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Abstract

This note proves a simple but useful central limit theorem for Hilbert space valued functions of geometri-
cally ergodic Markov chains on general state spaces. The theorem is valid for chains starting at an arbitrary
point in the state space.
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1. Introduction

Let (X;);>1 be a geometrically ergodic Markov chain on state space X (full definitions follow) and let
7t be the unique stationary distribution. It is well-known (see, for example, [5] or [8, chapter 17]) that if T
is a measurable function from the state space X to IR satisfying a suitable second moment condition, then
n=1/2y" | [T(X¢) — [ Tdn] converge in law to a centered Gaussian distribution on R. Using the Cramer-
Wold device, the same result can be extended without technical difficulties to the case where T takes values
in R".!

In this paper we provide an analogous CLT result for the case where T takes values in is a separable
Hilbert space. The aim is not to provide a particularly general Hilbert central limit theorem for dependent
variables, but rather to provide a set of conditions that are straightforward to check in applications. The
proof of our result is based on the dependent variable Hilbert CLT of Merlevede et al. [7].

2. Set Up

Let (Q),.#,P) denote an arbitrary probability space on which all random variables are supported. As
usual, if (E, &) is any measurable space, then an E-valued random variable X is a measurable map from
(Q, F) to (E, 8). We use the symbol £LX to denote its law (i.e., LX = P o X~1). In what follows, if E has a
topology then, the o-algebra # is always taken to be the Borel sets. Unless otherwise stated, measurability
of functions refers to Borel measurability. If y is a measure on (E, %) and & is a real-valued measurable
function on E, then y(h) denotes [ hdu whenever the latter is defined. If E is a topological space and (x>0
are probabilities (i.e., Borel probability measures) on E, then u,, — pug in distribution if y, (h) — po(h) in
R for every continuous bounded h: E — R. The sequence (}i,),>1 is called tight if for all ¢ > 0 there is a
compact K C E with sup,,~; pn(E\ K) <.

Below we consider a stochastic process taking values in a separable Hilbert space #. Let || - || denote the
norm on H, and (h, g) the inner product of & and g. If Y is an #-valued random variable with E||Y|| < oo,
then, by the Riesz representation theorem, there exists a unique element £Y of H such that E(h,Y) =
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(h,EY) for all h € H. The vector £Y is called the expectation (or Pettis integral) of Y. For any H-valued
random variable Y with E||Y|> < c and £Y = 0, the covariance operator C: H — H of Y is defined by
(¢,Ch) = E(g,Y)(hY) for all g h € H. A random variable V taking values in H is called Gaussian if
(h, V) is Gaussian on R for each i € H. To simplify the presentation, in what follows we regard degenerate
random variables on R as Gaussians with zero variance.

3. Main Result

Let (X, 2") be a measure space, and let P be a stochastic kernel on X. In particular, P(x,dy) is a proba-
bility measure on (X, 2") for each x € X, and x — P(x, B) is measurable for every B € 2. In what follows,
we use the standard notation

(pP)(B /p %, B)y(dx) and (Pf)(x /f P(x, dy).

Here ¢ is a probability measure on (X, 2°) and f: X — R is a measurable function such that the integral is
defined. Let P! denote the t-th iterate of either one of these operators. A probability 77 on (X, Z7) is called
stationary for P if 7P = 7.

Let || - ||rv be the total variation norm over the space of finite signed measures on (X, 2"). We assume
throughout that P is geometrically ergodic, which is to say that (i) P has a unique stationary distribution 7,
(i) |¢ Pt — @P||rv — Oast — oo for any probabilities i and ¢ on (X, 27), and (iii) there exists a measurable
function V: X — [0, c0) and constants R € R and « € [0,1) such that

/Vdﬂ <oco and sup |P'(x,B) — n(B)| <a'RV(x) forallx € X, t €N 1)
BeZ

Sufficient conditions for geometric ergodicity are discussed in many sources. See, for example, [8] and [4].
See also [6, Theorem 21.12] for a range of conditions equivalent to (ii).

