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Announcements

e New tutorial: 3pm Friday CBE TR8
e Course notes apply to today’s topic — see GitHub

2/57



Motivation Vector Space Linear Operations Norms and Distance

Span

Linear Subspaces

New Topic

LINEAR ALGEBRA
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Motivation

Motivation

Linear algebra is used to study linear models

Foundational for many disciplines related to economics

Economic theory

Econometrics and statistics

e Finance

Operations research
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Motivation

Example

Equilibrium in a single market with price p

gi=a+bp
s = c+dp
ds = 4q4

What price p clears the market, and at what quantity g = qs = q,47
Remark: Here a,b,c,d are the model parameters or coefficients

Treated as fixed for a single computation but might vary between
computations to better fit the data
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Example

Determination of income

C=a+bY-T)

E=C+1I
G=T
Y=E

Solve for Y as a function of I and G
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Motivation

Bigger, more complex systems found in problems related to
e Regression and forecasting
e Portfolio analysis
e Ranking systems

e Etc., etc. — any number of applications
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Motivation
A general system of equations:

a11x1 + apxy + -+ -+ a1xxg = by
1X1 + amxs + - - - + argxg = by

an1X1 + anoxo + - - - + ankxg = by
Typically

e the a,;, and b, are exogenous / given / parameters

e the values x;,, are endogenous
Key question

e What values of x1, ..., xg solve this system?
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Motivation

We often write this in matrix form

apn a4 - 41K X1 by
apy  axp - A 2 | by
aNit an2 -+ ANK XK bk
or
Ax=D>

And we solve it on a computer
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In [1]: import numpy as np

In [2]: from scipy.linalg import solve

In [3]: A = [[O) 2, 4]1
H [1; 4’ 8]’
(o, 3, 711

In [4): b= (1, 2, 0)

In [5]: A, b = np.asarray(A), np.asarray(b)

In [6]: solve(A, b)
Out[6]: array([ 0. , 3.5, -1.5])
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Motivation

This tells us that the solution is

array([ 0. , 3.5, -1.5])

That is,
X1 0
x=1| x = 3.5
X3 —-1.5

Hey, this is easy — what do we need to study for?

But now let’s try this similar looking problem
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Linear Subspaces

Motivation Vector Space Linear Operations Norms and Distance Span
In [1]: import numpy as np
In [2]: from scipy.linalg import solve
In [3]: A = [[0, 2, 4],
: (1, 4, 8],
[0, 3, 611
In [4]: b= (1, 2, 0)
In [5]: A, b = np.asarray(A), np.asarray(b)
In [6]: solve(A, b)
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Motivation

This is the output that we get

LinAlgError Traceback (most recent call last)
<ipython-input-8-4fb5f4leaf7c> in <module>()

-———> 1 solve(A, Db)
/home/john/anaconda/1ib/python2.7/site-packages/scipy/lina

o7 return x
98 if info > O:
--=> 99 raise LinAlgError("singular matrix")
100 raise ValueError(’illegal value in %d-th argum

LinAlgError: singular matrix

What does this mean? How can we fix it?

Moral: We still need to understand the concepts
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Vector Space

Vector Space
Recall that RN := set of all N-vectors

An N-vector x is a tuple of N real numbers:

x=(x1,...,xny) where x, € R for each n

We can also write x vertically, like so:
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N x = (x1,x2)

Figure : Visualization of vector x in IR?
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Span

‘ ‘ ‘ (2, 4)

41 -
(-3,3)
Al :
=7y = 2

-2} -
(-4,-3.5) _al )

Figure : Three vectors in R?

Linear Subspaces
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Vector Space

The vector of ones will be denoted 1

1
1:= :
1
Vector of zeros will be denoted 0
0
0:= :
0
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Linear Operations

Two fundamental algebraic operations:

1. Vector addition

2. Scalar multiplication

1. Sum of x € RN and y € RN defined by

X1 Y1 X1+

X2 Y2 X2+ 12
X+y:=: : + : = )

XN YN XN+ YN
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Linear Operations

Example 1:
1 2 3
2 4 6
3| Tle [T 9
4 8 12
Example 2:
1 1 2
2 1 3
3| Tl 17 4
4 1 5
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Figure : Vector addition
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2. Scalar product of « € R and x € RN defined by

X1 X1

X2 (4% 4
0x =« =

XN XN

Linear Subspaces
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Linear Operations

Example 1:

0.5
1.0
1.5
2.0

0.5

= W N =

Example 2:

= W N =
|
W
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—2x

Figure :  Scalar multiplication
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Linear Operations

Subtraction performed element by element, analogous to addition

X1 — W

X2 — Y2
X—y:= .

