the stochastic neoclassical case toMirman and Zilcha (1975,
Lemma 1), and the proof for the nonconvex case is the same.6

Corollary 3.1. For a given economy (u, f, ϕ, �), any two optimal policies are equal almost
everywhere.

Proof. Immediate from Parts 3 and 4.�
It will turn out that under the maintained assumptions, differences on null sets do not really

concern us (seeLemma 4.1). So we can in some sense talk aboutthe optimal policy (when
a.e.-equivalent policies are identified).

One of our main results is that underAssumptions 2.1–3.1the Ramsey–Euler equation can
still be established.

Proposition 3.2. Let Assumptions 2.1–3.1hold. If π is optimal for (u, f, ϕ, �), then for all y > 0,

u′(y − π(y)) = �

∫
u′[f (π(y))z − π(f (π(y))z)]f ′(π(y))zϕ(dz).

UsingProposition 3.2we can strengthen the monotonicity result for the optimal policy (Lemma
3.2). The proof is straightforward and is omitted.

Corollary 3.2. For a given economy (u, f, ϕ, �), every optimal policy is strictly increasing.

4. Dynamics

Next we discuss the dynamics of the optimal process (yt)t≥0. For the nonconvex deterministic
case a detailed characterization of dynamics was given byDechert and Nishimura (1983). Not
surprisingly, for some parameter values multiple equilibria obtain. On the other hand, for the
convex stochastic growth model,Mirman (1970)andBrock and Mirman (1972)proved that the
sequence of marginal distributions for the process converge to a unique limit independent of the
initial condition. Subsequently this problem has been treated by many authors.7

Our main contribution in this paper is to show that many convex and nonconvex optimal
processes satisfy a fundamental dichotomy: either they are globally stable, or they are globally

5 On Part 2 see alsoAskri and Le Van (1998, Proposition 3.2)andMirman et al. (2005).
6 Note that if V is concave on some open interval, then the subdifferentials exist everywhere on that interval, and

V ′+ ≤ V ′−. If follows from Part 3 of the Proposition, then, that concavity immediately gives differentiability, and, moreover,
V ′(y) = u′(y − π(y)). SeeMirman and Zilcha (1975, Lemma 1).

7 SeeNishimura and Stachurski (2005)and references.
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collapsing to the origin, independent of the initial condition. This result reduces considerably
the possible range of asymptotic outcomes. For example, path dependence never holds. More
importantly, global stability can now be established by showing only that an economy does not
collapse to the origin.

To begin, letP be the set of probability measures on (R+,B). LetE := (u, f, ϕ, �) be given. For
a fixed policyπ and initial conditiony0, we consider the evolution of the income process (yt)t≥0
satisfyingyt+1 = f (π(yt))εt , and the corresponding sequence of marginal distributions (ψt)t≥0 ⊂
P.8 Evidently the process is Markovian, withyt independent ofεt . From this independence it
follows that for any bounded Borel functionh : R+ → R we have

Eh(yt+1) = Eh[f (π(yt))εt ] =
∫ ∫

h[f (π(y))z]ϕ(dz)ψt(dy).

Specializing to the caseh = 1B and usingyt ∼ ψt gives the recursion

ψt+1(B) =
∫ [∫

1B[f (π(y))z]ϕ(dz)

]
ψt(dy). (4)

Whenπ is optimal forE, the sequence of marginal distributions (ψt) defined inductively by(4)
is called an optimal path for (E, π). Every initial conditiony0 ∼ ψ0 defines a (unique) optimal
path. If initial income is zero the dynamics require no additional investigation. Henceforth, by an
initial condition is meant a distributionψ0 ∈ P for y0 which puts no mass on{0}. This convention
makes the results neater, and is maintained throughout the proofs without further comment.

When studying convergence of probabilities two topologies are commonly used. One is the
so-called weak topology, under which distribution functions converge if and only if they converge
pointwise at all continuity points. The other is the norm topology, or strong topology, generated
by the total variation norm. Under the latter, the distance betweenµ andν inP is supB∈B |µ(B) −
ν(B)|.
Definition 4.1. Let an economyE := (u, f, ϕ, �) be given, and letπ be an optimal policy forE.
A (nontrivial, stochastic) steady state for (E, π) is a measureψ∗ ∈ P, such thatψ∗({0}) = 0 and∫ [∫

1B[f (π(y))z]ϕ(dz)

]
ψ∗(dy) = ψ∗(B), ∀B ∈ B. (5)

The policyπ is called globally stable if for (E, π) there is a unique steady stateψ∗ ∈ P, and
the (E, π)-optimal path (ψt) satisfiesψt → ψ∗ in the norm topology ast → ∞ for all initial
conditionsψ0.

It is clear from(4) to (5)that ifyt ∼ ψ∗, thenyt+k ∼ ψ∗ for all k ≥ 0. Note also that the stability
condition inDefinition 4.1is particularly strong. It implies many standard stability conditions for
Markov processes, such as recurrence, and also convergence of the marginal distributions in the
weak topology.9

Instability of stochastic growth models has been studied less than stability. There are various
notions which capture instability; we borrow a relatively strong one from the Markov process
literature referred to as sweeping.10

8 As before, (yt)t≥0 is a stochastic process on (Ω,F, P). By the marginal distributionψt ∈ Pof yt is meant its distribution
onR+ in the usual sense. Precisely,ψt := P ◦ y−1

t , the image measure induced on (R+,B) by yt .
9 In the present case it also implies uniform convergence of distribution functions, which is the criterion ofBrock and

Mirman (1972). SeeDudley (2002, p. 389).
10 See, for example,Lasota and Mackey (1994, Section 5.9).
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Definition 4.2. Let an economyE := (u, f, ϕ, �) be given, and letπ be an optimal policy. Let
B0 ⊂ B. In general, the Markov process generated by (E, π) is called sweeping with respect to
B0 if each optimal path (ψt) satisfies limt→∞ ψt(A) = 0 for all A ∈ B0 and all initial conditions
ψ0. We say that (E, π) is globally collapsing to the origin if it is sweeping with respect to the
collection of intervalsB0 := {[ a, ∞) : a > 0}.

