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Abstract

We provide a simple proof of geometric ergodicity for Samuelson’s

commodity pricing model (1971, Proc. Nat. Acad. Sci., 68, 335–337).

The proof yields a rate of convergence to the stationary distribution

stated in terms of model primitives. We also provide a rate of con-

vergence for prices to the stationary price process, and for the joint

distribution of the state process to the stationary state process.
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1 Introduction

We study dynamics of the commodity pricing model introduced by Samuel-

son (1971). These dynamics were investigated by Scheinkman and Schect-

man (1983), who confirmed a conjecture of Samuelson that the state vari-

able is stationary and ergodic. Bobenrieth, Bobenrieth and Wright (2002)

show that the model is in fact geometrically ergodic. Their proof uses

function-analytic methods, based on quasicompactness and equicontinu-

ity of the Markov operator.
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In this paper we give a simple and direct proof of geometric ergodicity

which requires only elementary arguments. In addition, the technique

gives an upper bound on the rate of convergence to the stationary distri-

bution stated in terms of the primitives of the model. Further, we provide

computable bounds on the deviation of the joint distribution of the entire

stochastic process from the joint stationary distribution; and the distribu-

tion of the price process from the stationary price process.

2 Formulation of the Problem

Our benchmark commodity pricing model is the model studied in Deaton

and Laroque (1992). In this section we briefly state the main features of

the model. The market is for a single commodity, the “harvest” of which

is an IID process (ξt)t≥1 on [0, b] with cumulative distribution function

φ. We assume that if z > 0, then φ(z) := P{ξt ≤ z} > 0.1 A storage

technology permits transfer of the commodity from the current period to

the next. Storage costs are positive: Quantity It−1 carried over from t− 1

yields γIt−1 at t, where γ lies in (0, 1).

1Each ξt is defined on a common probability space (Ω, F , P).
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Demand for the commodity is the sum of demand from speculators and

from consumers. Consumer demand is determined according to a fixed

demand schedule, while speculator demand depends on present and ex-

pected future prices. Supply at time t is the sum of the harvest ξt and

the depreciated carryover γIt−1. Thus, if Xt denotes supply, then Xt =

γIt−1 + ξt. Speculators now purchase a quantity It ∈ [0, Xt], consumers

purchase a quantity Ct, and the process repeats.

It can be shown that the equilibrium price pt that equates supply and de-

mand for the commodity at time t can be represented as a stationary func-

tion of the state Xt. That is, pt = p(Xt) for some measurable function p.

Using the equilibrium conditions, this pricing function is naturally defined

as the fixed point of a self-mapping on a certain function space. The de-

tails do not concern us here, and interested readers are referred to Deaton

and Laroque (1992).

Similarly, equilibrium investment for this model can be shown to be a

function I of the state variable; that is, It = I(Xt) for all t. Given this

function, the process for the state is then

Xt+1 = γI(Xt) + ξt+1, (ξt)t≥0
IID∼ φ, X0 given (1)
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If s̄ := (1− γ)−1b and if Xt−1 ∈ S := [0, s̄] then one can show that Xt ∈ S,

so that S = [0, s̄] is a valid state space for the process (Xt)t≥0. Furthermore,

one can show that I is monotone nondecreasing, and that there exists an

xb > 0 such that x ≤ xb implies I(x) = 0.2

If we define Fz to be the map x 7→ Fz(x) := γI(x) + z, then Xt can be

written as as

Xt = Fξt ◦ Fξt−1 ◦ · · · ◦ Fξ1(X0)

A distribution ψ∗ is called stationary for this process if it satisfies

ψ∗(B) =
∫ [∫

1B[Fz(x)]φ(dz)
]

ψ∗(dx) (B ∈ B(S)) (2)

Here 1B denotes the indicator function of B, while B(S) is the Borel sub-

sets of S. It is well known that such a distribution exists.3

Letting L Y denote the distribution (or law) of any given random variable

Y, the stationary distribution ψ∗ has the property that if L X0 = ψ∗, then

X := (Xt)t≥0 is stationarity. In particular, L Xt = L X0 = ψ∗ for all t ∈N.

