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Abstract

The paper exposits a number of key dynamic models from the field of economics.
The models share the feature that evolution of the system is consistent with the
optimizing behavior of rational economic agents. Specifically, the laws of motion that
we investigate are solutions to discrete time dynamic decision processes. Even with
rational agents and simple economic environments, a variety of complex behaviors
are shown to obtain.

1 Introduction

The primary concern of economics as a science is allocation of scarce resources
among several alternative and competing uses. In this connection, it is impor-
tant to bear in mind that resources must be allocated not only contempo-
raneously, but also across time. The planning involved occurs in each period
after observation of the current state. Therefore decisions of intertemporal
allocation are naturally described by discrete-time dynamical functions.

These dynamical processes are not defined by arbitrarily chosen laws of mo-
tion. Agents’ decisions are made according to such concerns as profit maxi-
mization by firms, utility maximization by households and social welfare max-
imization by the policy maker. In formulating these plans, forward looking
agents consider the affect of their actions on the time path of state variables.
The dynamical systems used in economic theory are thus obtained as solutions
to such intertemporal optimization problems.

1 The first author is grateful to Saber N. Elyadi for helpful conversations.
2 The second author acknowledges financial support from the Japan Society for the
Promotion of Science.



The foundational models in this area are those that replicate growth through
the accumulation of productive capital. In economics, interest in the theory
of growth has been revived during the last fifteen years. The reason for the
resurrection of growth research is that the framework of intertemporal opti-
mization has been found to explain a much wider range of phenomena than
was previously believed. Using results from the field of non-linear dynamical
systems, it has been shown that intertemporal optimization theory can pro-
vide new explanations for business cycles and for international differences in
growth and development.

In the economic literature, historically there have been two types of explana-
tions for observed fluctuations in the level of economic activity. One type of
explanation has been built on the view that fluctuations are caused by factors
that are exogenous to economic systems. For example, agricultural production
can be affected by weather, consumers tastes may be influenced by intangible
fads, or government policies may change erratically. In such environments the
market plays the role of a filter, passing random shocks to economic variables,
which constantly deviate from their trends. These deviations are regarded as
business cycles; the field of research is referred to as the “real business cycle”
literature.

The other type of explanation views fluctuations as phenomena endogenous
to economic systems. This view dominated the literature prior to the 1960s. 3

Those studies in turn were based on the Keynesian premise that certain reg-
ularities exist in the relationships between major macroeconomic variables. It
has become clear, however, that such a premise is inconsistent with the ratio-
nal and well-informed behavior of economic agents, and this inconsistency has
contributed to a shift of research focus towards what is now known as neoclas-
sical economics. The latter is built on the foundations of rational, optimizing
behavior.

The purpose of the neoclassical methodology is not of course to deny the oc-
currence of irrational behavior by actors in the real economy. The force of
its argument comes from its logical consistency and the potential for predic-
tion. Without a priori restrictions on human market and strategic behavior,
models consistent with any outcome can be constructed. Theories that cannot
preclude any possibility are not useful for structuring academic debate.

If the neoclassical paradigm is accepted, however, it remains unclear whether
or not the fundamental structure of an economy itself—without the influ-
ence of external noise—may explain business fluctuations in the neoclassical
framework. Work on non-linear dynamics from the late 1970s and early 1980s
appears to have answered this question in the affirmative, renewing widespread

3 See, for example, Harrod [15], Samuelson [37], or Kaldor [17].
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interest in the endogenous explanation of economic fluctuations. 4

In the first part of this paper, a number of deterministic discrete time models
are presented. All treat by intertemporal optimization the fundamental prob-
lem of savings and consumption. Some models are associated with asymptoti-
cally stable dynamics, while others exhibit cycles and other complex behavior.

In addition, some basic results for stochastic dynamic models are also dis-
cussed. Stochastic models are important because of their obvious connections
with the empirical literature. In addition, they form the foundations of the so-
called real business cycles mentioned above, which remain an active research
area. Among the results listed here, particular emphasis is placed on the im-
plications of monotone decision rules for asymptotic stochastic behavior.

2 Aggregative models of economic growth

2.1 The basic framework

The basic premise of the aggregative model can be described as follows: in
each period t, a single homogeneous output, Yt, is produced from the two
homogeneous input factors labor, Lt, and capital, Kt. The technically effi-
cient possibilities for production are summarized by an aggregate production
function F (Kt, Lt) which exhibits constant returns to scale, positive marginal
productivity, and decreasing marginal rate of substitution.

Constant returns—scalar multiplying the vector of inputs multiplies output
by the same amount—is motivated by a replication argument. Diminishing
returns to individual inputs when others are held fixed seems a natural as-
sumption, and generates convexities that are central to both optimization and
dynamic properties.