Nonconvex technology introduces the possibility that many optimal policies exist for the one
economy. For these models it has been shown (Dechert and Nishimura, 1983, Lemma 6) that dif-
ferent optimal trajectories can have very different dynamics, even from the same initial condition.
Indeed, there may be two optimal policiesπ andπ′ for E such that the optimal path fromψ0
generated by (E, π) sustains a nontrivial long run equilibrium, whereas that generated by (E, π′)
leads to economic collapse. For our stochastic model this is not possible:

Lemma 4.1. Let an economy E := (u, f, ϕ, �) be given. If (E, π) is globally stable for some
optimal π, then (E, π′) is globally stable for every optimal policy π′. Similarly, if (E, π) is
globally collapsing to the origin, then so is (E, π′) for every optimal policy π′.

As a result we may simply say thatE is globally stable or globally collapsing, without specifying
the particular optimal policyπ. Next, we introduce a new assumption as a preliminary to our main
dynamics result.

Assumption 4.1. The densityϕ of the productivity shock is strictly positive (Lebesgue almost)
everywhere onR+.

Many standard shocks onR+ have this property. An example is the lognormal distribution. The
following result indicates that when this assumption holds there is a fundamental dichotomy for
the dynamic behavior of the economy. The proof is based on the Foguel Alternative for Markov
chains(Foguel, 1969; Rudnicki, 1995). Monotonicity and interiority of the optimal policy also
play key roles.

Proposition 4.1. Let an economy E := (u, f, ϕ, �) be given. If in addition to Assumptions 2.1–
3.1, Assumption 4.1also holds, then there are only two possibilities. Either

1. E is globally stable, or
2. E is globally collapsing to the origin.

Remark. Assumption 4.1can be weakened at the cost of more complicated proofs. SeeRudnicki
(1995, Lemma 3 and Theorem 2).

It follows that multiple long run equilibria are never observed, regardless of nonconvexities
in production technology. Instead long run outcomes are completely determined by the structure
of the model, and historical conditions are asymptotically irrelevant. However, the steady state
distribution may well be multi-modal, concentrated on areas that are locally attracting on average.

We have seen that a decrease in� is associated with lower savings and investment, which in
turn should increase the likelihood of collapse to the origin. Conversely, higher� should increase
the likelihood that the economy is stable. Indeed,

Lemma 4.2. For economies E0 := (u, f, ϕ, �0) and E1 := (u, f, ϕ, �1) with �0 ≤ �1, the follow-
ing implications hold.
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1. If E1 is globally collapsing to the origin, then so is E0.
2. If E0 is globally asymptotically stable, then so is E1.

Combining the above results we can deduce that the dynamic behavior of the stochastic optimal
growth model has only three possible types. Precisely,

Proposition 4.2. For u, f, and ϕ given, either

1. (u, f, ϕ, �) is globally stable for all � ∈ (0, 1),
2. (u, f, ϕ, �) is globally collapsing for all � ∈ (0, 1), or
3. there is a �̂ ∈ (0, 1)such that (u, f, ϕ, �) is globally stable for all � > �̂,and globally collapsing

for all � < �̂.

Under the current hypotheses one cannot rule out either of the first two possibilities. For
example,Kamihigashi (2003)shows that very general one-sector growth models converge almost
surely to zero whenf ′(0) < ∞ and shocks are sufficiently volatile. Determining which of the
above three possibilities holds is far from trivial. However, we now show that one need only
consider behavior of the model in the neighborhood of the origin.

Assumption 4.2. The shock satisfiesE| ln ε| = ∫ | ln z|ϕ(dz) < ∞.

Proposition 4.3. Let E := (u, f, ϕ, �) be given, and let π be an optimal policy. Suppose that
Assumptions 2.1–4.2hold. Define

p := limsup
y→0

f (π(y))

y
, q := lim inf

y→0

f (π(y))

y
.

1. If p < exp(−E ln ε), then E is globally collapsing to the origin.
2. If q > exp(−E ln ε), then E is globally stable.

Also, in the light ofLemma 3.4, one might suspect that even in the situation where an economy
is globally stable for every�, the stationary distribution will become more and more concentrated
around the origin when� ↓ 0. In this connection,

Proposition 4.4. Let u, f and ϕ be given. Suppose that (u, f, ϕ, �) is globally stable for all
� ∈ (0, 1). If �n → 0, thenψ∗

n → δ0 in the weak topology, whereψ∗
n is the stationary distribution

corresponding to �n, andδ0 is the probability measure concentrated at zero.

Remark. As δ0 andψ∗
n are mutually singular, norm convergence is impossible.

5. Proofs

In the proofs,L1(X) refers as usual to all integrable Borel functions on given spaceX, and
Cn(X) is then times continuously differentiable functions.

5.1. Monotonicity

The proof of monotonicity of the optimal policy is as follows.

Proof. [Proof of Lemma 3.2] Let π be optimal, and take any nonnegativey ≤ y′. If y = y′ then
monotonicity is trivial. Suppose the inequality is strict. By way of contradiction, suppose that
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π(y) > π(y′). Definec := y − π(y), c′ := y′ − π(y′), andĉ := π(y) − π(y′) > 0. Note first that

c′ − ĉ = y′ − π(y) > y − π(y) = c ≥ 0. (6)

Also, sincec + ĉ + π(y′) = y, we have

u(c) + �

∫
V [f (π(y))z]ϕ(dz) ≥ u(c + ĉ) + �

∫
V [f (π(y′))z]ϕ(dz),

and sincec′ − ĉ + π(y) = y′,

u(c′) + �

∫
V [f (π(y′))z]ϕ(dz) ≥ u(c′ − ĉ) + �

∫
V [f (π(y))z]ϕ(dz).

∴ u(c′) − u(c′ − ĉ) ≥ u(c + ĉ) − u(c).

As c′ − ĉ > c by (6), this contradicts the strict concavity ofu. �
Proof. [Proof ofLemma 3.3] Pick anyy ≥ 0. Letk0 := π0(y) andk1 := π1(y). By definition,

u(y − k0) + �0

∫
V (f (k0)z)ϕ(dz) ≥ u(y − k1) + �0

∫
V (f (k1)z)ϕ(dz)

and

u(y − k1) + �1

∫
V (f (k1)z)ϕ(dz) ≥ u(y − k0) + �1

∫
V (f (k0)z)ϕ(dz).

Multiplying the first inequality by�1 and the second by�0 and adding gives

�1u(y − k0) + �0u(y − k1) ≥ �1u(y − k1) + �0u(y − k0).