Letting 1 be a probability measure on X, we call an X-valued stochastic process (X;)¢>1 Markov-(P, )
if Xj is drawn from ¢ and P is the transition probability function for (X;);>1. More formally, this means
that

E[h(X;1x) | 1] = P*R(Xe) )

almost surely for any ¢,k € IN and any bounded measurable #: X — R, and, in addition, £X; = ¢. Here
4 is the o-algebra generated by (Xj,...,X;), and E[- | %] is conditional expectation with respect to .%;.
Existence of at least one such a sequence (X;);>1 follows from a well-known theorem of Ionescu-Tulcea
(see, e.g., [11, theorem I1.9.2]). If ¥ is a Dirac probability measure concentrated at a single point x, then we
call (X¢)>1 Markov-(P, x). If (X;)s>1 is Markov-(P, 1), then (X;);>1 is stationary, and £LX; = 7 for all ¢ (see,
e.g., [8, chapter 3]).

Our main result concerns sequences of the form [Ty(X;)];>1, where T is a measurable map from X into
a separable Hilbert space H. On Ty we impose the following assumption:

Assumption 3.1. There exists nonnegative constants g, 71 and v < 1 such that
| To(x)]|2 < mg+mV(x)? forall x € X.
The following lemma assures us that if £LX = 7, then ETy(X) exists.

Lemma 3.1. If LX = 7t and assumption 3.1 holds, then E|| To(X)|| < oo.

2For more details on Hilbert-space valued stochastic processes, see, for example, [1].



Proof. Assume the conditions of the lemma. It suffices to show that E||Ty(X)||?> < co. Applying assump-
tion 3.1 and Jensen’s inequality, we have

E[|To(X)[|* < mo +mE[V(X)?] < mo + my [EV(X)]”
The final expression is finite by the left-hand side of (1). O

We need two final definitions. Let (X¢);>1 be Markov-(P, 7). By lemma 3.1, £Tp(X;) exists in H. Define
T: X — H be the map
T(x) = To(x) — ETo(X1) (x € X),

and let C be the covariance operator defined by

(§,Ch) =E(g, T(X1))(h, T(X1)) + }_ E(g, T(X1))(h, T(Xp)) + }_ B{h, T(X1)) (g, T(X))- ®)

£>2 t>2
for g,h € H. We can now state our main result:

Theorem 3.1. Let assumption 3.1 hold. If x € X and (X¢)¢>1 is Markov-(P, x), then

Cklﬂiﬂ&)%N&Q (n — o). 4)

t=1

Here N(0,C) represents the distribution of an #-valued Gaussian random variable with expectation
equal to the origin of H and covariance operator C.

3.1. Example

Before turning to the proof of theorem 3.1, we present a simple illustration. Let p be any probability
measure on (R, %), and consider the separable Hilbert space L, := Ly(R, %, it). Let P be a geometrically
ergodic stochastic kernel on IR, and let F be the cumulative distribution function of its stationary distri-
bution. In many cases, no closed form expression for F is available. Suppose that we wish to compute it
by simulation. A natural technique is to pick any x € R, simulate a Markov-(P, x) process (X;);>1, and
evaluate the empirical cumulative distribution function F,(y) := 1 Y7 1{X; < y}. Let us investigate
the error F, — F, measured in L, norm. Define Ty(x) to be the function y — 1{x < y}. We then have
[To(x)|I> = [ 1{x < y}?*u(dy) = u([x,o0)) < 1. Taking mp = 1 and m; = 0, we see that assumption 3.1 is
alway satisfied. Moreover, a straightforward application of Fubini’s theorem shows that if £X; = F, then
ETy(X1) = F. As aresult, setting T := T — F, theorem 3.1 gives

\/H(Fn —F)= \/ﬁ{rll i To(Xt) — F} — /2 i T(X;) = N(0,C)
t=1 t=1

where C is defined by (3). As a corollary, continuity of the norm now implies that ||F, — F|| = Op(n~1/2).

4. Proof of theorem 3.1

Our first lemma shows that, given our ergodicity assumptions on P, we can restrict attention to the case
where £X; = 7t when proving (4).