Because of constant returns to scale, the output-labor ratio yt = Yt/Lt is given
by

yt = f(kt), (1)

4 Benhabib and Nishimura [3] demonstrate the appearance of periodic cycles in
along optimal paths of capital accumulation in a model where agents are fully
rational and perfectly informed. Benhabib and Day [1], and Grandmont [13] observe
the possibilities of chaotic dynamics in models in which agents are rational and
informed in certain limited manners. Boldrin and Montrucchio [5], Deneckere and
Pelikan [9], and Nishimura and Yano [31] demonstrate the existence of a chaotic
optimal path of capital accumulation in a model with fully rational and perfectly
informed agents.
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where kt = Kt/Lt is the capital-labor ratio and f(k) = F (k, 1). Regarding f ,
it is assumed that

Assumption 1 f : [0,∞)→ R is continuous everywhere, and twice continu-
ously differentiable on (0,∞).

Further,

Assumption 2 f(0) = 0, f ′ > 0, f ′′ < 0, limk↓0 f
′(k) =∞, limk↑∞ f

′(k) = 0.

The labor force is assumed to be constant, and capital stock depreciates at
positive rate δ. Per capita output may be allocated between consumption and
gross investment. Denoting per capita consumption by ct this implies

yt = ct + kt+1 − (1− δ)kt. (2)

The initial per capita capital stock k0 is historically given. Social welfare over
the infinite planning period is presumed to be represented by the functional

∞∑
t=0

%tu(ct), (3)

where % ∈ (0, 1) is the discount factor. Thus, social welfare is the discounted
sum of period-wise utility of per capita consumption.

Assumption 3 u : [0,∞)→ R is continuous, increasing, and twice continu-
ously differentiable on (0,∞).

Assumption 4 On (0,∞), u′ > 0 and u′′ < 0. Also, limc↓0 u
′(c) = ∞ and

limc↑∞ u
′(c) = 0.

A sequence of stocks (kt)
∞
t=0 is called a feasible path from k0 if it satisfies the

condition 0 ≤ kt+1 ≤ f(kt) + (1 − δ)kt for all t ≥ 0. For each feasible path
there is a corresponding sequence of consumption rates (ct)

∞
t=0 determined by

(1) and (2). A feasible path is called an interior path if ct > 0 holds for all
t ≥ 0, and it is called stationary if kt = k for all t ≥ 0 and some constant
k ≥ 0. An optimal path from k0 is a feasible path from k0 that maximizes the
objective function (3). By the strict concavity of the utility and production
functions we can show that the optimal solution from a given k0 is unique.

An interior path will be called an Euler path if it satisfies the discrete-time
Euler equation

u′(ct−1)− %u′(ct)[f ′(kt) + 1− δ] = 0. (4)

If an interior path is optimal then it must be an Euler path. By substituting
(1) and (2) into (4), the Euler equation becomes a second order difference
equation; given k0 there are infinitely many paths that satisfy it. To distinguish
the unique optimum path from the other Euler paths we need an additional
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optimality condition. In fact it is known that under the assumptions stated
above, any Euler path which satisfies the transversality condition

lim
t→∞

%tu′(ct)[f
′(kt) + 1− δ]kt = 0

is an optimal path (See McKenzie [23]).

2.2 Main results

Because of Assumption 4, every optimal path from a positive initial stock
k0 > 0 is an interior path and, consequently, it must be an Euler path. A
stationary optimal path (k, k, k, . . .) with k > 0 must satisfy the Euler equation
(4) and, hence,

%−1 = f ′(k) + 1− δ. (5)

A solution to (5) is called a steady state.

Local behavior of the solutions around the steady state may be determined
by the characteristic equation

λ2%u′′(c∗)− λ
[
(1 + %)u′′(c∗) + %u′(c∗)f ′′(k∗)

]
+ u′′(c∗) = 0

evaluated at that point. This polynomial equation has two roots, the product
of which is %−1 > 1. Evidently it can never have two roots inside the unit
circle. Also, the left-hand side is equal to u′′(c∗) < 0 when λ = 0 and equal to
−%u′(c∗)f ′′(k∗) > 0 when λ = 1. Evidently there is always one positive root
inside the unit circle. This implies that the steady state is locally a saddle-
point. The root inside the unit circle corresponds to the optimal solution,
because the path converging to the steady state satisfies the transversality
condition. Since that root is positive convergence must be monotone.

The above argument is limited to local dynamics of solutions of the Euler
equation (4). However the following global result from the maximizing problem
(1)–(3) can be proved. It is the discrete-time version of a result originally due
to Cass [7] and Koopmans [18].

Theorem 1 Consider the model defined by (1)–(3). Under Assumptions 1–4
there exists a unique steady state k∗. Moreover, any optimal path from k0 > 0
is monotone and converges to k∗.
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3 Two-sector models

3.1 The basic framework

In this section the aggregative model of Section 2 is extended to the two-
sector model. There are two goods: a pure consumption good, C, and a pure
capital good, K. Each sector uses both capital and labor as inputs. Capital
input must be made one period prior to the production of output. Labor in-
put is made in the same period as output is produced. Denote by FC(KC , LC)
and FK(KK , LK) the production functions of sectors C and K, respectively,
where Ki and Li denote the factor inputs in sector i ∈ {C,K}. The produc-
tion functions are assumed to be increasing in each argument, concave and
homogeneous of degree one.

