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Announcements

e Mid semester exam — date after break requested
e Access to previous exam papers against school policy

e Practice questions with solutions will be posted soon on
GitHub
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Linear Independence

Linear Independence

Important applied questions

When is a matrix invertible?

When do regression arguments suffer from collinearity?

When does a set of linear equations have a solution?

When is that solution unique?
e How can we approximate complex functions parsimoniously?
What is the rank of a matrix?

All of these questions closely related to linear independence
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Linear Independence

Definition

A nonempty collection of vectors X := {x1,...,xx} C RN is
called linearly independent if

K
Z[kak:o - 0(1—"’:“[(:0
k=1

As we'll see, linear independence of a set of vectors determines
how large a space they span

Loosely speaking, linearly independent sets span large spaces
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Linear Independence

Example. Let x := (1,2) and y := (-5, 3)
The set X = {x,y} is linearly independent in R?

Indeed, suppose &7 and a», are scalars with
1 -5
IX1<2>+062<3>—0

a1 = bay

Equivalently,

2061 = —3062
Then 2(5a7) = 10y = —3ay, implying ap = 0 and hence a1 =0
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Linear Independence

Example

The set of canonical basis vectors {ey,...,en} is linearly
independent in RN

Proof: Let ay,...,an be coefficients such that 213]:1 arer =10

Then
X1 0
(14} N
k=1 :
N 0

In particular, a; = 0 for all k

Hence {ej, ..., ex} linearly independent
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Linear Independence

As a first step to better understanding linear independence let’s
look at some equivalences

Take X := {xq,...,xg} C RN
Fact. For K > 1 all of following statements are equivalent
1. X is linearly independent
2. No x; € X can be written as linear combination of the others

3. Xo € X = span(Xp) € span(X)

e Here Xy C X means Xy C X and Xy # X

e We say that Xy is a proper subset of X
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Linear Independence

As an exercise, let's show that the first two statements are
equivalent

The first is

K
ZDCkaZO = ap=---=ag=0 (*)
k=1

The second is

no x; € X can be written as linear combination of others (%)

We now show that

e (x) = (%x), and
o (xx) = (%)
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Linear Independence

To show that (x) == (%) let's suppose to the contrary that

1. ZszlleXk:O — a1 =---=ag =0
2. and yet some x; can be written as a linear combination of the
other elements of X

In particular, suppose that

X; = Zakxk

ki

Then, rearranging,

Xy + -4 (=1)x;+ -+ agxk =0

This contradicts 1., and hence (%x) holds

9/41



Linear Independence

To show that (¥x) == (%) let's suppose to the contrary that

1. no x; can be written as a linear combination of others

2. and yet 3 aq,...,ax not all zero with a1x; +-- - +agxg =0

Suppose without loss of generality that aq # 0

(Similar argument works for any «;)

Then

This contradicts 1., and hence (%) holds
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Linear Independence

Let's show one more part of the proof as an exercise:

X linearly independent = proper subsets of X have smaller span

Proof: Suppose to the contrary that

1. X is linearly independent,
2. Xop € X and yet
3. span(Xj) = span(X)
Let X; be in X but not X
Since x; € span(X), we also have x; € span(Xp)

But then X; can be written as a linear combination of the other
elements of X

This contradicts linear independence
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Linear Independence

Example. Dropping any of the canonical basis vectors reduces span
Consider the N = 2 case
We know that span{e;, e;} = all of R?

Removing either element of span{el,ez} reduces the span to a line

e = (1,0)

Figure : The span of {e{} alone is the horizonal axis
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Linear Independence

Example. As another visual example of linear independence,
consider the pair

3 3
X1 = 4 and Xy = —4
2 1

The span of this pair is a plane in R3

But if we drop either one the span reduces to a line
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Figure : The span of {x1,x2} is a plane
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Linear Independence Implications of Independence Span and Independence Bases

Figure : The span of {x1} alone is a line
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Figure : The span of {x2} alone is a line
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Linear Independence Implications of Independence Span and Independence Bases