∴ (�1 − �0)(u(y − k0) − u(y − k1)) ≥ 0.

∴ �1 ≥ �2 =⇒ u(y − k0) − u(y − k1) ≥ 0 =⇒ k1 ≥ k0. �
Proof. [Proof ofLemma 3.4] Sinceu is concave, for anyy > 0 and anyk ≤ y,

u(y − k) ≤ u(y) − u′(y)k. (7)

Also, sinceu(y) ≤ M < ∞ for all y,

V (y) := sup
π

E

[ ∞∑
t=0

�tu(yt − π(yt))

]
≤ 1

1 − �
M. (8)

Sinceπ(y) = 0 is feasible,

u(y − π(y)) + �

∫
V (f (π(y))z)ϕ(dz) ≥ u(y) + �

∫
V (f (0)z)ϕ(dz) = u(y).

∴ u(y) − u(y − π(y)) ≤ �

∫
V (f (π(y))z)ϕ(dz) ≤ �

1 − �
M.

Using the bound(7) gives us

u′(y)π(y) ≤ �

1 − �
M, ∀y > 0.

∴ π(y) ≤ �

1 − �

M

u′(y)
:= b(y; �).

The functiony → b(y, �) is continuous and converges pointwise to zero as� → 0. The statement
follows (uniform convergence on compact sets is by Dini’s Theorem).�
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5.2. The Ramsey–Euler equation

Next Propositions 3.1 and 3.2are established. We use the following lemma, which can be
thought of as a kind of convolution argument designed to verify precisely the conditions necessary
for the Ramsey–Euler equation to hold. The proof is rather long, and is relegated to theAppendix
A.

Lemma 5.1. Let g and h be nonnegative real functions on R. Define

µ(r) :=
∫ ∞

−∞
h(x + r)g(x) dx. (9)

Consider the following conditions:

(i) g ∈ L1(R) ∩ C1(R), g′ ∈ L1(R)
(ii) h is bounded

(iii) h is nondecreasing
(iv) h is absolutely continuous on compact intervals
(v) h′ is bounded on compact subsets of R,

where h′ is defined as the derivative of h when it exists and zero elsewhere. If (i) and (ii) hold,
then µ ∈ C1(R), and

µ′(r) = −
∫ ∞

−∞
h(x + r)g′(x) dx. (10)

If, in addition, (iii)–(v) hold, then µ′ also has the representation

µ′(r) =
∫ ∞

−∞
h′(x + r)g(x) dx. (11)

Remark. Note that higher order derivatives are immediate ifg has high order derivatives that
are all integrable. In the first part of the proof, where differentiability and the representation
µ′(r) = − ∫

h(x + r)g′(x) dx are established we do not use nonnegativity ofg—it may be any
real function. So now suppose thatg is twice differentiable, and thatg′′ ∈ L1(R). Then by applying
the same result, this time usingg′ for g, differentiability ofµ′ is verified.

To proveProposition 3.1, the following preliminary observation is important.

Lemma 5.2. Assume the hypotheses of Proposition 3.1, and let V be the value function. The map
k �→ ∫

V [f (k)z]ϕ(dz) is continuously differentiable on the interior of R+.

Proof. By a simple change of variable,∫ ∞

0
V [f (k)z]ϕ(z)dz =

∫ ∞

−∞
V [exp(lnf (k) + x)]ϕ(ex)ex dx.

Leth(x) := V [exp(x)], g(x) := ϕ(ex)ex, and letµ be defined as in(9). Then
∫

V [f (k)z]ϕ(z) dz =
µ[ln f (k)]. Regardingµ, conditions (i) and (ii) ofLemma 5.1are satisfied by (U2), (S1) and (S2).
Hence

∫
V [f (k)z]ϕ(z) dz is continuously differentiable as claimed.

Now let us consider the interiority result.
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Proof. [Proof of Proposition 3.1, Part 1] Pick anyy > 0. Consider first the claim thatπ(y) �= 0.
Suppose instead that 0∈ 	(y), so that

V (y) = u(y) − �

∫
V [f (0)z]ϕ(dz) = u(y), (12)

where we have usedu(0) = 0 in (U2). Define also

Vξ := u(y − ξ) + �

∫
V [f (ξ)z]ϕ(dz), (13)

whereξ is a positive number less thany. By (F3), there exists aδ > 0 such thatf (ξ) > ξ whenever
ξ < δ. Therefore,

Vξ ≥ u(y − ξ) + �

∫
V (ξz)ϕ(dz), ∀ξ < δ. (14)

In addition,V ≥ u everywhere onR+. Using this bound along with(12) and (14)gives

0 ≤ V (y) − Vξ

ξ
≤ u(y) − u(y − ξ)

ξ
− �

∫
u(ξz)

ξ
ϕ(dz), ∀ξ < δ. (15)

Take a sequenceξn ↓ 0. If Hn(z) = u(ξnz)/ξn, thenHn ≥ 0 on R+ andHn+1(z) ≥ Hn(z) for
all z and alln. Moreover limn→∞ Hn = ∞ almost everywhere. By the Monotone Convergence
Theorem, then,

lim
n→∞

∫
u(ξnz)

ξn

ϕ(dz) =
∫

∞ϕ(dz) = ∞,

which induces a contradiction in(15).
Now consider the claim thatπ(y) �= y. Let

v(k) := u(y − k) + w(k), w(k) := �

∫
V [f (k)z]ϕ(dz), k ∈ [0, y].

If y ∈ 	(y), then for all positiveε,

0 ≤ v(y) − v(y − ε)

ε
= −u(ε)

ε
+ w(y) − w(y − ε)

ε
. (16)

Sincew(k) is differentiable aty (Lemma 5.2), the second term on the right-hand side converges
to a finite number asε ↓ 0. In this case clearly there will be a contradiction of inequality(16).
This completes the proof thaty /∈ 	(y). �
Proof. [Proof ofProposition 3.1, Part 2] Regarding the existence of left and right derivatives, pick
anyy > 0, anyξn ↓ 0, ξn > 0, and any optimal policyπ. By monotonicity,π(y + ξn) converges
to some limitk+, and the valuek+ is independent of the choice of sequence (ξn). Moreover, upper
hemi-continuity ofπ implies thatk+ is maximal aty. It follows from this and interiority of optimal
policies that 0< k+ < y and

V (y) = u(y − k+) + �

∫
V [f (k+)z]ϕ(dz).