The labor endowment of the economy is constant. Without loss of generality
we normalize it to 1. Denote by ct and yt the time t per capita outputs of
sectors C and K, respectively. Thus we have

ct =FC(KC,t−1, LC,t), (6)

yt =FK(KK,t−1, LK,t). (7)

Moreover, denote by kt−1 the aggregate capital input:

KC,t +KK,t = kt. (8)

The output of the capital good sector, yt, represents the gross accumulation
of capital;

yt = kt − (1− δ)kt−1, (9)

where δ ∈ (0, 1) is the rate of depreciation. Since the total labor force in the
economy has been normalized to 1,

LC,t + LK,t = 1. (10)

As before, u(c) is the representative consumer’s contemporaneous utility when
he consumes c units of the consumption good. With these notations, the two-
sector optimal growth model is described by the maximization problem

maximize
∞∑
t=1

%tu(ct) (11)

subject to k0 = k̄0 and constraints (6)–(10),

where as before % ∈ (0, 1) is the discount factor.
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In order to analyze the dynamics of the above model it is convenient to express,
for each given amount of capital input k, the trade-off between the two outputs
by c = T (k, y). That is,

T (k, y) = maxFC(KC , LC) subject to


FK(KK , LK) = y,

LC + LK = 1,

KC +KK = k.

(12)

The domain of the function T is Ω := {(k, y) | k ≥ 0, 0 ≤ y ≤ FK(k, 1)}. With
this definition, the optimal growth model (11) can be transformed as follows:

maximize
∞∑
t=1

%tU(kt−1, kt)

subject to k0 = k̄0 and 0 ≤ kt ≤ FK(kt−1, 1) + (1− δ)kt−1,

where U(x, z) := u(T (x, z−(1−δ)x)) is called a reduced form utility function.

3.2 Optimal cycles

In this section we assume that the period-wise utility function is linear [i.e.,
u(c) = c] and that capital fully depreciates within one period (δ = 1). The
reduced form utility function is then identical to the social production func-
tion. That is, U(k, y) = T (k, y). Even if the utility function is linear, it can be
shown that the optimal path is still unique under plausible conditions on the
production functions.

The Euler equation in the two-sector optimal growth model is

U2(kt−1, kt) + %U1(kt, kt+1) = 0, (13)

where U1(k, y) = ∂U(k, y)/∂k and U2(k, y) = ∂U(k, y)/∂y. Any path satisfy-
ing the Euler equation and the transversality condition

lim
t→∞

%tktU1(kt, k+1)

is known to be optimal.

The steady state k∗ corresponds to a stationary solution (k∗, k∗, k∗, . . .) of (13).
The local behavior around k∗ is determined by the roots of the characteristic
equation

%U12(k∗, k∗)λ2 + [%U11(k∗, k∗) + U22(k∗, k∗)]λ+ U21(k∗, k∗) = 0. (14)
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evaluated at the steady state.

As in the aggregated model, the product of the two roots is equal to %−1 > 1.
Therefore at least one root is outside the unit circle. However, unlike the
aggregated model, the other root of (14) is not necessarily inside the unit
circle. If % is sufficiently small then both roots may be outside the unit circle.
On the other hand, since there exists always a unique optimal path starting
from k0, there must still be a path that satisfies the transversality condition.
We will characterize its behavior below.

Consider the case in which the production functions in both sectors have the
so-called Cobb-Douglas form

FC(KC , LC) = Kα
CL

1−α
C , 0 < α < 1; (15)

FK(KK , LK) = Kβ
KL

1−β
K , 0 < β < 1. (16)

From the first order conditions of (12), we have (KK/LK)/(KC/LC) = [β/(1−
β)]/[α/(1− α)]. Hence

(KK/LK)− (KC/LC)

> 0 if β > α,

< 0 if β < α.
(17)

Here Ki/Li is called the factor intensity of sector i, and the left-hand side
of (17) is called the factor intensity difference. If β > α, the production of
consumption goods is more labor intensive than the production of capital
goods. If β < α, the converse is true.

In the two sector model with Cobb-Douglas production functions and linear
utility, the sign of the cross partial derivative U12(x, y) is determined by the
factor intensity difference of the consumption good sector and the capital good
sector (Benhabib and Nishimura [3]). This fact, together with the relation (17),
implies that

U12(x, y)

> 0 if β > α,

< 0 if β < α.
(18)

We know that given an initial capital stock, there exists a unique optimal
path. Therefore optimal paths in this model must be described by a difference
equation of the form kt+1 = h(kt). The function h is called the optimal policy
function.