Even if L X0 6= ψ∗, Bobenrieth et al. (2002) show that L Xt → ψ∗ as t→ ∞

2Again, details and proofs can be found in Deaton and Laroque (1992). Throughout

the paper we assume that X0 is independent of (ξt)t≥1.
3This follows from the monotonicity (or continuity) of I and the compactness of S—

see, e.g., Hopenhayn and Prescott (1992, Corollary 2).
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at a geometric rate. The metric used in their analysis is the total variation

(TV) distance, which for probability measures µ and ν on S is defined as

‖µ− ν‖ := sup{|µ(B)− ν(B)| : B ∈ B(S)}

TV convergence is considerably stronger than the classical notion of con-

vergence in distribution.4

3 Geometric Ergodicity

We now present the key mathematical result of the paper, which includes a

simple direct proof of geometric ergodicity for the quantity process (Xt)t≥0,

and, more importantly, provides a rate of convergence stated in terms of

model primitives.

Theorem 3.1. If z0 ∈ [0, b] and k ∈N are chosen such that

γk s̄ + z0
1− γk

1− γ
≤ xb (3)

4Indeed, if µn → µ in total variation and Fn and F are the respective distribution func-

tions on S, then Fn → F uniformly on S. TV distance has the following highly quantitative

interpretation: If we are approximating the stationary distribution ψ∗ by the computable

distribution ψ, and if one can show that ‖ψ∗ − ψ‖ ≤ ε, then for any event B one has

ψ(B)− ε ≤ ψ∗(B) ≤ ψ(B) + ε.
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then for any initial condition X0 we have

‖L Xt − ψ∗‖ ≤ (1− φ(z0)k)b
t−1

k c (t ∈N) (4)

In the statement of the theorem, the notation bac refers to the largest inte-

ger smaller than a. The bound (4) can be alternatively written as

‖L [Fξt ◦ · · · ◦ Fξ1(X0)]− ψ∗‖ ≤ (1− φ(z0)k)b
t−1

k c (t ∈N) (5)

Convergence of this bound to zero requires φ(z0) > 0. One can always

choose such a z0.5

Remark. Note that (4) holds for any pair z0 and k satisfying (3). This pair

can be selected to minimize the right hand side of (4) given t.

In applications we are often more interested in the dynamics of prices,

rather than quantities. The following corollary extends the quantity re-

sult in Theorem 3.1 to prices. In the corollary, X = (Xt)t≥0 is an arbitrary

equilibrium process with initial condition X0 and X∗ = (X∗t )t≥0 is the sta-

tionary process with L X∗0 = ψ∗.

5In view of the fact that 0 < xb, a sufficiently large k and sufficiently small z0 > 0

satisfy (3). By our assumptions on the harvest, z0 > 0 implies φ(z0) > 0.
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Corollary 3.1. Let pt = p(Xt) and let p∗t be the stationary price process defined

by p∗t = p(X∗t ). Then for z0 and k as in Theorem 3.1,

‖L pt −L p∗t ‖ ≤ (1− φ(z0)k)b
t−1

k c (t ∈N)

Proof. Let SP := p(S), the set of points in which prices take values, and let

B(SP) be the Borel subsets. Pick any B ∈ B(SP). We have

|P{pt ∈ B} −P{p∗t ∈ B}| = |P{p(Xt) ∈ B} −P{p(X∗t ) ∈ B}|

= |P{Xt ∈ p−1(B)} −P{X∗t ∈ p−1(B)}|

As p is measurable we have p−1(B) ∈ B(S).

∴ |P{pt ∈ B} −P{p∗t ∈ B}| ≤ sup
A∈B(S)

|P{Xt ∈ A} −P{X∗t ∈ A}|

∴ |P{pt ∈ B} −P{p∗t ∈ B}| ≤ (1− φ(z0)k)bt−1/kc

Taking the supremum over all B ∈ B(SP) and using the definition of the

total variation norm establishes the statement in the lemma.