Also, for all n ∈ N,

V (y + ξn) = u(y + ξn − π(y + ξn)) + �

∫
V [f (π(y + ξn))z]ϕ(dz) ≥ u(y − k+ + ξn)

+ �

∫
V [f (k+)z]ϕ(dz).
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∴ u(y − k+ + ξn) − u(y − k+) ≤ V (y + ξn) − V (y), ∀n ∈ N.

On the other hand, sinceπ(y + ξn) ↓ k+ < y, there exists anN ∈ N such that

V (y) ≥ u(y − π(y + ξn)) + �

∫
V [f (π(y + ξn))z]ϕ(dz), ∀n ≥ N.

∴ V (y + ξn) − V (y) ≤ u(y + ξn − π(y + ξn)) − u(y − π(y + ξn)), ∀n ≥ N.

∴ V (y + ξn) − V (y) ≤ u′(y − π(y + ξn))ξn, ∀n ≥ N,

where the last inequality is by concavity ofu. In summary, then,

u(y − k+ + ξn) − u(y − k+) ≤ V (y + ξn) − V (y) ≤ u′(y − π(y + ξn))ξn

for all n sufficiently large. Dividing through byξn > 0 and taking limits givesV ′+(y) = u′(y − k+),
which is of course finite byk+ < y.11

Now consider the analogous argument forV ′−. Let y, (ξn) andπ be as above. Again, asπ is
monotone,π(y − ξn) ↑ k−, wherek− is independent of the precise sequence (ξn), maximal aty
and satisfies 0< k− < y. Sincek− > 0, the sequenceπ(y − ξn) will be positive for large enough
n and we can assume this is so for alln. By maximality,

V (y) = u(y − k−) + �

∫
V [f (k−)z]ϕ(dz).

Also, sincek− < y, there exists anN ∈ N with k− ≤ y − ξn for all n ≥ N. Hence,∀n ≥ N,

V (y − ξn) = u(y − ξn − π(y − ξn)) + �

∫
V [f (π(y − ξn))z]ϕ(dz) ≥ u(y − k− − ξn)

+ �

∫
V [f (k−)z]ϕ(dz).

∴ u(y − k− − ξn) − u(y − k−) ≤ V (y − ξn) − V (y), ∀n ≥ N.

One the other hand, since 0< π(y − ξn) ↑ k− < y,

V (y) ≥ u(y − π(y − ξn)) + �

∫
V [f (π(y − ξn))z]ϕ(dz), ∀n ∈ N.

∴ V (y − ξn) − V (y) ≤ u(y − ξn − π(y − ξn)) − u(y − π(y − ξn)), ∀n ∈ N.

∴ V (y − ξn) − V (y) ≤ −u′(y − π(y − ξn))ξn, ∀n ∈ N,

where again the last inequality is by concavity ofu. Putting the inequalities together gives

u(y − k− − ξn) − u(y − k−) ≤ V (y − ξn) − V (y) ≤ u′(y − π(y − ξn))(−ξn)

for all n sufficiently large. Dividing through by−ξn and taking limits givesV ′−(y) = u′(y − k−).
�

Proof. [Proof ofProposition 3.1, Part 3] The proof is identical to that given inMirman and Zilcha
(1975, Lemma 1). �

11 We are using continuity ofu′, which is guaranteed byAssumption 2.1.
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Proof. [Proof ofProposition 3.1, Part 4] The proof is essentially the same as that ofMajumdar et
al. (1989, Lemma 4). Briefly, it is clear from the proof of Part 2 ofProposition 3.1thatV ′−(y) and
V ′+(y) will agree whenever	(y) is a singleton. Ify1 andy2 are any two distinct points where	 is
multi-valued, then	(y1) and	(y2) can intersect at at most one point, otherwise we can construct
a non-monotone optimal policy, contradictingLemma 3.2. It follows that for eachy where	(y)
is multi-valued,	(y) can be allocated a unique rational number.�

Next we come to the proof of the Ramsey–Euler equation. We need the following lemma,
which was first proved (under different assumptions) byMajumdar et al. (1989, Lemma 2A).

Lemma 5.3. For every compact K ⊂ (0, ∞), inf{y − π(y) : y ∈ K} is strictly positive.

Proof. Suppose to the contrary that on some compact setK ⊂ (0, ∞), there exists for eachn a
yn with π(yn) > yn − 1/n. By compactness (yn) has a convergent subsequence, and without loss
of generality we assume that the whole sequence converges toy∗ ∈ K. The bounded sequence
π(yn) itself has a convergent subsequenceπ(yn(i)) → k∗ asi → ∞. Since the subsequence (yn(i))
converges toy∗ too, k∗ is optimal aty∗ by upper hemicontinuity. But theny∗ − 1

n(i) ≤ k∗ ≤ y∗
for all i ∈ N. This contradicts the interiority of the optimal policy, which has already been estab-
lished. �

The next lemma is fundamental to our results.

Lemma 5.4. Define V ′ to be the derivative of V when it exists and zero elsewhere. For all k > 0,

d

dk

∫
V [f (k)z]ϕ(z) dz =

∫
V ′(f (k)z)f ′(k)zϕ(z) dz.

Proof. We change variables to shift the problem to the real line. Our objective is to applyLemma
5.1. Let w(k) := ∫

V [f (k)z]ϕ(z) dz. As before, we can use a change of variable to obtain

w(k) =
∫ ∞

−∞
V (f (k)ex)ϕ(ex)exdx =

∫ ∞

−∞
h(x + ln f (k))g(x)dx,

whereg(x) := ϕ(ex)ex andh(x) := V (ex). All of the hypotheses ofLemma 5.1are satisfied.12

Therefore, using the representation(11),

w′(k) = f ′(k)

f (k)

∫ ∞

−∞
h′(x + ln f (k))g(x) dx = f ′(k)

∫ ∞

−∞
V ′(exf (k))exg(x) dx.

Changing variables again gives the desired result:

w′(k) =
∫ ∞

0
V ′(f (k)z)f ′(k)g(ln z) dz =

∫ ∞

0
V ′(f (k)z)f ′(k)zϕ(z) dz. �

Now the proof of the Ramsey–Euler equation can be completed.

