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Announcements

• New tutorial: 3pm Friday CBE TR8

• Course notes apply to today’s topic — see GitHub
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New Topic

LINEAR ALGEBRA
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Motivation

Linear algebra is used to study linear models

Foundational for many disciplines related to economics

• Economic theory

• Econometrics and statistics

• Finance

• Operations research
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Example

Equilibrium in a single market with price p

qd = a + bp

qs = c + dp

qs = qd

What price p clears the market, and at what quantity q = qs = qd?

Remark: Here a, b, c, d are the model parameters or coefficients

Treated as fixed for a single computation but might vary between
computations to better fit the data
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Example

Determination of income

C = a + b(Y− T)

E = C + I

G = T

Y = E

Solve for Y as a function of I and G
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Bigger, more complex systems found in problems related to

• Regression and forecasting

• Portfolio analysis

• Ranking systems

• Etc., etc. — any number of applications
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A general system of equations:

a11x1 + a12x2 + · · ·+ a1KxK = b1
a21x1 + a22x2 + · · ·+ a2KxK = b2

...
aN1x1 + aN2x2 + · · ·+ aNKxK = bN

Typically

• the anm and bn are exogenous / given / parameters

• the values xn are endogenous

Key question

• What values of x1, . . . , xK solve this system?
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We often write this in matrix form


a11 a12 · · · a1K
a21 a22 · · · a2K
...

...
...

aN1 aN2 · · · aNK




x1
x2
...

xK

 =


b1
b2
...

bK


or

Ax = b

And we solve it on a computer
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In [1]: import numpy as np

In [2]: from scipy.linalg import solve

In [3]: A = [[0, 2, 4],

...: [1, 4, 8],

...: [0, 3, 7]]

In [4]: b = (1, 2, 0)

In [5]: A, b = np.asarray(A), np.asarray(b)

In [6]: solve(A, b)

Out[6]: array([ 0. , 3.5, -1.5])
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This tells us that the solution is

array([ 0. , 3.5, -1.5])

That is,

x =

 x1
x2
x3

 =

 0
3.5
−1.5



Hey, this is easy — what do we need to study for?

But now let’s try this similar looking problem
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In [1]: import numpy as np

In [2]: from scipy.linalg import solve

In [3]: A = [[0, 2, 4],

...: [1, 4, 8],

...: [0, 3, 6]]

In [4]: b = (1, 2, 0)

In [5]: A, b = np.asarray(A), np.asarray(b)

In [6]: solve(A, b)
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This is the output that we get

LinAlgError Traceback (most recent call last)

<ipython-input-8-4fb5f41eaf7c> in <module>()

----> 1 solve(A, b)

/home/john/anaconda/lib/python2.7/site-packages/scipy/linalg/basic.pyc in solve(a, b, sym_pos, lower, overwrite_a, overwrite_b, debug, check_finite)

97 return x

98 if info > 0:

---> 99 raise LinAlgError("singular matrix")

100 raise ValueError(’illegal value in %d-th argument of internal gesv|posv’

LinAlgError: singular matrix

What does this mean? How can we fix it?

Moral: We still need to understand the concepts
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Vector Space

Recall that RN := set of all N-vectors

An N-vector x is a tuple of N real numbers:

x = (x1, . . . , xN) where xn ∈ R for each n

We can also write x vertically, like so:

x =


x1
x2
...

xN


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x = (x1, x2)

x1

x2

Figure : Visualization of vector x in R2
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4 2 0 2 4

4

2

0

2

4
(2, 4)

(-3, 3)

(-4, -3.5)

Figure : Three vectors in R2
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The vector of ones will be denoted 1

1 :=

 1
...
1


Vector of zeros will be denoted 0

0 :=

 0
...
0


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Linear Operations

Two fundamental algebraic operations:

1. Vector addition

2. Scalar multiplication

1. Sum of x ∈ RN and y ∈ RN defined by

x + y :=:


x1
x2
...

xN

+


y1
y2
...

yN

 :=


x1 + y1
x2 + y2

...
xN + yN


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Example 1:


1
2
3
4

+


2
4
6
8

 :=


3
6
9
12


Example 2:


1
2
3
4

+


1
1
1
1

 :=


2
3
4
5


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x

y
x + y

Figure : Vector addition
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2. Scalar product of α ∈ R and x ∈ RN defined by

αx = α


x1
x2
...

xN

 :=


αx1
αx2

...
αxN


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Example 1:

0.5


1
2
3
4

 :=


0.5
1.0
1.5
2.0


Example 2:

−1


1
2
3
4

 :=


−1
−2
−3
−4


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x

−2x

Figure : Scalar multiplication
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Subtraction performed element by element, analogous to addition

x− y :=


x1 − y1
x2 − y2

...
xN − yN



Def can be given in terms of addition and scalar multiplication:

x− y := x + (−1)y
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x

y

x− y

Figure : Difference between vectors
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Incidentally, most high level numerical libraries treat vector
addition and scalar multiplication in the same way — elementwise

In [1]: import numpy as np

In [2]: x = np.array((2, 4, 6))

In [3]: y = np.array((10, 10, 10))

In [4]: x + y # Vector addition

Out[4]: array([12, 14, 16])

In [6]: 2 * x # Scalar multiplication

Out[6]: array([ 4, 8, 12])
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A linear combination of vectors x1, . . . , xK in RN is a vector

y =
K

∑
k=1

αkxk = α1x1 + · · ·+ αKxK

where α1, . . . , αK are scalars

Example.