Linear Dependence

If X is not linearly independent then it is called linearly dependent

We saw above that
linear independence <= dropping any elements reduces span

Hence X is linearly dependent when some elements can be
removed without changing span(X)

That is,
dXo C X st span(Xp) = span(X)
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Linear Independence Implications of Independence

Example. As an example with redundacy, consider {x1,x2} C R2

where

® X1 =€ 1= (1,0)
e Xo = (—2,0)

X2

Span and Independence

X1

Figure : The vectors x1 and xp

Bases
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Linear Independence

We claim that span{xq, x2} = span{x; }
Proof: span{x;} C span{xj,xy} is clear (why?)
To see the reverse, pick any y € span{xy, X2}

By definition,

1 -2
Jag,an sty =a1x; +aoxp = ap <O) + an ( 0 )

y = <(1)> — 20 <(1)> = (a1 — 2ap) (é) = (a1 —202)xq

The right hand side is clearly in span{x; }

Hence span{xj,x2} C span{x;} as claimed
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Implications of Independence
Implications of Independence

Let X := {xq,...,xx} CRN

Fact. If X is linearly independent, then X does not contain 0
Ex. Prove it

Fact. If X is linearly independent, then every subset of X is
linearly independent

Sketch of proof: Suppose for example that {xq,...,xg_1} C X is
linearly dependent

Then 3 &q,...,ax_1 not all zero with Zk 1 X =0
Setting ax = 0 we can write this as Zkzl apxe =0

Not all scalars zero so contradicts linear independence of X
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Implications of Independence

Fact. If X := {xq,...,xx} C RN is linearly independent and z is

an N-vector not in span(X), then X U {z} is linearly independent

Proof: Suppose to the contrary that X U {z} is linearly dependent:
K

Jaq,...,ax, B not all zero with Z X+ Pz =10 (1)
k=1

If B =0, then by (1) we have Zle axg = 0 and ay # 0 for some
k, a contradiction

If B # 0O, then by (1) we have

Hence z € span(X) — contradiction
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Linear Independence Implications of Independence Span and Independence Bases

Unique Representations
Let
o X:={xy,...,xx} CRN
e yeRN
We know that if y € span(X), then exists representation
K
Y= Z QX
k=1
But when is this representation unique?
Answer: When X is linearly independent
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Implications of Independence

Fact. If X = {xq,...,xx} C RN is linearly independent and
y € RN then there is at most one set of scalars &y, ..., ax such
that y = YK | wixe

Proof: Suppose there are two such sets of scalars

That is,

K K
Jay,...,ag and By,..., Bk sty = Z(xkxk: Z,kak
k=1 k=1

K

Y (ax—Br)xk =0

k=1

ax = Pr forall k
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Span and Independence

Exchange Lemma

Here's one of the most fundamental results in linear algebra

Fact. (Exchange lemma) If

1. Sis a linear subspace of RN
2. S is spanned by K vectors,

then any linearly independent subset of S has at most K vectors
Proof: Omitted

Example. If X := {xq,x2,x3} C R? then X is linearly dependent

e because R? is spanned by the two vectors e, e
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Linear Independence Implications of Independence Span and Independence
(2, 4)
al -
(-3,3)
2k -
~a -2 2 4
2| -
(-4, -3.5) _al _

Figure : Must be linearly dependent

Bases
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Span and Independence

Example
Recall the plane

P:= {(x1,%,0) €ER>: x,xp € R}

e flat plane in R? where height coordinate = zero

We showed before that span{e;, ey} = P for

1 0
e = 0 , €y = 1
0 0

Therefore any three vectors lying in P are linearly dependent
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Figure : Any three vectors in P are linearly dependent
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Span and Independence

When Do N Vectors Span RN?