12 In particular,h′ is bounded on compact sets, becauseh′(x) = V ′(ex)ex, andV ′(y) = u′(y − π(y)) when it exists (i.e.,
when the functionV ′ is not set to zero). The latter is bounded on compact sets byLemma 5.3. Also, V is absolutely
continuous because countinuous functions of bounded variation (provided by monotonicity here) fail to be absolutely
continuous only if they have infinite derivative on an uncountable set(Saks, 1937, p. 128). This is impossible byProposition
3.1, Part 4.
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Proof. [Proof ofProposition 3.2] Evidentlyπ(y) solves

u′(y − k) − �
d

dk

∫
V [f (k)z]ϕ(z) dz = 0.

The result now follows fromLemma 5.4, given thatV ′(y) = u′(y − π(y)) Lebesgue almost ev-
erywhere. �

5.3. Dynamics

In the following discussion let an optimal policyπ be given. We simplify notation by defining
the mapS byS(y) := f (π(y)). The most important properties ofS are thatS is nondecreasing and
S(y) = 0 impliesy = 0 (seeLemma 3.2andProposition 3.1, Part 1). Also, letD be allψ ∈ P
that are absolutely continuous with respect to Lebesgue measure.

Define the Markov operatorM : P � ψ → Mψ ∈ P corresponding toπ by

(Mψ)(B) =
∫ ∫

1B[S(y)z]ϕ(dz)ψ(dy). (17)

It is immediate from(4) that the sequence of marginal distributions (ψt) for income satisfies
ψt+1 = Mψt for all t ≥ 0.

We note the following facts, which are easy to verify. First, ifψ({0}) = 0, thenMψ ∈ D.
It follows immediately thatM(D) ⊂ D, and that (ψt), the sequence of marginal distributions
for income, satisfiesψt ∈ D for all t ≥ 1. Also, if ψ ∈ D, then the simple change of variable
y′ = S(y)z gives

(Mψ)(B) =
∫ ∫

B

k(y, y′) dy′ψ(dy), (18)

where dy′ is of course integration with respect to Lebesgue measure, and

k(y, y′) := ϕ

(
y′

S(y)

)
1

S(y)
. (19)

It is immediate fromDefinition 4.1that a steady state is a fixed point of the Markov operator in
P which puts zero mass on{0}. Since such distributions are mapped intoD by M, when a steady
stateψ∗ exists it must be inD.

The next lemma is just elementary manipulation of the definitions.

Lemma 5.5. Let π be a fixed optimal policy, and let M be the corresponding Markov operator.

1. The economy is globally stable in the sense of Definition 4.1if and only if there is a unique
ψ∗ ∈ D with Mψ∗ = ψ∗ and Mtψ → ψ∗ in norm as t → ∞ for every ψ ∈ D.

2. The economy is globally collapsing to the origin in the sense of Definition 4.2if and only if
Mtψ([a, ∞)) → 0 for every ψ ∈ D and every a > 0.

Proof. [Proof of Lemma 4.1] By Corollary 3.1, any pair of optimal policies is equal almost
everywhere. Inspection of(18) and (19)indicates that they will have identical Markov operators
onD, in the sense that ifM corresponds to one optimal policy andM′ to another, thenMψ = M′ψ
for all ψ ∈ D. The rest of the proof of Part 1 follows immediately fromLemma 5.5. The proof of
Part 2 is similar. �
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Proof. [Proof ofProposition 4.1] Let M be the Markov operator corresponding toπ, and letk be
as in(19). Consider the following two conditions:

(i) Mψ dominates the Lebesgue measure (Mψ-null sets are Lebesgue null) for allψ ∈ D.
(ii) ∀ŷ > 0, ∃ε > 0 andη ≥ 0 with

∫
η(x) dx > 0 and

k(y, y′) ≥ η(y′)1(ŷ−ε,ŷ+ε)(y), ∀ y, y′.

Here byRudnicki (1995, Theorem 2 and Corollary 3), (i) and (ii) imply the Foguel Alternative; in
particular that eitherM has a unique fixed pointψ∗ ∈ D andMtψ → ψ∗ in norm for allψ ∈ D,
or alternativelyM is sweeping with respect to the compact sets, so that limt→∞ Mtψ([a, b]) = 0
for anyψ ∈ D and any 0< a < b < ∞. In the light ofLemma 5.5, then, to proveProposition
4.1 it is sufficient to check (i), (ii) and, in addition,

lim
b→∞

lim sup
t→∞

∫
Mtψ([b, ∞)) = 0, ∀ψ ∈ D, (20)

where(20) demonstrates that sweeping occurs not just with respect to any interval [a, b], a > 0,
but in fact to any interval [a, ∞).

Condition (i) is immediate from the assumption thatϕ is everywhere positive, in light of
(18) and (19). Regarding condition (ii), pick any ˆy > 0 and anyε such that ˆy − ε > 0. Also let
0 < γ0 < γ1 < ∞. Define

δ0 := γ0

S(ŷ + ε)
, δ1 := γ1

S(ŷ − ε)
.

Note that infz∈[δ0,δ1] ϕ(z) > 0 by (S1) and strict positivity. Set

r := inf z∈[δ0,δ1] ϕ(z)

S(ŷ + ε)
, η := r1[γ0,γ1] .

Thenη has the required properties.
Regarding(20), from (F2) there exists aα ∈ (0, 1) andm < ∞ such thatS(y) ≤ αy + m for

all y ∈ R+. Then

yt+1 ≤ (αyt+m)εt. (21)

Sinceyt andεt are independent andEε = 1 we have

Eyt+1 ≤ αEyt + m. (22)

Using an induction argument gives

Eyt ≤ αt
Ey0 + (1 + α + · · · + αt−1)m ≤ αt

Ey0 + m

1 − α
. (23)

Suppose thatEy0 < ∞. Then from(23) it follows that

lim sup
t→∞

Eyt ≤ m

1 − α
. (24)

By the Chebychev inequality,Mtψ([ b, ∞)) ≤ Eytb
−1. From(24) it then follows that(20)holds

for all ψ with Ey0 := ∫
yψ(dy) < ∞. This set (all densities with finite first moments) is norm-

dense inD, andM is anL1 contraction onD. Together, these facts imply that condition(20) in
fact holds for everyψ ∈ D (Lasota and Mackey, 1994, p. 126). �
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Proof. [Proof of Lemma 4.2] Regarding Part 1, letπ0 (resp.π1) be an optimal policy forE0
(resp.E1), let M0 andM1 be the corresponding Markov operators and let (y0

t )t≥0 and (y1
t )t≥0

be the respective income processes. ByLemmas 4.1 and 5.5it is sufficient to show that for any
ψ ∈ D and anya > 0 we have

lim
t→∞ Mt

0ψ([ a, ∞)) = 0. (25)

FromLemma 3.3we haveπ1 ≥ π0 pointwise onR+, so it is clear (by induction) that

y1
t ≥ y0

t pointwise onΩ for anyt.