In the remainder of this section we discuss the intuition behind the proof of

Theorem 3.1. Recall the following “coupling” inequality (cf., e.g., Lindvall,

1992), which states that if the probability X and Y differ is small, then so is

the distance between their laws.
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Lemma 3.1. If X and Y are any two random variables on common probability

space (Ω, F , P) with L X = µ and L Y = ν, then

‖µ− ν‖ ≤ P{X 6= Y} (6)

The beauty of the lemma is that (6) holds for any X and and Y with L X =

µ and L Y = ν. Careful choice of X and Y can lead to a tight bound.

To illustrate, let X = (Xt)t≥0 be a given equilibrium process starting at

arbitrary X0, and let X∗ = (X∗t )t≥0 be the stationary process. Crucially, we

assume that both are driven by identical harvests (ξt)t≥1. Specifically

Xt = Fξt ◦ · · · ◦ Fξ1(X0) and X∗t = Fξt ◦ · · · ◦ Fξ1(X∗0)

By L X∗t = ψ∗ and (6) it follows immediately that

‖L Xt − ψ∗‖ = ‖L Xt −L X∗t ‖ ≤ P{Xt 6= X∗t } ∀ t ∈N (7)

Thus to bound ‖L Xt − ψ∗‖ it is sufficient to bound P{Xt 6= X∗t }. In other

words, we need to show that the probability Xt and X∗t remain distinct

converges to zero in t—or, conversely, that Xt and X∗t are eventually equal

with high probability. Although the state space is uncountable, which

makes it challenging to show that Xt and X∗t are eventually exactly equal

with high probability, there are two features of our set up which make the

approach feasible:
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Property 1. X and X∗ are driven by the same sequence of harvests (ξt)t≥1.

As a result, if Xj = X∗j for some j, then Xt = X∗t for all t ≥ j.

Property 2. If both Xj ≤ xb and X∗j ≤ xb, then I(Xj) = I(X∗j ) = 0 and

hence Xj+1 = X∗j+1 = ξ j+1.

As a consequence of these two properties, for Xt = X∗t to hold it is suffi-

cient that both Xj ≤ xb and X∗j ≤ xb for some j < t. This will occur when-

ever there is a sufficiently long sequence (a sequence of length k, say) of

sufficiently small harvests (i.e., below some value z0). As an illustration,

Figure 1 shows simulated paths for the two time series X and X∗. At t = 4

both Xt and X∗t are below xb. As a result, Xt = X∗t for all t ≥ 5. The

two processes are said to couple at t = 5, and that date is referred as the

coupling time.

Since (ξt)t≥1 is IID, the probability that a sequence of harvest sufficiently

poor to force Xj ≤ xb and Xj ≤ xb has occurred at least once prior to t

converges to 1 as t → ∞. As a result, P{Xt 6= X∗t } converges to zero. The

remainder of the proof makes this argument more precise, and is deferred

to the appendix.
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Figure 1: Coupling of (Xt) and (X∗t ) at t = 5

4 Joint Distributions

Finally we establish a bound on the deviation between the joint distribu-

tion of the process starting at arbitrary ψ and the joint stationary distribu-

tion. To state the result, let B(SN) be the product σ-algebra on SN. Then

sup
U∈B(SN)

|P{(Xt, Xt+1, . . .) ∈ U} −P{(X∗t , X∗t+1, . . .) ∈ U}|

≤ P{(Xt, Xt+1, . . .) 6= (X∗t , X∗t+1, . . .)}

by Lemma 3.1. But since Xt = X∗t implies Xj = X∗j for all j ≥ t we have

{(Xt, Xt+1, . . .) = (X∗t , X∗t+1, . . .)} = {Xt = X∗t }
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∴ {(Xt, Xt+1, . . .) 6= (X∗t , X∗t+1, . . .)} = {Xt 6= X∗t }

We can state these relations more succinctly using the left shift operator θ.