Benhabib and Nishimura [3] have shown that the sign of the cross partials
of the reduced form utility function determines whether h(kt) is increasing or
decreasing. This, together with equation (18), implies that, in the case β > α,
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the graph of the optimal policy function h is strictly increasing whenever it
lies in the interior of Ω. Analogously, if α > β, then the graph of h is strictly
decreasing on the interior of Ω. In the case of α > β, the optimal policy
function h becomes a unimodal map, because the graph of h increases along
the boundary of Ω and decreases in the interior of Ω. 5

The global dynamics of the two sector model with Cobb-Douglas production
technology and total capital depreciation (δ = 1) is studied in Nishimura and
Yano [33]. For this economy the steady state value is

k∗ =
α(1− β)

β
[
(1− α) + %δ(α− β)

](%β)1/(1−β), (19)

and the roots of (14) are

λ1 =
β − α
1− α

, λ2 =
1− α

%(β − α)
. (20)

If α > β, then both roots are negative. The following theorem of Nishimura
and Yano [33] gives conditions for the instability of the steady state and thus
for the existence of an optimal cycle of period 2:

Theorem 2 For the economy described by the production functions (15) and
(16), linear utility function u(c) = c, and δ = 1, the following is true. If α > β
and also

% <
1− α
α− β

< 1,

then the steady state k∗ given in (19) is totally unstable, and there exists an
optimal path which is periodic of period 2.

4 Optimal chaos

Boldrin and Montrucchio [5] and Deneckere and Pelikan [9] have provided a
constructive method to give examples of two-sector optimal growth models
in which the optimal policy function is given by the logistic function h(x) =
4x(1−x). The latter is characterized by chaotic paths. While these results are
interesting, however, the examples also show that such optimal chaos requires
a sufficiently small discount factor. It is therefore quite natural to ask if there
is a general relation between the size of the discount factor and the dynamic
complexity of optimal paths. Initial results in this direction were derived by
Sorger [40,41]. Subsequently, Sorger [42], Mitra [25], Nishimura and Yano [34],

5 A function h : [a, b] → [a, b] is called unimodal if there exists x̄ ∈ [a, b] such that
h is strictly increasing on [a, x̄] and strictly decreasing on [x̄, b].
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and Mitra and Sorger [26,27] have shown that there exists a sharp upper bound
on the set of discount factors that are compatible with chaotic optimal paths.

4.1 Basic concepts

Three possible definitions of complicated dynamics in systems of the form
xt+1 = h(xt) are first discussed. Here, xt is the state of the economy at time
t (for example the capital-labor ratio) and h : [0, 1] 7→ [0, 1] is a continuous
function which encodes dynamic properties, such as technology and market
structure.

We say that the dynamical system xt+1 = h(xt) exhibits ergodic chaos if there
exists an absolutely continuous probability measure µ on the interval [0, 1]
which is invariant and ergodic under h. Here, absolutely continuity means
existence of Radon-Nikodym derivative with respect to the Lebesgue measure.
Invariance of µ under h means that µ{x ∈ [0, 1] |h(x) ∈ B} = µB for all
measurable B ⊆ [0, 1]. An invariant measure µ is said to be ergodic if, in
addition, for every measurable set B ⊆ [0, 1] which satisfies {x ∈ [0, 1] |h(x) ∈
B} = B we have either µB = 0 or µB = 1.

We say that the dynamical system xt+1 = h(xt) exhibits geometric sensitivity
if there is a real constant γ > 0 such that the following is true: for any
τ = 0, 1, 2, . . . there exists ε > 0 such that for all x, y ∈ [0, 1] with |x− y| < ε
and for all t ∈ {0, 1, . . . , τ} it holds that

|h(t)(x)− h(t)(y)| ≥ (1 + γ)t|x− y|.

Geometric sensitivity implies that small perturbations of the initial conditions
are magnified at a geometric rate over arbitrary but finite time periods. Of
course, the geometric magnification cannot last indefinitely because the state
space [0, 1] of the dynamical system is bounded. Note also that geometric sen-
sitivity implies that there is no stable periodic path of the dynamical system.

Finally, we say that the dynamical system xt+1 = h(xt) exhibits topological
chaos if there exists a p-periodic solution for all sufficiently large integers p
and there exists an uncountable invariant set S ⊆ [0, 1] containing no periodic
points such that

lim inf
t→∞

|h(t)(x)− h(t)(y)| = 0 < lim sup
t→∞

|h(t)(x)− h(t)(z)|

holds, whenever x ∈ S, y ∈ S, and either x 6= z ∈ S or z is a periodic point.
The set S is called a scrambled set. The condition displayed above says that
any two trajectories starting in the scrambled set move arbitrarily close to
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each other but do not converge to each other or to any periodic orbit. 6

4.2 Dynamic linear programming

In this subsection we introduce the dynamic linear programming problem that
is equivalent to an economic growth problem frequently studied by economists.
Dynamic linear programming can be treated in the standard LP framework
by adding a time structure. 7 In order to demonstrate the existence of chaotic
solutions to such a problem, we need to focus on the case in which the solutions
to an LP problem can be described by an autonomous system. For this reason,
it is necessary to work with an infinite time horizon LP model.

Take the following LP problem of choosing a sequence (xt) to maximize the
functional

∑∞
t=1 %

t−1p′xt subject to linear constraint



A 0 0 · · ·

−B A 0 · · ·

0 −B A · · ·

0 0 −B . . .
...

...
...

. . .





x1

x2

x3

x4

...


≤



Bx0 + d

d

d

d
...