∴ {y0
t ≥ a} ⊂ {y1

t ≥ a}.
∴ Mt

0ψ([ a, ∞)) = P{y0
t ≥ a} ≤ P{y1

t ≥ a} = Mt
1ψ([ a, ∞)).

By Lemma 5.5and the hypothesis, the right hand side converges to zero ast → ∞, which proves
(25). �
Proof. [Proof of Proposition 4.3] For this proof we setxt := ln yt , and defineα := E ln ε, η :=
ln ε − α andT : R � x → ln f (π(ex)) + α, so thatxt+1 = T (xt) + ηt , whereEηt = 0.

(Part 1) By the condition, lim supx→−∞(T (x) − x) < 0, implying the existence of anm ∈ R

anda > 0 such thatT (x) ≤ x − 2a, for all x ≤ m.

∴ xt+1 ≤ xt + ηt − 2a, ∀xt ≤ m.

Let x̂t := xt − m andη̂t := ηt − a. Then

x̂t+1 ≤ x̂t + η̂t − a, ∀x̂t ≤ 0. (26)

DefineΩ0 := {ω ∈ Ω : supT≥0
∑T

t=0 η̂t(ω) ≤ 0}. SinceEη̂t = −a < 0, it follows thatP(Ω0) >

0 (Borovkov, 1998, Chapter 11). From(26)we have

x̂t ≤ x̂0 + η̂0 + · · · + η̂t−1 − ta for ω ∈ Ω0,

so if P{x̂0 ≤ 0} = 1, thenP{xt ≤ −at} ≥ P(Ω0) > 0 for all t. Since{x̂t ≤ −at} = {yt ≤ em−at},
we have shown the existence of an initial conditiony0 (P{x̂0 ≤ 0} = 1 if y0 is chosen s.t.P{y0 ≤
em} = 1) with the property

lim inf
t→∞P{yt ≤ c} = lim inf

t→∞ψt([0, c]) ≥ P(Ω0) > 0.

But thenψt cannot converge in norm to anyψ∗ ∈ D. (If ψt → ψ∗ ∈ D then ψt([0, c]) →
ψ∗([0, c]), so choosingc > 0 such thatψ∗([0, c]) < P(Ω0) leads to a contradiction.) Therefore,
the economy is not globally stable, and it follows fromProposition 4.1that it must be collapsing
to the origin.

(Part 2) By the condition, lim infx→−∞(T (x) − x) > 0, there is anm ∈ R anda > 0 such
thatT (x) ≥ x + a wheneverx ≤ m. Let x̂ := x − m andη̂ := η + a. Thenx̂t+1 ≥ x̂t + η̂t when-
everx̂t ≤ 0. Also, sinceT is nondecreasing, ˆx ≥ 0 impliesT (x) ≥ m + a. Therefore, ˆxt ≥ 0 =⇒
x̂t+1 ≥ η̂t .

∴ x̂t+1 ≥ −x̂−
t + η̂t ≥ −(−x̂−

t + η̂t)
−, (27)

where we are using the standard notationx− := − min(0, x) andx+ := max(0, x).
Assume to the contrary that the economy is not globally stable, in which case it must be

sweeping from the sets [a, ∞), all a > 0, so that for eachc ∈ R we have

lim
t→∞ P{x̂t ≤ c} = 1. (28)
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Let us introduce now the process (zt) defined byz0 := −x̂−
0 , zt+1 := −(zt + η̂t)−. By (27) we

havezt ≤ x̂t for all t. Sinceη̂0 is P-integrable, there is anL > 0 such thatE(η̂0 − L)+ < a/3.
Let y0 be chosen so that ˆx0 is also integrable. ThenE|z0| < ∞, and in factE|zt| < ∞ for all t.
From(28)andzt ≤ x̂t we have

lim
t→∞ P{zt ≤ −L} = 1.

Chooset0 so thatP{zt > −L} < a/(3L) whent ≥ t0. Sincezt ≤ 0, then,t ≥ t0 impliesE(zt +
L)+ < a/3. Therefore,

Ezt+1 = −E(zt + η̂t)
− = E(zt + η̂t) − E(zt + η̂t)

+ ≥ Ezt + Eη̂t − E(zt + L)+

− E(η̂t − L)+ > Ezt + a

3
,

which contradictszt ≤ 0 for all t. �
Proof. [Proof of Proposition 4.4] By the Portmanteau Theorem(Shiryaev, 1996, Theorem
III.1.1), ψ∗

n → δ0 weakly if and only if

lim inf
n→∞ψ

∗
n(G) ≥ δ0(G) for every open setG ⊂ R+.

Here by “open” we refer to the relative topology onR+. Evidently the above condition is equivalent
to liminf n→∞ψ∗

n(G) = 1 for all openG containing 0, which in turn is equivalent to

lim
n→∞ψ∗

n([a, ∞)) = 0, ∀a > 0.

Take (πn) to be any sequence of optimal policies corresponding to�n → 0. Let (yn
t ) be the

Markov chain generated byπn and fixed initial distributiony0 ∼ ψ0 (i.e.,yn
t+1 = f (πn(yn

t ))εt).
Herey0 = yn

0 is chosen so thatEy0 < ∞.
Consider the probability thatyn

t exceedsa. For each realR we have

P{yn
t ≥ a} = P({yn

t ≥ a} ∩ {yn
t−1 ≤ R}) + P({yn

t ≥ a} ∩ {yn
t−1 > R}). (29)

Consider the second term. We claim that

∀r > 0, ∃R ∈ R s.t. sup
n∈N

sup
t≥0

P{yn
t > R} < r. (30)

To see this, fixr > 0, and pick anyn ∈ N. Define a sequence (ξt) of random variables on (Ω,F, P)
by ξ0 = y0, ξt+1 = (αξt + β)εt , wherey �→ αy + β is an affine function dominatingf onR+ and
satisfyingα < 1 (see the comment afterAssumption 2.2). From the definition ofyn

t , the fact that
πn(y) ≤ y andf (y) ≤ αy + β, it is clear thatyn

t ≤ ξt pointwise onΩ for all t, and hence

∀R ∈ R, {yn
t > R} ⊂ {ξt > R}.