XN — YN

Def can be given in terms of addition and scalar multiplication:

x—y:=x+(-1)y
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Vector Space

Linear Operations

Norms and Distance

Figure :

X—y

Difference between vectors

Span

Linear Subspaces
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Incidentally, most high level numerical libraries treat vector
addition and scalar multiplication in the same way — elementwise

In [1]: import numpy as np

In [2]: np.array((2, 4, 6))

o]
]

In [3]: y = np.array((10, 10, 10))

In [4]: x + y # Vector addition
Out[4]: array([12, 14, 16]1)

In [6]: 2 * x # Scalar multiplication
Out[6]: array([ 4, 8, 12]1)
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A linear combination of vectors x1,...,xx in RN is a vector

K
y = ZDCkaIDC1X1—|—~-'—|—lXKXK
k=1

where a1, ...,ax are scalars

Example.

6.0 0 3.0
051 20 | +3.0 1.0 =1 40
8.0 -1.0 1.0
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Inner Product

The inner product of two vectors x and y in RN is

N
X'y =Y Xuyn

n=1

Example: x = (2,3) and y = (—1,1) implies that

Xy=2x(-1)+3x1=1
Example: x = (1/N)1and y = (y3,...,yn) implies
1 i
Xy =+ 2.Y
Nn:l !
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Linear Subspaces

In [1]:

In [2]:

In [3]:

In [6]:
Out [6] :

import numpy as np

np.array((1, 2, 3, 4))

»
1]

y = np.array((2, 4, 6, 8))

np.sum(x * y) # Inner product
60
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Linear Operations

Fact. Forany a, € R and any x,y € RN, the following
statements are true:

1. X'y =y'x
2. (ax)'(By) = ap(x'y)
3. X(y+z) =xy+xz
For example, item 2 is true because

N N
(ax)'(By) = Zl"‘xnﬁyn =uap ;xnyn = ap(x'y)

Ex. Use above rules to show that (ay + fz)'x = ax'y + px'z
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Linear Operations

The next result is a generalization

Fact. Inner products of linear combinations satisfy
K J

K "7
Yowxe | | XoBiyi | = X Y aBixiy;
k=1 i=1

k=1j=1

31/57



Motivation Vector Space Linear Operations Norms and Distance Span

Norms and Distance

The (Euclidean) norm of x € RN is defined as
1/2
Ix]| := Vx'x = ( x%)

e ||x|| represents the “length” of x

T

Interpretation:

e ||x —y|| represents distance between x and y

Linear Subspaces
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G x = (x1,x2)

Figure : Length of red line = y/x% 4+ x3 =: |||
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Motivation

Vector Space Linear Operations

Norms and Distance Span

||lx — y|| represents distance between x and y

Linear Subspaces
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Fact. For any « € R and any x,y € RV, the following statements

are true:
1. [|x|][ > 0 and |x|| =0 if and only if x =0
2. lax| = lafIx]
3. Ix+yll < |Ix]| + ||yl (triangle inequality)
4. |X'y| < ||x|lllyl] (Cauchy-Schwarz inequality)
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Norms and Distance

For example, let's show that ||x|| =0 <= x=0

First let's assume that ||x|| = 0 and show x =0
Since ||x|| = 0 we have ||x||?> = 0 and hence Y, x2 =0

That is x,, = 0 for all n, or, equivalently, x =0

Next let's assume that x = 0 and show ||x|| =0

This is immediate from the definition of the norm
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Norms and Distance

Fact. If x € RN is nonzero, then the solution to the optimization
problem

/
maxx'y
y

is X := x/|[|x||

subject to

y € RN and [ly| = 1
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Norms and Distance

Proof: Fix nonzero x € RN

Let X := x/||x|| := ax when a :=1/||x||
Evidently ||x]| =1

Pick any other y € RN satisfying ||y| =1
The Cauchy-Schwarz inequality yields

yx < |yl < [lylllixll = [Ix[l = — = %'

Hence X is the maximizer, as claimed
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Span

Let X C RN be any nonempty set

Set of all possible linear combinations of elements of X is called
the span of X, denoted by span(X)

For finite X := {xq,..., Xk} the span can be expressed as

K
span(X) := { all ) axy such that (ag,...,ax) € RK}
k=1

We are mainly interested in the span of finite sets...
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Span

Example

Let's start with the span of a singleton
Let X = {1} C R?, where 1:= (1,1)