As before, let X := (Xt)t≥0 and X∗ := (X∗t )t≥0. Further, let θ : SN → SN be

the left shift, so that

θX = (X1, X2, . . .), θtX = (Xt, Xt+1, . . .),

and so on. In this notation, we have established that

sup
U∈B(SN)

|P{θtX ∈ U} −P{θtX∗ ∈ U}| ≤ P{θtX 6= θtX∗}

and {θtX 6= θtX∗} = {Xt 6= X∗t }. As a result,

sup
U∈B(SN)

|P{θtX ∈ U} −P{θtX∗ ∈ U}| ≤ P{Xt 6= X∗t }

∴ sup
U∈B(SN)

|P{θtX ∈ U} −P{θtX∗ ∈ U}| ≤ (1− φ(z0)k)bt−1/kc

Finally, since X∗ is stationary the left shift θ is invariant in the sense that

both X∗ and θtX∗ have the same distribution, so we obtain

Lemma 4.1. For any equilibrium process X with arbitrary initial condition X0

we have

‖L (θtX)−L X∗‖ ≤ (1− φ(z0)k)b
t−1

k c

for all t ∈N, where k and z0 are as defined in Theorem 3.1.

12



This is stronger than our original bound in Theorem 3.1 as it clearly implies

the latter: by setting U = B× S× S× · · · one recovers

|P{Xt ∈ B} − ψ∗(B)| ≤ (1− φ(z0)k)bt−1/kc

5 Appendix

Proof of Theorem 3.1. We now complete the proof of Theorem 3.1. To check

for occurrences of the event {Xj ≤ xb and X∗j ≤ xb}, we define a third

process which acts as an upper bound for (Xt) and (X∗t ):

X′t+1 = γX′t + ξt+1, X′0 = s̄

Thus, (X′t) is the process for the state when all of the harvest is carried

over in each state, and the initial state is s̄. As X′0 = s̄ and I(x) ≤ x for all

x ∈ S, it follows that (X′t) dominates both (Xt) and (X∗t ). Hence to check

Xt ≤ xb and X∗t ≤ xb it is sufficient to check X′t ≤ xb.

Given that if (Xt) and (X∗t ) meet they remain equal, and given that X′j ≤ xb

implies Xj+1 = X∗j+1, it must be the case that

X′j ≤ xb for some j ≤ t =⇒ Xt+1 = X∗t+1
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∴ P{X′j ≤ xb for some j ≤ t} ≤ P{Xt+1 = X∗t+1}

∴ P{Xt+1 6= X∗t+1} ≤ P∩j≤t {X′j > xb}

The probability of the event ∩j≤t{X′j > xb} can be bounded relatively

easily. Indeed, suppose that harvests ξ1 to ξk are all below z0, where k and

z0 are as in the statement of the theorem (i.e., chosen to satisfy (3)). Then

X′j ≤ γX′j−1 + z0, j = 1, . . . , k

Combining these k inequalities gives

X′k ≤ γkX′0 + z0
1− γk

1− γ

∴ X′k ≤ γk s̄ + z0
1− γk

1− γ
≤ xb

where the second inequality follows from (3). Thus, a sequence of k har-

vests below z0 forces (X′t) below xb by the end of the sequence.

In the preceding argument we considered the sequence ξ1, . . . , ξk. The

same logic clearly works for any k consecutive harvests, irrespective of

the date: If k consecutive harvests fall below z0 during the period prior to t

inclusive, then X′j ≤ xb for some j ≤ t.

In the time from period 1 to period t there are precisely bt/kc nonoverlap-

ping sequences of k consecutive harvests. Let Ei be the event that the i-th
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of these sequences has all harvests below z0. That is,

Ei = ∩i×k
j=k×(i−1)+1{ξ j ≤ z0}

If one event Ei occurs, then the dominating process (X′t) satisfies X′j ≤ xb

for some j ≤ t. Put differently, if X′j never falls below xb in the period up

to t, then none of the events Ei has occurred.

∴ P∩j≤t {X′j > xb} ≤ P∩bt/kc
i=1 Ec

i

Since the sequences of harvests that make up each Ei are nonoverlapping

these events are independent. It follows that

P∩bt/kc
i=1 Ec

i =
bt/kc
∏
i=1

(1−P(Ei))

Evidently P(Ei) = φ(z0)k, from which we obtain

bt/kc
∏
i=1

(1− φ(z0)k) = (1− φ(z0)k)bt/kc

∴ P{Xt+1 6= X∗t+1} ≤ (1− φ(z0)k)bt/kc

In view of (7) we have the desired inequality

‖L Xt+1 − ψ∗‖ ≤ (1− φ(z0)k)bt/kc
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