∴ P{yn
t > R} ≤ P{ξt > R}, ∀t ≥ 0. (31)

Sinceξt andεt are independent,Eξt+1 = αEξt + β. It follows that

Eξt ≤ αt
Eξ0 + β

1 − α
≤ Eξ0 + β

1 − α

for all t. SinceEξ0 = Ey0 < ∞ we see thatEξt ≤ C for all t, whereC is a finite constant. By the
Chebychev inequality, then,

P{ξt > R} ≤ Eξt

R
≤ C

R
, ∀t ≥ 0. (32)
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Combining(31) and (32)givesP{yn
t > R} < C/R for all t andn. SinceR is arbitrary the claim

(30) is established.
Our objective was to bound the second term in(29). So fixr > 0. By (30)we can chooseR so

large that

P{yn
t ≥ a} = P({yn

t ≥ a} ∩ {yn
t−1 ≤ R}) + r

2
(33)

for all t and alln. It remains to bound the first term. Let (ψn
t ) ⊂ P be the sequence of marginal

distributions associated with (yn
t ). From the well-known expression for the finite dimensional

distribution of Markov chains on measurable rectangles (e.g.,(Shiryaev, 1996, Theorem II.9.2)
we have

P({yn
t ≥ a} ∩ {yn

t−1 ≤ R}) =
∫ R

0

∫ ∞

a

ϕ

(
y′

f (πn(y))

)
1

f (πn(y))
dy′ψt−1(dy).

A change of variable gives∫ ∞

a

ϕ

(
y′

f (πn(y))

)
1

f (πn(y))
dy′ = ϕ([a/f (πn(y)), ∞)).

From the proof ofLemma 3.4, we know thatπn is dominated by an increasing functionbn

which converges pointwise to zero. Therefore,f ◦ πn is dominated byf ◦ bn, again an increasing
function, which must by continuity off converge pointwise and hence uniformly to zero on [0, R].
Combining this with the fact thata > 0 andϕ is a finite measure, there is anN ∈ N such that
n ≥ N implies

ϕ

([
a

f
(πn(y)), ∞

))
<

r

2
, ∀y ∈ [0, R].

But then

P({yn
t ≥ a} ∩ {yn

t−1 ≤ R}) ≤
∫ R

0

r

2
ψt−1(dy) ≤ r

2
.

Using this inequality together with(29) and (33), we conclude that for allr > 0 there is anN ∈ N

such thatn ≥ N and t ≥ 0 implies P{yn
t ≥ a} = ψn

t ([a, ∞)) < r. Sinceψn
t → ψ∗

n in norm it
follows thatψn

t ([a, ∞)) → ψ∗
n([a, ∞)) in R ast → ∞, so thatψ∗

n([a, ∞)) ≤ r is also true. That
is, limn→∞ ψ∗

n([a, ∞)) = 0, as was to be proved. �

Acknowledgement

The authors thank Takashi Honda, Takashi Kamihigashi, Kevin Reffett and an anonymous ref-
eree for many helpful comments, and the grant-in-aid for 21st Century COE Research, Australian
Research Council Grant DP0557625, and the State Committee for Scientific Research (Poland)
grant no. 2 P03A 031 25 for financial support.

Appendix A.

First we need the following lemma regarding continuity of translations inL1, which is well-
known.
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Lemma A.1. Let g be in L1(R). If τ(t) := ‖g(x − t) − g(x)‖, then τ is bounded on R, and
τ(t) → 0 as t → 0.

Now define the real numberµ′(r) to be− ∫
h(x + r)g′(x) dx, which is clearly finite. By the

Fundamental Theorem of Calculus,

µ(r + t) − µ(r) − µ′(r)t =
∫

h(x + r)(g(x − t) − g(x) + g′(x)t) dx

= −t

∫
h(x + r)

∫ 1

0
(g′(x − ut) − g′(x)) du dx.

Taking absolute values, using (ii) and Fubini’s theorem,∣∣∣∣µ(r + t) − µ(r)

t
− µ′(r)

∣∣∣∣ ≤ M

∫ 1

0

∫
|g′(x − ut) − g′(x)| dx du (A.1)

for someM. By Lemma A.1,
∫ |g′(x − ut) − g′(x)| dx is uniformly bounded inu and converges

to zero ast → 0 for eachu ∈ [0, 1]. By Lebesgue’s Dominated Convergence Theorem the term
on the right hand side of(A.1) then goes to zero and

µ′(r) = −
∫

h(x + r)g′(x) dx.

Regarding continuity of the derivative, we have

|µ′(r + t) − µ′(r)| ≤
∫

h(x)|g′(x − r − t) − g′(x − r)| dx ≤ M

∫
|g′(x − t) − g′(x)| dx.

Continuity now follows fromLemma A.1.
Next we argue that under (iii)–(v),

µ′(r) =
∫

h′(x + r)g(x) dx (A.2)

is also valid. To begin, defineµ′
h(r) to be the right hand side of(A.2). This number exists inR,

because

h′(x + r) = lim inf
t↓0

h(x + r + t) − h(x + r)

t

almost everywhere by either (iii) or (iv), and hence

µ′
h(r) =

∫
lim inf

t↓0

h(x + r + t) − h(x + r)

t
g(x) dx

≤ lim inf
t↓0

∫
h(x + r + t) − h(x + r)

t
g(x) dx = µ′(r).

Here the inequality follows from the assumption thath is increasing, which gives nonnegativity
of the difference quotient, and Fatou’s Lemma.

By (iv) the Fundamental Theorem of Calculus applies toh, and
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µ(r + t) − µ(r) − µ′
h(r)t =

∫
(h(x + t) − h(x) − h′(x)t)g(x − r) dx

= t

∫ ∫ 1

0
(h′(x + ut) − h′(x))g(x − r) dx du.

Some simple manipulation gives

µ′
h(r) = µ′(r) − lim

t→0

∫ ∫ 1

0
(h′(x + ut) − h′(x))g(x − r) dx du.

Thus, it is sufficient to now show that

lim
t→0

∫ 1

0

∫
|h′(x + ut) − h′(x)|g(x − r) dx du = 0.