. (21)

Here the discount factor % is a number between 0 and 1, A and B are m× n
matrices of non-negative components, xt, d and p are n × 1 matrices of non-
negative components, and p′ is the transpose of p. The intended interpretation
of this problem is to maximize the objective function

∑∞
t=1 %

t−1p′xt, which
is the discounted sum of p′xt over the time periods t = 1, 2, . . ., under the
recursive constraints Axt ≤ Bxt−1 + d and with the initial condition x0 = x.

The question arises as to whether or not such an optimal program can lead
to a chaotic dynamical system. In order to deal with this issue, the following
two questions must be addressed. First, under what conditions is in fact the
optimal program (21) a dynamical system in the standard sense, described
by a single-valued function? Second, under what condition is the resulting
dynamical system chaotic?

As an example of (21), take the following LP problem with parameters a11,

6 See Li and Yorke [21], Sarkovskii [38] and Devaney [8] for additional details of
results on chaos.
7 See Dorfman, Samuelson and Solow [10].
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a12, a21, a22 and k0 all positive, and 0 < % < 1.

max
(c1,k1,c2,k2,...)≥0

∞∑
t=1

%t−1ct s.t.

(i) a11ct + a12kt ≤ 1 t = 1, 2, ...;

(ii) a21ct + a22kt ≤ kt−1 t = 1, 2, ...;

(iii) k0 = k.

(22)

The solutions to (22) can be described by a generalized dynamical system. To
this end, for each (kt−1, kt) ≥ 0, define c(kt−1, kt) as the maximum value of
ct ≥ 0 satisfying conditions (i) and (ii) of (22).

Theorem 3 For each k ≥ 0, there is a non-empty subset H(k) of [0,∞) such
that if (c1, k1, c2, k2, . . .) is a solution to (22), then

kt ∈ H(kt−1), t = 1, 2, . . . , (23)

with k0 = k, and

ct = c(kt−1, kt). (24)

We call the system associated with H a generalized optimal dynamical system.
If, in particular, H is a function, we call it an optimal dynamical system.
Nishimura and Yano [36] demonstrate that H can in fact be a chaotic optimal
dynamical system.

4.3 Two-sector Leontief model

Let us now return to two-sector optimal growth models which are formally
equivalent to dynamic linear programming problems as discussed in the previ-
ous section. Suppose that the two sectors have the following “Leontief” type
technology:

FC(KC , LC) = min{KC , LC}, (25)

FK(KK , LK) = λmin{KK , LK/b}, (26)

where λ > %−1 and b > 1. Note that b > 1 implies that the capital good sector
is more labor intensive than the consumption good sector. We still assume that
the utility function is linear and that capital fully depreciates in one period.
In this case the maximization problem (11) can have multiple solutions which
in general cannot be described by an optimal policy function. Nishimura and
Yano [32,35] prove, however, that optimal paths are described by an optimal
policy function if the parameter values are suitably chosen. Furthermore, they
show that, under certain parameter restrictions, the optimal policy function
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is expansive and unimodal. 8 Let us now describe this result. Set γ := b − 1
and

h(k) :=

 λk if 0 ≤ k ≤ 1/(γ + 1),

−(λ/γ)(k − 1) if 1/(γ + 1) ≤ k ≤ 1.
(27)

Under the assumption λ/(1 + γ) ≤ 1, the function h maps the closed interval
I = [0, λ/(1 + γ)] onto itself. For all practical purposes, we may therefore
restrict our attention to the interval I and treat h as a function from I onto
itself. Nishimura and Yano [35] prove the following.

Theorem 4 Let hI be the function defined in (27) restricted to the interval
I = [0, λ/(1 + γ)]. Suppose that the parameters λ, %, and γ satisfy

0 < % < 1 , γ > 0 , %λ > 1 and γ + 1 > λ. (28)

Then optimal paths of the two-sector model with linear utility function and
Leontief production functions (25) and (26) satisfy the equation kt+1 = hI(kt),
provided that one of the following two conditions hold:

(i) λ ≤ γ, and
(ii) γ < λ ≤ min{(γ +

√
γ2 + 4γ)/2, (−1 +

√
1 + 4γ)/(2%)}.

Under condition (i) the decreasing portion of hI has slope larger than or
equal to −1. More specifically, if (i) is satisfied with strict inequality, then the
positive fixed point of the difference equation kt+1 = hI(kt) is globally asymp-
totically stable. If, instead, (i) is satisfied with equality, then every optimal
solution from k > 0 converges to a period-two cycle, except for the unique
path that corresponds to the positive fixed point.

Under condition (ii), the decreasing portion of hI has slope smaller than −1.
In this case, hI is expansive and unimodal. It has been shown that these two
properties imply that the dynamical system kt+1 = hI(kt) exhibits ergodic
chaos and geometric sensitivity. Nishimura and Yano [35] show that the set of
parameter values (%, λ, γ) satisfying (ii) and (28) is non-empty if 0 < % < 1/2.

