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Linear Maps

Linear Maps

In this section we investigate one of the most important classes of
functions

These are the so-called linear functions

Linear functions play a fundamental role in all fields of science
e In one-to-one correspondence with matrices

Even nonlinear functions can often be rewritten as partially linear

The properties of linear functions are closely tied to notions such as

e linear combinations, span

e linear independence, bases, etc.
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Linear Maps

Linearity

A function T: RK — RN is called linear if

T(ax+By) = aTx+ BTy  Vxy€RK Va,peR

Notation:

e Linear functions often written with upper case letters

e Typically omit parenthesis around arguments when convenient
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Linear Maps

Example. T: R — R defined by Tx = 2x is linear

Proof: Take any «, 8, x,y in R and observe that

T(ax + By) = 2(ax + By) = a2x + P2y = aTx + BTy

Example. The function f: R — R defined by f(x) = x? is
nonlinear

Proof: Seta = f=x=y =1

Then
o flax+pBy) = f(2) =4
e Butaf(x) +Bf(y) =1+1=2
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Linear Maps

Example

Given constants c; and cy, the function T: R* — R defined by
Tx = T(x1,x2) = c1x1 + C2X2

is linear

Proof: If we take any &, in R and x,y in R2, then
T(ax+ By) = c1[axy + By1] + c2[axz + Bya)
= wfc1x1 + cax2] + Blc1yr + c2y2]

=aTx+ BTy
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Linear Maps

Matrices

Matrices as Maps

Figure : The graph of Tx = c1x1 4 cpxp is a plane through the origin
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Linear Maps

Remark: Thinking of linear functions as those whose graph is a
straight line is not correct

Example

Function f: R — R defined by f(x) =1+ 2x is nonlinear
Proof: Takea =f=x=y =1

Then
o flax+By) =f(2) =5
« But af(x) + Bf(y) =3+3=6

This kind of function is called an affine function
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Linear Maps

Let ay,...,ax be vectors in RN
Let T: RK — RN be defined by
X1
Ix=T]| : = x7a1 + ...+ xgag

XK

Ex. Show that this function is linear
Remarks

e This is a generalization of the previous linear examples

e In a sense it is the most general representation of a linear map
from RX to RN

e |t is also “the same” as the N x K matrix with columns
ai,...,ag — more on this later
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Linear Maps

Implications of Linearity

Fact. If T: RK — RN is a linear map and xq,...,X; are vectors in
RX, then for any linear combination we have

Tlaixi + - +apxj] = a1 Txg + - -+ a;Tx)

Proof for | = 3: Applying the def of linearity twice,
T [(xlxl + arxo + 0(3X3] =T [(Llel + DézXz) + 063X3]
= T [w1x1 + aoxa] + a3Tx3

=1 Tx1 +arTxy + azTx3

Ex. Show that if T is any linear function then T0 = 0
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Linear Maps

Fact. If T: RK — RN is a linear map, then

mg(T) = span(V) where V :={Tey,..., Tex}
e Here e, is the k-th canonical basis vector in RX

Proof: Any x € RX can be expressed as Z,Ile K€k

Hence rng(T) is the set of all points of the form

K K
Ix=T [Z (xkek] = Z leTek
k=1 k=1

as we vary «q,...,&g over all combinations
This coincides with the definition of span(V)
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Linear Maps

Example

Let T: R? — RR? be defined by

1 0
Tx = T(x1,x2) = x1 <2> + x9 <_2>
1 0
Tel = <2> and T82 = <_2)

Ex. Show that V := {Tey, Te,} is linearly independent

Then

We conclude that the range of T is all of R? (why?)
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Linear Maps

The null space or kernel of linear map T: RK — RN is

ker(T) := {x € RX: Tx = 0}
Ex. Show that ker(T) is a linear subspace of RK

Fact. ker(T) = {0} if and only if T is one-to-one

Proof of = : Suppose that Tx = Ty for arbitrary x,y € RK
Then0=Tx—Ty=T(x—y)

In other words, x —y € ker(T)

Hence ker(T) = {0} — x=y
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Linear Maps

Linearity and Bijections

Many scientific and practical problems are “inverse” problems

e \We observe outcomes but not what caused them

e How can we work backwards from outcomes to causes?