In general, linearly independent vectors have a relatively “large”
span

e No vector is redundant, so each contributes to the span

This helps explain the following fact:
Let X := {xy,...,xn} be any N vectors in RN

Fact. span(X) = RN if and only if X is linearly independent

Example. The vectors x = (1,2) and y = (—5,3) span R?
o We already showed {x,y} is linearly independent
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Span and Independence

Let's start with the proof that
X = {x1,...,xn} linearly independent = span(X) = RN

Seeking a contradiction, suppose that

1. X is linearly independent

2. and yet 3z € RN with z ¢ span(X)
But then X U {z} C RN is linearly independent (why?)
This set has N 4 1 elements
And yet RN is spanned by the N canonical basis vectors

Contradiction (of what?)
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Span and Independence

Next let's show the converse
span(X) = RN = X = {xy,...,xn} linearly independent

Seeking a contradiction, suppose that

1. span(X) = RN

2. and yet X is linearly dependent
Since X not independent, 3Xy C X with span(Xy) = span(X)
But by 1 this implies that RN is spanned by K < N vectors
But then the N canonical basis vectors must be linearly dependent

Contradiction
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Bases

Bases

Let S be a linear subspace of RN

A set of vectors B := {by,...,bg} C S is called a basis of S if

1. B is linearly independent
2. span(B) =S

Example. Canonical basis vectors form a basis of RN

Indeed, if E := {ey,...,en} C RN, then

e E is linearly independent — we showed this earlier

e span(E) = RN - we showed this earlier
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Example

Recall the plane

P:={(x1,%,0) €ER>: x,x0 € R}

We showed before that span{e;, e} = P for

1 0
€ = 0 P € = 1
0 0

Moreover, {e1, ey} is linearly independent (why?)

Hence {eq, ey} is a basis for P

Bases
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Figure : The pair {e1, ey} form a basis for P
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Bases

What are the implications of B being a basis of S7
In short, every element of S can be represented uniquely from the

smaller set B

In more detail:

e B spans S and, by linear independence, every element is
needed to span S — a “minimal” spanning set

e Since B spans S, every y in S can be represented as a linear
combination of the basis vectors

¢ By independence, this representation is unique
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It's obvious given the definition that

Fact. If B C RN is linearly independent, then B is a basis of
span(B)

Example. Let B := {xq,x2} where

3 3
x;= |4 and xo = | —4
2 1

We saw earlier that

e S :=span(B) is the plane in R® passing through x;, x2 and 0
e B is linearly independent in R3 (dropping either reduces span)

Hence B is a basis for the plane S

Bases
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0

Figure : The pair {x1,x2} is a basis of its span
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Bases

Fundamental Properties of Bases

Fact. If S is a linear subspace of RY distinct from {0}, then

1. S has at least one basis, and

2. every basis of S has the same number of elements

Proof of part 2: Let B; be a basis of S with K; elements, i = 1,2
By definition, B is a linearly independent subset of S

Moreover, S is spanned by the set By, which has K; elements
Hence K> < Ky

Reversing the roles of By and B; gives K; < Kj
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Dimension

Let S be a linear subspace of RN

We now know that every basis of S has the same number of
elements

This common number is called the dimension of S

Example. RN is N dimensional because the N canonical basis
vectors form a basis

Example. P := {(x1,x2,0) € R3: x1,x, € R} is two dimensional
because the first two canonical basis vectors of R3 form a basis

Example. In R?, a line through the origin is one-dimensional, while
a plane through the origin is two-dimensional

Bases

38/41



Bases

Dimension of Spans

Fact. Let X := {xq,...,xx} C RN
The following statements are true:

1. dim(span(X)) < K
2. dim(span(X)) = K <= X is linearly independent

Proof that dim(span(X)) < K
If not then span(X) has a basis with M > K elements
Hence span(X) contains M > K linearly independent vectors

This is impossible, given that span(X) is spanned by K vectors
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Bases

Now consider the second claim:

1. X is linearly independent = dim(span(X)) = K
Proof: True because the vectors x1,...,xg form a basis of
span(X)

2. dim(span(X)) = K = X linearly independent

Proof: If not then 3 Xy C X such that span(Xp) = span(X)

By this equality and part 1 of the theorem,

dim(span(X)) = dim(span(Xp)) <#Xo < K—1

Contradiction
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Bases

Fact. If S a linear subspace of RN, then

dim(S) =N <= S=RN

Useful implications

e The only N-dimensional subspace of RN is RN
e To show S = RN just need to show that dim(S) = N

Proof: See course notes
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