The inner integral is bounded independent ofu, because it is less than∫
h′(x + ut)g(x − r) dx +

∫
h′(x)g(x − r) dx ≤ µ′(r + ut) + µ′(r),

which is bounded foru ∈ [0, 1] by continuity ofµ′. Thus, by Lebesgue’s Dominated Convergence
Theorem we need only prove that

lim
t→0

∫
|h′(x + ut) − h′(x)|g(x − r) dx = 0.

Adding and subtracting appropriately, this integral is seen to be less than∫
|h′(x + ut)g(x − r + ut) − h′(x)g(x − r)|dx

+
∫

|h′(x + ut)g(x − r) − h′(x + ut)g(x − r + ut)| dx. (A.3)

Consider the first integral in the sum. ByLemma A.1, we can choose aδ0 > 0 such that|t| ≤ δ0
implies∫

|h′(x + ut)g(x − r + ut) − h′(x)g(x − r)|dx <
ε

3
.

The second integral in the sum can be written as∫
|x|≤R

|h′(x + ut)g(x − r) − h′(x + ut)g(x − r + ut)| dx

+
∫

|x|≥R

|h′(x + ut)g(x − r) − h′(x + ut)g(x − r + ut)| dx.

By the usual property ofL1 functions, we can chooseR such that the integral over|x| ≥ R is less
thanε/3 for all t with |t| ≤ δ0.

To summarize the results so far, we have|t| ≤ δ0 implies∫
|h′(x + ut) − h′(x)|g(x − r) dx <

2ε

3

+
∫

|x|≤R

|h′(x + ut)g(x − r) − h′(x + ut)g(x − r + ut)| dx.
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Finally, sinceh′ is bounded on compact sets,

h′(x + ut) ≤ M, ∀x, t with |x| ≤ R, |t| ≤ δ0.

Therefore|t| ≤ δ0 implies∫
|h′(x + ut) − h′(x)|g(x − r) dx <

2ε

3
+ M

∫
|g(x − r) − g(x − r + ut)| dx.

By Lemma A.1there is aδ1 > 0 such that

M

∫
|g(x − r) − g(x − r + ut)| dx <

ε

3

whenever|t| < δ1. Now settingδ := δ0 ∧ δ1 gives

|t| ≤ δ =⇒
∫

|h′(x + ut) − h′(x)|g(x − r) dx < ε

as required.

References

Amir, R., 1997. A new look at optimal growth under uncertainty. Journal of Economic Dynamics and Control 22, 67–86.
Amir, R., Mirman, L.J., Perkins, W.R., 1991. One-sector nonclassical optimal growth: optimality conditions and compar-

ative dynamics. International Economic Review 32, 625–644.
Askri, K., Le Van, C., 1998. Differentiability of the value function of nonclassical optimal growth models. Journal of

Optimization Theory and Applications 97, 591–604.
Blume, L., Easley, D., O’Hara, M., 1982. Characterization of optimal plans for stochastic dynamic economies. Journal of

Economic Theory 28, 221–234.
Borovkov, A.A., 1998. Probability Theory. Gordon and Breach Scientific Publishers, The Netherlands.
Brock, W.A., Mirman, L., 1972. Optimal economic growth and uncertainty: the discounted case. Journal of Economic

Theory 4, 479–513.
Danthine, J-P., Donaldson, J.B., 1981. Stochastic properties of fast vs. slow growth economies. Econometrica 49, 1007–

1033.
Dechert, W.D., Nishimura, K., 1983. A complete characterization of optimal growth paths in an aggregated model with

non-Concave production function. Journal of Economic Theory 31, 332–354.
Dudley, R.M., 2002. Real Analysis and Probability, Cambridge Studies in Advanced Mathematics No. 74. Cambridge.
Foguel, S.R., 1969. The Ergodic Theory of Markov Processes. Van Nostrand Reinhold, New York.
Joshi, S., 1997. Turnpike theorems in nonconvex nonstationary environments. International Economic Review 38, 225–

248.
Kamihigashi, T., 2003. Almost Sure Convergence to Zero in Stochastic Growth Models, Mimeo. RIEB, Kobe University.
Kamihigashi, T., Roy, S., in press. A non-smooth, non-convex model of economic growth, Journal of Economic Theory.
Kydland, F., Prescott, E.C., 1982. Time to build and aggregate fluctuations. Econometrica 50, 1345–1370.
Lasota, A., Mackey, M.C., 1994. Chaos, Fractals and Noise: Stochastic Aspects of Dynamics, second ed.. Springer-Verlag,

New York.
Long, J.B., Plosser, C.I., 1983. Real business cycles. Journal of Political Economy 91, 39–69.
Lucas, R.E., 1986. Adaptive behavior and economic theory. The Journal of Business 59 (4), 385–399.
Majumdar, M., Mitra, T., 1982. Intertemporal allocation with nonconvex technology. Journal of Economic Theory 27,

101–136.
Majumdar, M., Mitra, T., Nyarko, Y., 1989. Dynamic optimization under uncertainty: non-convex feasible set. In: Feiwel,

G.R. (Ed.), Joan Robinson and Modern Economic Theory. MacMillan Press, New York.
Mirman, L.J., 1970. Two essays on uncertainty and economics, Ph.D. thesis. University of Rochester.
Mirman, L.J., Morand, O.F., Reffett, K., 2005. A qualitative approach to markovian equilibrium in infinite horizon

economies with capital, manuscript.
Mirman, L.J., Zilcha, I., 1975. On optimal growth under uncertainty. Journal of Economic Theory 11, 329–339.
Mitra, T., Roy, S., 2006. Optimal exploitation of resources under uncertainty and the extinction of species. Economic

Theory 28, 1–23.



96 K. Nishimura et al. / Journal of Mathematical Economics 42 (2006) 74–96

Nishimura, K., Stachurski, J., 2005. Stability of stochastic optimal growth models: a new approach. Journal of Economic
Theory 122, 100–118.

Prescott, E.C., 2003. Non-convexities in quantitative general equilibrium studies of business cycles, Staff Report No. 312,
Federal Reserve Bank of Minneapolis.

Rudnicki, R., 1995. On asymptotic stability and sweeping for Markov operators. Bulletin of the Polish Academy of
Science: Mathematics 43, 245–262.

Saks, S., 1937. Theory of the Integral. Monografie Matematyezne, Warsaw.
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