Examples

e What consumer preferences generated observed market
behavior?

e What kinds of expectations led to given shift in exchange
rates?
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Linear Maps

Loosely, we can express an inverse problem as

model outcome
/\ /_\

F(x) =y
N

what x led to outcome y?

e Does this problem have a solution?

e Is it unique?
Answers depend on whether F is one-to-one, onto, etc.
The best case is a bijection

But other situations also arise
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Linear Maps

Recall that an arbitrary function can be

e one-to-one
e onto
e both (a bijection)

e neither

For linear functions from RY to RN, the first three are all
equivalent!

In particular,

onto <= one-to-one <= bijection
The next theorem summarizes
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Linear Maps

Fact. If T is a linear function from RY to RN then all of the
following are equivalent:

T is a bijection

T is onto

T is one-to-one

ker(T) = {0}

The set of vectors V := {Tey,..., Ten} is linearly
independent

AN A

If any one of these equivalent conditions is true, then T is called
nonsingular

e Don't forget: We are talking about RN to RN here
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Linear Maps Matrices Matrices as Maps

0.4 -

-2.0 =15 -1.0 -0.5 0{0 0.5 1.0 15 2.0
—0.4 Tz=ax with a=0.2 |_
0.4 -

-2.0 =15 -1.0 -0.5 0{0 0.5 1.0 15 2.0
—0.4 Tz =ax With a =0 |-

Figure : The case of N = 1, nonsingular and singular

Rank
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Linear Maps

Proof that T onto <= V := {Tey,..., Ten} is linearly
independent

Recall that for any linear map T we have rng(T) = span(V)

Using this fact and the definitions,

T onto <= mg(T) =RN
<= span(V) = RN

<= V is linearly indepenent
(We saw that N vectors span RN iff linearly indepenent)

Rest of proof: Solved exercises
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Linear Maps

Fact. If T: RN — RN is nonsingular then so is T~

What is the implication here?
If T is a bijection then so is T~!
Hence the only real claim is that T~ is also linear

The proof is an exercise...
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Linear Maps

Maps Across Different Dimensions
Remember that these results apply to maps from RN to RN
Things change when we look at linear maps across dimensions

The general rules for linear maps are

e Maps from lower to higher dimensions cannot be onto

e Maps from higher to lower dimensions cannot be one-to-one

In either case they cannot be bijections

The next fact summarizes
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Linear Maps

Fact. For a linear map T from RK — RN, the following
statements are true:

1. If K < N then T is not onto
2. If K > N then T is not one-to-one

Proof of part 1: Let K < N and let T: RX — RN be linear
Letting V := {Tey,..., Tex}, we have

dim(rng(T)) = dim(span(V)) < K < N

mg(T) # RV

Hence T is not onto
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Linear Maps

Proof of part 2: K> N = T is not one-to-one

Suppose to the contrary that T is one-to-one

Let aq1,...,ax be a collection of vectors such that
a1Ter+---+axTex =0
T(a1e1+---+agex) =0 (by linearity)
x1e;+---+agex =0 (since ker(T) = {0})

pp=--=ag=0 (by independence of {ey,...ex})

We have shown that {Tey,..., Tex} is linearly independent

But then RN contains a linearly independent set with K > N
vectors — contradiction
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Linear Maps Matrices Matrices as Maps Rank
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Example. Cost function c(k, ¢) = rk + w¢ cannot be one-to-one
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Linear Maps Matrices Matrices as Maps Rank

Matrices and Linear Equations

We now begin our study of matrices

As we'll see, there's an isomorphic relationship between

1. matrices

2. linear maps

Often properties of matrices are best understood via those of linear
maps
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Linear Maps Matrices

Matrices
Typical N x K matrix:
a1 an
az1  a»
A =
aN1 AanN2

Symbol a, stands for element in the

e 11-th row

e k-th column

Matrices as Maps

a1k
azk

ANK

Rank
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Matrices

Often matrices correspond to coefficients of a linear equation

anxi +apxy + - - - +ajgxg = by
Ay1X1 + anXxs + -+ - + argxx = by

an1X1 +anaxz + - - - + ankxx = by

Given the a,;; and by, what values of x1, ..., xg solve this system?