Lemma 4.1. Let (X;);>1 and (X})¢>1 be two P-Markov chains, where LX1 = 1 and X} = x € X. For any Borel
probability measure v on Ly (),

— vV

L ln”z f T(X¢)

t=1

n
— v implies L lnl/z Y T(X})
=1




Proof. Given our assumption of geometric ergodicity (and hence ergodicity), it is well known (see Lindvall,
[6, Theorem 21.12]) that one can construct P-Markov processes (X;);>1 and (X]);>1 on a common probabil-
ity space (Q), .#,P) such that

=inf{t e N: X; = X;}

is finite almost surely, and X; = X] forall t > 7. Let S, := Y} ; T(X;) and S}, := Y} ; T(X]), and assume
as in the statement of the lemma that n=1/25, — v. To prove that n=1/25], — v it suffices to show that
the (norm) distance between n~1/25/, and n~1/2S,, converges to zero in probability (cf., e.g., Dudley, [3,
Lemma 11.9.4]). Fixing € > 0, we need to show that
P{||n 128, —n~Y25,|| > e} -0 (1 — o) (5)
Clearly
{IIn=128l, —n71/28,|| > ¢} C {Z |T(X}) — T(Xs)|| > nt }

Fix k € N, and partition the last set over {t < k} and {t > k} to obtain the disjoint sets

{ZIT Xp) = T(Xp)|| > n'/? }ﬂ{fﬁk}C{ZlT Xj) = T(X:)|| > n'/? }

and
{ZHTXt Xt)||>n }m{r>k}c{r>k}

Together, these lead to the bound

{In=128l, —n=125,|| > ¢} C {Z | T(X}) — T(Xy)|| > nt e} U{t >k}

k
P{|n1/28, —n~128,|| > e} <P {2 |T(X}) — T(X)|| > nl/zs} +P{t >k}
t=1

For any fixed k, we have

k
. AN 1/2 _
lim P {t_Zl IT(Xt) = T(Xe)|| >n 8} 0 (6)
Hence
limsup P{|n=1/28}, — n=V/25,|| > ¢} <P{r >k}, VkeN
n—o0
Since P{7 < co} =1 taking k — oo yields (5). O

In view of Lemma 4.1, we can continue the proof of (4) while considering only the case £LX; = 7. In this
case (T (X)) is a centered strict sense stationary stochastic processes in H, and we can apply the stationary
Hilbert CLT in Merlevede et al. [7, Theorem 4, Corollary 1]. From the latter we obtain the following result:
Let ¢ := T(X;) for all t. Define the corresponding mixing coefficients by

a(t) :=sup |[P(ANB) —P(A)P(B)]

where the supremum is over all A € ¢(¢;) and B € ¢(§;11). In this setting, the convergence in (4) will be
valid whenever there exists a constant § > 0 such that

E|[ &[> < oo and ZtZ/’szx(t) < o0 (7)



(The definition of the mixing coefficient used here is slightly different to the one used in Merlevede et al. [7,
Definition 1]. However, in the Markov case it is well-known that the two are equivalent. See, for example,
Bradley [2, Section 3].)

We establish first the finite expectation on the left-hand side of (7). Let mg, m, v and V be the constants
and function in assumption 3.1. Let  := ||ET(X;)||?>. Evidently

1/y
IT@IPY = [1To(x) ~ T P7 < [2 To()]12 +27]
From this bound, assumption 3.1 and Jensen’s inequality, we obtain
1
ITGOIP/ < [2mo +2m1V (x)7 + 267 < 2 {fomo] /7 + [V (x)1/7 + [6r]!/7 }
In other words, there exist finite constants ¢; and ¢, such that

16127 = [ T(XD) 77 < eV (Xe) + 2

holds pointwise on Q). Let § := 2(1 — )/, so that 2/ = 2 4 §. Taking expectations and applying the first
expression in (1) gives E||&||?° < oo as required.

The last step of the proof of Theorem 3.1 is to verify the finiteness of the sum on the right-hand side of
(7). An elementary argument shows the following ordering of o-algebras:

o(¢j) =o(T(X))) Co(X;), Vj
As a result, we have

a(t):= sup |P(ANB)—P(A)P(B)|< sup |P(ANB)—IP(A)P(B)|
Aea(E) Aeo(Xy)
Beo(g11) Beo(Xi11)

The right-hand side gives the strong mixing coefficients for (X;), which, in the geometrically ergodic case,
are known to be O(A!) for the constant A in (1). (See, for example, Jones [5, p. 304].) As a consequence, we
have a(t) = O(A!), and hence Y% ; #2/%a(t) will be finite if Y2 ; £>/°A* is finite. Since A < 1, this last sum is
clearly finite. This completes the proof of Theorem 3.1.
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