Condition (ii) and (28) are sufficient conditions for hI to be an optimal pol-
icy function that generates chaotic dynamics. There may be other sufficient
conditions. In fact, Nishimura and Yano [31,32] provide an alternative and
constructive method to find parameter values (λ, γ) for which hI describes
optimal paths that are ergodically chaotic and geometrically sensitive. This
method works for any given discount factor %, even if it is arbitrarily close to
1. Nishimura, Sorger, and Yano [29] extend the results of Nishimura and Yano
[31,32] to the case in which the objective function is strictly concave.

8 A function h is called expansive if it is piecewise differentiable with |h′(x)| > 1
for all x at which h is differentiable. For unimodal and expansive maps, we can use
the results of Lasota and Yorke [20] and Li and Yorke [22] to exhibit ergodic chaos.
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Finally, Nishimura, Shigoka, and Yano [28] exhibit a model with differentiable
production functions and a dynamical system that is topologically chaotic for
% arbitrarily close to 1, and contains that from Nishimura and Yano [31,32] as
a limiting case.

5 Stochastic growth models

In the remainder of the paper, the one-sector optimal accumulation model
of Section 2 is again examined, but this time in the presence of uncertainty
resulting from a stochastic production relationship. First the problem is cast
in the framework of stochastic dynamic programming. Asymptotic properties
of the resulting Markov process are then considered.

5.1 Notation

As in the deterministic one-sector case, the state space for the model is [0,∞).
When taken as a measurable space, [0,∞) is always associated with its Borel
sets B. Let Bb be the bounded Borel functions on [0,∞), let C0 be the set
of continuous functions with compact support, and let Cb be the collection of
continuous bounded functions. All three spaces are endowed with the usual
sup norm. 9 Also, let M be the set of finite signed Borel measures on [0,∞).

By the Riesz-Radon theorem, M is isomorphic to the norm dual of C0. When
considered as a topological space, M is given the so-called narrow topology
induced by Cb.

10 Let P be the set of all µ ∈M such that µ ≥ 0 and µ[0,∞) =
1. Here P inherits the relative topology. Elements of P are associated one-
for-one with the distribution functions on [0,∞). Distributions concentrated
at a point x are denoted δx.

In the sequel, Markov processes are constructed as follows. A stochastic dif-
ference equation

xt+1 = h(xt, εt), h : X ×X → X (29)

is given. Here the shocks εt are assumed to be uncorrelated and identically
distributed by ψ ∈P. The function h is appropriately measurable. From (29),
a Markov kernel

X ×B 3 (x,B) 7→ N(x,B) :=
∫
X

1B[h(x, z)]ψ(dz) ∈ [0, 1] (30)

9 That is, ‖f‖ := supx≥0 |f(x)|.
10 Elements of Cb provide real functions on M by the natural inner product. The
narrow topology is the weakest topology that makes all such functions continuous.
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is obtained. As usual, N(x,B) is interpreted as the conditional probability
of traveling from x into B in one step. From the kernel N and a starting
point x ∈ [0,∞) the canonical Markov process (xt) for the state variables
on the sequence space [0,∞)N can be constructed [39, Theorem II.9.2]. Let
its distribution be denoted Px. Also, let the marginal distributions of each xt
be given by ϕt ∈ P. That is, ϕtB = Px{xt ∈ B}. It is well-known that the
sequence (ϕt) satisfies the recursion ϕt+1 = Pϕt, where P denotes the operator

(Pϕ)(B) :=
∫
N(x,B)ϕ(dx) (31)

from P into itself. Define also the operator dual to P by U : Bb → Bb,

(Uv)(x) :=
∫
v(y)N(x, dy). (32)

Here U and P are said to be dual because

〈v, Pµ〉 = 〈Uv, µ〉, ∀v ∈ Bb, µ ∈P, (33)

where the inner-product binary of course means integration.

If P t is the t-th composition of P with itself, then clearly ϕt = P tϕ0. The op-
erator P is called the Markov operator (or stochastic operator, or propagator)
associated with (29).

5.2 Stochastic optimal growth

The essential difference from the one-sector model of Section 2 is that pro-
duction is no longer deterministic. Uncertainty in production may arise from
a number of sources, such as weather and other natural phenomena, or exoge-
nous changes in input-output relationships (new technologies, etc.). Suppose
in particular that

Yt+1 = F (Kt, Lt)εt. (34)

The shocks εt are temporally uncorrelated and identically distributed accord-
ing to ψ ∈P[0,∞). Regarding F and its intensive form f the assumptions of
Section 2 are maintained.

For the stochastic case it proves convenient to modify slightly the timing of
the problem and the state variable. The sequence of events is as follows. Let
t be the current time. A current level of income yt is observed. Subsequently,
a level of consumption ct and therefore savings is chosen in [0, yt]. Savings
determines current capital stock kt available for production; in fact we take
savings and capital stock to be equal (δ = 1). Next, the shock εt is drawn by
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“nature,” and next period income yt+1 is realized via (34). The process then
repeats.