We now investigate this and other related questions

But first some background on matrices...
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Linear Maps Matrices Matrices as Maps

An N x K matrix also called a

e row vector if N =1

e column vector if K =1

Examples.

b=| : is Nx1, c=(c1--

bn

If N =K, then A is called square

ccx) is 1x K

Rank
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Matrices

We use

e coli(A) to denote the k-th column of A
e row,(A) to denote the n-th row of A

Example

ai -+ K

az1 -+ 42K
col; (A) = coly

AN1 ' ANK

a11
a1

an1
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Linear Maps Matrices Matrices as Maps Rank

The zero matrix is

00 - 0

0 0 - 0
0:= .

0 0 - 0

The identity matrix is

10 0

01 0
I:= )

0 0 - 1

29/49



Linear Maps Matrices Matrices as Maps Rank

Algebraic Operations for Matrices

Addition and scalar multiplication are also defined for matrices
Both are element by element, as in the vector case

Scalar multiplication:

a1 a2 - MK Yan  ydiz o YAIK

a1 Az -+ 42K Yaz  ydz -+ YA2K
Y . . . = . .

ANt AanN2 -+ A4NK YAN1 YAN2 ct YANK
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Matrices

Addition:

an e 41K by -+ big
apr - Ak byy -+ by
_|_
ani - ANK bnvioco- bk
a1 +bnn - mx+bix
ay+bxn o axx + bk
an1+bn1 -+ ank + bnk

Note that matrices must be same dimension
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Matrices

Multiplication of matrices:

Product AB: i,j-th element is inner product of i-th row of A and
j-th column of B

an - MK byt -+ by ci1 - C1f
a1 - K byp -+ by €1 O
aNi -+ ANK brki -+ by CN1 ** CNJ
In this display,
K
c11 = ) aixba
k=1
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Matrices

Suppose A is N xKand Bis | x M

e AB defined only if K =]
e Resulting matrix AB is N x M

The rule to remember:

product of N Xx K and K x M is N x M

Important: Multiplication is not commutative

In particular, it is not in general true that AB = BA

e |n fact BA is not well-defined unless N = M also holds
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Matrices

Useful observation:

ai1 42 - MK X1
azy dxp» - 42K X2
Ax = ] ]
AN1 4N2 - A4NK XK
a11 a1z a1K
a1 a a2k
=X : + X2 . +o XK :
aN1 an2 ANK
K
= Z X colg(A)
k=1
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Matrices

Rules for multiplication:

Fact. Given scalar & and conformable A, B and C, we have

[

. A(BC) = (AB)C

. A(B+C)=AB+AC
. (A+B)C=AC+BC
. AaB = «AB

A~ N

(Here “conformable” means operation makes sense)
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Matrices

The k-th power of a square matrix A is

AF:=A.. A
——

k terms

If it exists, the square root of A is written Al/2

Defined as the matrix B such that B2 is A

More on these later...
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Matrices

In matrix multiplication, I is the multiplicative unit

That is, assuming conformability, we always have

Al=T1A=A
Ex. Check it using the definition of matrix multiplication

Note: If I is K x K, then

coli(I) = e = k-th canonical basis vector in RX
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Linear Maps Matrices Matrices as Maps Rank

In [1]: import numpy as np

In [2]: A= [[2, 4],

: [4, 211
In [3]: A = np.array(A) # Convert A to array
In [4]: B = np.identity(2)
In [5]: B
Out [5]:
array([[ 1., 0.],

Lo., 1.1
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Linear Maps Matrices Matrices as Maps Rank