0.5

 6.0
2.0
8.0

+ 3.0

 0
1.0
−1.0

 =

 3.0
4.0
1.0


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Inner Product

The inner product of two vectors x and y in RN is

x′y :=
N

∑
n=1

xnyn

Example: x = (2, 3) and y = (−1, 1) implies that

x′y = 2× (−1) + 3× 1 = 1

Example: x = (1/N)1 and y = (y1, . . . , yN) implies

x′y =
1
N

N

∑
n=1

yn



29/57

Motivation Vector Space Linear Operations Norms and Distance Span Linear Subspaces

In [1]: import numpy as np

In [2]: x = np.array((1, 2, 3, 4))

In [3]: y = np.array((2, 4, 6, 8))

In [6]: np.sum(x * y) # Inner product

Out[6]: 60
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Fact. For any α, β ∈ R and any x, y ∈ RN, the following
statements are true:

1. x′y = y′x
2. (αx)′(βy) = αβ(x′y)
3. x′(y + z) = x′y + x′z

For example, item 2 is true because

(αx)′(βy) =
N

∑
n=1

αxnβyn = αβ
N

∑
n=1

xnyn = αβ(x′y)

Ex. Use above rules to show that (αy + βz)′x = αx′y + βx′z
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The next result is a generalization

Fact. Inner products of linear combinations satisfy(
K

∑
k=1

αkxk

)′( J

∑
j=1

β jyj

)
=

K

∑
k=1

J

∑
j=1

αkβ jx′kyj
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Norms and Distance

The (Euclidean) norm of x ∈ RN is defined as

‖x‖ :=
√

x′x =

(
N

∑
n=1

x2
n

)1/2

Interpretation:

• ‖x‖ represents the “length” of x

• ‖x− y‖ represents distance between x and y
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x = (x1, x2)

x1

x2

Figure : Length of red line =
√

x2
1 + x2

2 =: ‖x‖
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‖x− y‖ represents distance between x and y

x

y

x− y
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Fact. For any α ∈ R and any x, y ∈ RN, the following statements
are true:

1. ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0

2. ‖αx‖ = |α|‖x‖

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

4. |x′y| ≤ ‖x‖‖y‖ (Cauchy-Schwarz inequality)
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For example, let’s show that ‖x‖ = 0 ⇐⇒ x = 0

First let’s assume that ‖x‖ = 0 and show x = 0

Since ‖x‖ = 0 we have ‖x‖2 = 0 and hence ∑N
n=1 x2

n = 0

That is xn = 0 for all n, or, equivalently, x = 0

Next let’s assume that x = 0 and show ‖x‖ = 0

This is immediate from the definition of the norm
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Fact. If x ∈ RN is nonzero, then the solution to the optimization
problem

max
y

x′y subject to y ∈ RN and ‖y‖ = 1

is x̂ := x/‖x‖

x

y1

y2
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Proof: Fix nonzero x ∈ RN

Let x̂ := x/‖x‖ := αx when α := 1/‖x‖
Evidently ‖x̂‖ = 1

Pick any other y ∈ RN satisfying ‖y‖ = 1

The Cauchy-Schwarz inequality yields

y′x ≤ |y′x| ≤ ‖y‖‖x‖ = ‖x‖ = x′x
‖x‖ = x̂′x

Hence x̂ is the maximizer, as claimed
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Span

Let X ⊂ RN be any nonempty set

Set of all possible linear combinations of elements of X is called
the span of X, denoted by span(X)

For finite X := {x1, . . . , xK} the span can be expressed as

span(X) :=

{
all

K

∑
k=1

αkxk such that (α1, . . . , αK) ∈ RK

}

We are mainly interested in the span of finite sets...
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Example

Let’s start with the span of a singleton

Let X = {1} ⊂ R2, where 1 := (1, 1)

The span of X is all vectors of the form

α1 =

(
α
α

)
with α ∈ R

Constitutes a line in the plane that passes through

• the vector 1 (set α = 1)

• the origin 0 (set α = 0)
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−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Figure : The span of 1 := (1, 1) in R2
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Example

Let x1 = (3, 4, 2) and let x2 = (3,−4, 0.4)