Social welfare is optimized by solving

maxE

[ ∞∑
t=0

%tu(ct)

]
(35)

subject to the constraint

kt + ct = yt, yt+1 = f(kt)εt. (36)

This problem can be conveniently treated within the framework of stochastic
dynamic programming. In the infinite horizon case the problem is stationary,
and hence we seek a fixed control policy g that associates to current income
yt a feasible consumption ct = g(yt) ≤ yt.

For each such g, substituting into (36) gives the stochastic difference equation

yt+1 = f [yt − g(yt)]εt. (37)

From (37) a Markov kernel is determined via (30), and hence a distribution Pg
y

for the canonical process over the space of real nonnegative sequences. Here y
is the initial level of income, and the superscript g recalls the dependence of
the distribution on the particular policy chosen. The value of the policy for
social welfare can now be assessed by calculating (35), where the expectation
is taken with respect to Pg

y and ct = g(yt).

To further integrate the current topic with the standard theory of stochastic
dynamic programming, assume also that

Assumption 5 The utility function u is bounded and nonnegative. 11

5.3 Properties of the optimal policy

Beginning with Brock and Mirman [6], the properties of the optimal policy for
this model have been extensively investigated. The first step is to obtain Bell-
man’s optimality equation, which is given below. Full proofs of the following
results are available in, for example, Harris [14].

11 Relaxing this assumption in the context of this model and its variants continues
to be a very active research area. See, for example, Durán [12].

16



Theorem 5 There exists a unique v∗ ∈ Bb satisfying

v∗(y) = max
0≤c≤y

{
u(c) + %

∫
v∗[f(y − c)z]ψ(dz)

}
. (38)

This function v∗ is continuous, strictly increasing and strictly concave.

This is the familiar Bellman optimality condition, where v∗ is the value func-
tion. An outline of the proof is as follows. Define a self-mapping T : Bb → Bb

by

Tv(y) := sup
0≤c≤y

{
u(c) + %

∫
v[f(y − c)z]ψ(dz)

}
. (39)

By the standard theory [14, Theorem 2.1] the operator T can be shown to
be uniformly contracting on Bb, indicating a unique fixed point v∗ in that
space, and that T nv → v∗ in sup norm for any bounded v. Also, in the present
case, it can be shown using the continuity assumptions and the theorem of
the maximum that TCb ⊂ Cb, in which case v∗ as the limit of such functions
must be continuous. Further, concavity and monotonicity assumptions on u
and f imply that T maps increasing, concave functions into strictly increasing,
strictly concave functions. Since v∗ can be written as the limit of such functions
it must be increasing and concave, and since Tv∗ = v∗, the properties are in
fact strict.

Clearly, a unique, single valued solution g(y) to the right hand side of (38)
exists for each y. Applying the theorem of the maximum shows that g is in fact
continuous. The standard theory of dynamic programming now indicates that
this function is the (unique) optimal policy that maximizes the expectation of
discounted utilities in (35).

One of the distinguishing features of economic systems is that diminishing re-
turns for both consumption and technology in many cases seem appropriate,
and these in turn lead directly to convexity. The latter is of course closely re-
lated to differentiability. Indeed, Benveniste and Scheinkman [2] use convexity
to establish that

Theorem 6 The value function v∗ is differentiable on the interior of its do-
main. Moreover,

dv∗(y)

dy
= u′[g(y)]. (40)

The condition (40) is an envelope condition. For a derivation see, for example,
Mirman and Zilcha [24, Lemma 1].

Derivative conditions typically provide sharp characterizations of the solution
to optimization problems. The present case is no exception. For example, it
is straightforward to show from (40) and the established properties of v∗ that
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the function g is nondecreasing, so that consumption increases with higher
income. In fact the same is true for savings. In summary,

Lemma 7 The optimal policy g is continuous. Both y 7→ g(y) and y 7→ y −
g(y) are nondecreasing.

5.4 Dynamics

In the stochastic case, invariant distributions for the associated Markov pro-
cess have a natural interpretation as long run equilibria. At such distributions
the probabilities of different outcomes become fixed. Economic policy can be
evaluated in part by weighing the effects of various parameters on the invariant
distributions and their moments.

Invariant distributions are fixed points of the operator P defined in (31) on
the space P[0,∞) . To justify their role as focal points for long run outcomes,
it is desirable in addition that these invariant distributions have some kind
of stability property. Of particular interest is the case where the fixed point
is unique and asymptotically stable. That is, P tϕ converges to this limit as
t→∞ for all initial ϕ ∈P. Economies with this property are called history
independent.

Brock and Mirman [6] first proved the stability result stated above for the
one-sector stochastic growth model in a topology stronger than the narrow
topology. They assume that the shock ε has compact support. Their techniques
were rather specific to the problem in question, however. In what follows, we
outline proofs for a number of similar results that are perhaps more easily
generalizable to other related economic models.

Following Brock and Mirman, the great majority of research—see Stachurski
[43] for further references—has assumed that the shock has compact support:

Assumption 6 There exist numbers 0 < a ≤ b <∞ such that ψ[a, b] = 1.

A preliminary result is that

Lemma 8 If Assumption 6 holds then the economy defined by u, f % and ψ
has an invariant distribution.