In [6]: A + B # Matriz addition
Out [6]:
array([[ 3., 4.1,
[ 4., 3.1D
In [7]: np.dot(A, B) # Matriz multiplication
Out[7]:
array([[ 2., 4.1,

4., 2.1D
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Matrices as Maps

Matrices as Maps

Any N x K matrix A can be thought of as a function x — Ax
e In Ax the x is understood to be a column vector

It turns out that every such map is linear

To see this fix N x K matrix A and let T be defined by
T:RF - RN, Tx=Ax
Pick any x, y in RX, and any scalars « and

The rules of matrix arithmetic tell us that

T(ax + By) := A(ax + By) = aAx+ Ay =: aTx + BTy
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Matrices as Maps

So matrices make linear functions

How about examples of linear functions that don't involve
matrices?

Actually there are none!

Fact. If T: RK — RN then

Tis linear <= 3 N x K matrix A s.t. Tx = Ax, Vx € RK

e On the last slide we showed the <= part

e On the next slide we show the = part
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Matrices as Maps

Let T: RK — RN be linear

We aim to construct an N x K matrix A such that

Tx = Ax, Vx € RX

As usual, let e, be the k-th canonical basis vector in RX
Define a matrix A by coly(A) = Tey
Pick any x = (x1,...,xk) € RK

By linearity we have

K K K
Tx=T [Z xkek] = Z xTe, = Z X colg(A) = Ax
k=1 k=1 k=1
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Matrices as Maps

Matrix Product as Composition

Let

e Abe NxKand Bbe KxM
e T: RK — RN be the linear map Tx = Ax
o U: RM — RX be the linear map Ux = Bx

The matrix product AB corresponds exactly to the composition of
T and U

Proof:
(TolU)(x) =T(Ux) = T(Bx) = ABx
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Matrices as Maps

This helps us understand a few things

For example, let

e Abe NxKandBbe ] xM
e T: RK = RN be the linear map Tx = Ax
e U: RM — R/ be the linear map Ux = Bx

Then AB is only defined when K = |

This is because AB corresponds to T o U

But for T o U to be well defined we need K =]
Then U maps RM to RX and T maps RX to RN
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Rank

Column Space

Let A be an N x K matrix

The column space of A is defined as the span of its columns

span(A) = span{col; (A),...,colx(A)}

= all vectors of the form Xi colg(A)

K
k=1

Equivalently,
span(A) := {Ax:x € RX}

This is exactly the range of the associated linear map

T: RK — RN defined by Tx = Ax
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Rank

Example. If
1 -5
()
then the span is all linear combinations

X1 ( ; > —|—x2< _35 ) where (x1,x2) € R?

These columns are linearly independent (shown earlier)

Hence the column space is all of R? (why?)

Ex. Show that the column space of any N X K matrix is a linear
subspace of RN
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Rank

Rank

Equivalent questions

e How large is the range of the linear map Tx = Ax?

e How large is the column space of A?

The obvious measure of size for a linear subspace is its dimension

The dimension of span(A) is known as the rank of A

rank(A) := dim(span(A))

Because span(A) is the span of K vectors, we have

rank(A) = dim(span(A)) < K
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Rank

A is said to have full column rank if

rank(A) = number of columns of A

Fact. For any matrix A, the following statements are equivalent:

1. Ais of full column rank
2. The columns of A are linearly independent

3. If Ax =0, thenx =10

Ex. Check this, recalling that

dim(span{aj,...,ax}) = K <= {aj,...,ax} linearly indepenent

48/49



Linear Maps Matrices Matrices as Maps Rank

In [1]: import numpy as np

In [2]: A = [[2.0, 1.0],
: (6.3, 3.0]]

In [3]: np.linalg.matrix_rank(A)
Out[3]: 2

In [4]: A = [[2.0, 1.0], # Col 2 4s half col 1
: [6.0, 3.0]]

In [5]: np.linalg.matrix_rank(A)
Out[5]: 1
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