By definition, the span is all vectors of the form

y = α

 3
4
2

+ β

 3
−4
0.4

 where α, β ∈ R

It turns out to be a plane that passes through

• the vector x1

• the vector x2

• the origin 0
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0

0

0
x1

x2

0

0

0
x1

x2

Figure : Span of x1, x2
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Fact. If X ⊂ Y, then span(X) ⊂ span(Y)

To see this, pick any nonempty X ⊂ Y ⊂ RN

Letting z ∈ span(X), we have

z =
K

∑
k=1

αkxk for some x1, . . . , xK ∈ X, α1, . . . , αK ∈ R

Since X ⊂ Y, each xk is also in Y, giving us

z =
K

∑
k=1

αkxk for some x1, . . . , xK ∈ Y, α1, . . . , αK ∈ R

Hence z ∈ span(Y)
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Let Y be any subset of RN, and let X := {x1, . . . , xK}

If Y ⊂ span(X), we say that the vectors in X span the set Y

Alternatively, we say that X is a spanning set for Y

A nice situation: Y is large but X is small

=⇒ large set Y “described” by the small number of vectors in X
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Example

Consider the vectors {e1, . . . , eN} ⊂ RN, where

e1 :=


1
0
...
0

 , e2 :=


0
1
...
0

 , · · · , eN :=


0
0
...
1



That is, en has all zeros except for a 1 as the n-th element

Vectors e1, . . . , eN called the canonical basis vectors of RN
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e1 = (1, 0)

e2 = (0, 1)

Figure : Canonical basis vectors in R2
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Fact. The span of {e1, . . . , eN} is equal to all of RN

Proof for N = 2:

Pick any y ∈ R2

We have

y :=
(

y1
y2

)
=

(
y1
0

)
+

(
0
y1

)

= y1

(
1
0

)
+ y2

(
0
1

)
= y1e1 + y2e2

Thus, y ∈ span{e1, e2}
Since y arbitrary, we have shown that span{e1, e2} = R2
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e1 = (1, 0)

e2 = (0, 1)
y = y1e1 + y2e2

Figure : Canonical basis vectors in R2
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Example. Consider the set

P := {(x1, x2, 0) ∈ R3 : x1, x2 ∈ R}

Graphically, P = flat plane in R3, where height coordinate = 0

0

0

0
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Let e1 and e2 be the canonical basis vectors in R3

Claim: span{e1, e2} = P

Proof:

Let x = (x1, x2, 0) be any element of P

We can write x as

x =

 x1
x2
0

 = x1

 1
0
0

+ x2

 0
1
0

 = x1e1 + x2e2

In other words, P ⊂ span{e1, e2}
Conversely (check it) we have span{e1, e2} ⊂ P
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0

0

0

e1

e2

Figure : span{e1, e2} = P
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Linear Subspaces

A nonempty S ⊂ RN called a linear subspace of RN if

x, y ∈ S and α, β ∈ R =⇒ αx + βy ∈ S

In other words, S ⊂ RN is “closed” under vector addition and
scalar multiplication

Note: Sometimes we just say subspace...

Example. RN itself is a linear subspace of RN
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Example

Fix a ∈ RN and let A := {x ∈ RN : a′x = 0}

Fact. The set A is a linear subspace of RN

Proof: Let x, y ∈ A and let α, β ∈ R
We must show that z := αx + βy ∈ A

Equivalently, that a′z = 0

True because

a′z = a′(αx + βy) = αa′x + βa′y = 0 + 0 = 0
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Fact. If Z is a nonempty subset of RN, then span(Z) is a linear
subspace

Proof: If x, y ∈ span(Z), then ∃ vectors zk in Z and scalars γk
and δk such that

x =
K

∑
k=1

γkzk and y =
K

∑
k=1

δkzk

∴ αx =
K

∑
k=1

αγkzk and βy =
K

∑
k=1

βδkzk

∴ αx + βy =
K

∑
k=1

(αγk + βδk)zk

This vector clearly lies in span(Z)
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Fact. If S and S′ are two linear subspaces of RN, then S ∩ S′ is
also a linear subspace of RN.

Proof: Let S and S′ be two linear subspaces of RN

Fix x, y ∈ S ∩ S′ and α, β ∈ R
We claim that z := αx + βy ∈ S ∩ S′

• Since x, y ∈ S and S is a linear subspace we have z ∈ S

• Since x, y ∈ S′ and S′ is a linear subspace we have z ∈ S′

Therefore z ∈ S ∩ S′
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Other examples of linear subspaces

• The singleton {0} in RN

• Lines through the origin in R2 and R3

• Planes through the origin in R3

Ex. Let S be a linear subspace of RN. Show that

1. 0 ∈ S
2. If X ⊂ S, then span(X) ⊂ S
3. span(S) = S
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