We outline a proof, which uses only decreasing returns. By Assumption 2
clearly there exists a unique positive number p such that p = f(p)b, and (37)
indicates that when yt ∈ [0, p], yt+1 ∈ [0, p] with probability one. From this
it can be shown via (30) and (31) that P is invariant on that subset P0 of
all ϕ ∈ P with ϕ[0, p] = 1. This set P0 is tight and closed. It follows from
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Prokhorov’s Theorem [11, Theorem 11.5.4] that P0 is compact in the narrow
topology. Evidently it is convex. Further, P is continuous in this topology as a
result of continuity of g and f . An application of the Markov-Kakutani fixed
point theorem now gives the desired result.

5.5 Stochastic monotonicity

This result can be improved on in a number of ways. First, uniqueness and
stability are not established. Second, it is desirable to show that at least one
invariant measure is not concentrated at zero, meaning that the economy
can operate in the long run at positive levels of income. In other words, the
economy does not collapse as a result of excessive consumption and negative
shocks. Third, one would like to relax Assumption 6 in order to integrate the
model better with standard econometric treatments.

In this connection, an interesting result of Hopenhayn and Prescott [16] is now
presented. Their method solves the first and second questions raised above:
they demonstrate the existence of a unique non-zero invariant measure and
asymptotic convergence from all initial conditions. The paper is interesting
from a number of other perspectives. First, their techniques are more con-
structive than simply invoking the fixed point theorem of Markov-Kakutani.
Second, they do not rely on continuity. Continuity played a key part in the
proof of Lemma 8 given above, but it is not clear why this property should be
an obvious consequence of rational agent behavior. Indeed, it has often been
argued that models of discontinuous optimal behavior have better potential
for representing economic time series.

Theorem 9 If Assumption 6 holds then the economy defined by u, f % and
ψ has a unique invariant distribution ϕ∗ distinct from δ0, and P tϕ → ϕ∗ as
t→∞ for every initial condition ϕ ∈P.

The proof runs as follows. First, it is observed that “monotone” Markov pro-
cesses on a compact set have at least one invariant distribution (definitions are
given below). Also, these hypotheses combined with a mixing condition are
demonstrated to imply uniqueness of the invariant distribution and asymptotic
stability. Finally, the authors show that the model in question is appropriately
monotone and mixing on a compact set, and that the invariant distribution is
not concentrated at zero.

We prove only existence. For this purpose, define a partial order 4 on P by
so-called stochastic dominance. That is, µ 4 µ′ if and only if

∫
vdµ ≤

∫
vdµ′

for every nonnegative and nondecreasing v ∈ Bb.
12 As usual, a self-mapping

12 Equivalently, if the distribution function associated with µ lies entirely above that
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T on (P,4) is called nondecreasing if µ 4 µ′ implies Tµ 4 Tµ′.

Observe that the Markov operator P associated with the economy in question
is nondecreasing in this order. The reason is that savings is nondecreasing in
income (Lemma 7), and hence y 7→ f [y − g(y)] is likewise nondecreasing. It
follows that for any nonnegative, nondecreasing v ∈ Bb and any pair µ, µ′ ∈P,
µ 4 µ′,

〈v, Pµ〉 = 〈Uv, µ〉

=
∫ [∫

v[f(y − g(y))z]ψ(dz)
]
µ(dy)

≤
∫ [∫

v[f(y − g(y))z]ψ(dz)
]
µ′(dy) = 〈v, Pµ′〉.

Since P is nondecreasing everywhere it is nondecreasing on the compact set
P0 defined above. As before, P is invariant on the latter: PP0 ⊂ P0. Since
every chain in (P0,4) has a supremum [16, Proposition 1], and since (P0,4)
has a least element δ0, an invariant distribution for P exists by the Knaster-
Tarski fixed point theorem.

5.6 Noncompact state space

To date almost all treatments have maintained the assumption that the pro-
duction shock has compact support. Indeed this assumption is crucial to both
proofs discussed above. However, ideally the model should be amenable for em-
pirical testing and prediction, and econometrics typically deals with standard
shocks from mathematical statistics. Recently Stachurski [43] has shown that
the one-sector growth model is asymptotically stable for many such shocks.

Theorem 10 Let the distribution of the shock ε be absolutely continuous with
respect to Lebesgue measure. If the representative density ψ is positive almost
everywhere on [0,∞) and satisfies

∫
xψ(x)dx < ∞,

∫
(1/x)ψ(x)dx < 1, then

the one-sector model has a unique invariant distribution. This invariant dis-
tribution is globally attracting in the norm topology.

Absolute continuity appears to be critical here, because the Markov operator
then maps probability measures into absolutely continuous probability mea-
sures, a subset of L1. New techniques for dealing with Markov processes in L1

have been introduced by Lasota [19]. In this framework, the above result is
verified by showing that the Markov operator is strongly contracting in norm
distance, and that every trajectory under P is norm precompact. Together
these properties imply the stated result [43, Theorem 5.2].

of µ′.
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The question of whether the same norm convergence still holds without abso-
lute continuity is open.
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