The span of X is all vectors of the form

alz(i) with a« € R

Constitutes a line in the plane that passes through

e the vector 1 (set « = 1)
e the origin 0 (set « = 0)
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Figure : The span of 1:= (1,1) in R?
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Span

Example
Let x; = (3,4,2) and let x, = (3,—4,0.4)

By definition, the span is all vectors of the form

3 3
y=a| 4 | +B| —4 where «a,p € R
2 0.4

It turns out to be a plane that passes through

e the vector xq
e the vector x»
e the origin 0
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Figure : Span of x1,xp
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Span

Fact. If X C Y, then span(X) C span(Y)
To see this, pick any nonempty X C Y C RN

Letting z € span(X), we have

K
z= Erxkxk for some xq,...,xxk € X, a1,..., a4k € R
k=1

Since X C Y, each x; is also in Y, giving us

K
z = Z“kxk forsome xq,...,Xxk €Y, a1,...,ax € R
k=1

Hence z € span(Y)
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Span

Let Y be any subset of RN, and let X := {xg,...,xx}

If Y C span(X), we say that the vectors in X span the set Y
Alternatively, we say that X is a spanning set for Y

A nice situation: Y is large but X is small

— large set Y “described” by the small number of vectors in X
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Span

Example

Consider the vectors {ey,...,eN} C RN, where

1 0 0

0 1 0
€ = ’ € = . ’ ; EN 1=

0 0 1

That is, e, has all zeros except for a 1 as the n-th element

Vectors ey, ..., ey called the canonical basis vectors of RN
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e = (1, O)

Figure : Canonical basis vectors in R?
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Span

Fact. The span of {ey,...,en} is equal to all of RN
Proof for N = 2:

Pick any y € R?

We have

|

=
A~
S

0
>+]/2< 1 > =yie1 + e

Thus, y € span{ej, e}

Since y arbitrary, we have shown that span{e;, e;} = R?
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e = (0,1)
Yy = yie1 +yqe2

e = (1, 0)

Figure : Canonical basis vectors in R?
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Example. Consider the set
- 3.
P:={(x1,x2,0) € R’ : x1,x, € R}

Graphically, P = flat plane in R3, where height coordinate = 0

— (=g = = C/LT B0/57



Span

Let e; and e, be the canonical basis vectors in R3
Claim: span{e;, e} =P

Proof:

Let x = (x1,x2,0) be any element of P

We can write x as

X1 1 0
X = X2 = X1 0 + x7 1 = Xx1€1 + X2€3
0 0 0

In other words, P C span{e, ez}

Conversely (check it) we have span{ej, e} C P
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Span

Linear Subspaces

Figure : span{ej, ey} =P
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Linear Subspaces

A nonempty S C RY called a linear subspace of RN if

x,y€S and 0, fER = ax+pPycsS

In other words, S € RN is “closed” under vector addition and
scalar multiplication

Note: Sometimes we just say subspace...

Example. RN itself is a linear subspace of RN
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Linear Subspaces

Example

Fixa € RN and let A := {x € RN : a'x = 0}
Fact. The set A is a linear subspace of RN

Proof: Let x,y € A and leta,p € R
We must show that z :=ax+ fy € A
Equivalently, that a’z =0

True because

a'z=a'(ax+ By) =aa'x+pa'y=04+0=0
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Linear Subspaces

Fact. If Z is a nonempty subset of RN, then span(Z) is a linear
subspace

Proof: If x,y € span(Z), then 3 vectors z; in Z and scalars
and J; such that

K

K
X = YkZx and y = Z Ok Zy
k=1 k=1

K K
ax =Y ayze and By =) Pz
k=1 k=1

K
ax+ By = ) (avi + Boy)zx
k=1

This vector clearly lies in span(Z)
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Linear Subspaces

Fact. If S and S’ are two linear subspaces of RN, then SNS’ is
also a linear subspace of RN,

Proof: Let S and S’ be two linear subspaces of RN
Fixx,y € SNS and o, € R
We claim that z := ax+ fy € SN S’

e Since x,y € S and S is a linear subspace we have z € S

e Since x,y € S’ and S’ is a linear subspace we have z € &'

Thereforez € SN S’
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Linear Subspaces

Other examples of linear subspaces

e The singleton {0} in RN
e Lines through the origin in R? and R3

e Planes through the origin in R3

Ex. Let S be a linear subspace of RN. Show that

1.0eS
2. If X C S, then span(X) C S
3. span(S) =S
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