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Lecture 25
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Semester 1, 2015
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Announcements

1. This week's lectures will be revision

e Today's lecture is a review of optimization and linear algebra

e Tomorrow will review probability, analysis and dynamics

2. Final practice question set is up on GitHub (set 3)
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Optimization Review

Consider a maximization problem such as

maI;(f(x) where f: D — R
Xe

A maximizer is a point x* € D such that
f(x*) = f(x) ¥xeD
In general,

e there may be one, zero, or many maximizers
e maximizers can be interior or on boundaries

e similar story for minimizers
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Figure : f has a unique maximizer on D = [2, 8]
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Figure : f has a unique minimizer on D = |2, §]
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In these pictures, the maximizer x* is interior

It is also stationary, meaning

flx)=0

For multivariate f, stationarity requires

0

Fre (x) =0 foralli

Intuitively, the function is “flat” at such an x

e zero slope in all directions
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Figure : (0,0) is a stationary point of this f
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Key Idea. For differentiable functions, any interior maximizer or
minimizer must be stationary

Intuition: Suppose that x* is an interior maximizer
Since x* is interior, 3 an e-ball around x* that lies inside D

Thus, we can move a little way in every direction without leaving D

interior
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If this is true and x* is a maximizer, then f must be stationary at
this point

For suppose this isn't true
Then

1. we can find an uphill direction on the graph of f

2. we can move a little way in that direction without leaving D

This contradicts x* being a maximizer over all x € D

Similar story for minimizers
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Example. Let
D :=B4(0) = {x € R?: ||x|| < 4}

and
f(x) = f(x1,x2) = x] — x122 + 433

Claim The point 1:= (1,1) is not a maximizer of f on D
Proof: It suffices to show that 1 is interior and non-stationary
Clearly 1 € D because ||1]| = V12 +12 =12 < 4

Moreover 1 is interior to D because e-balls are open (and so?)

Finally 1 is not stationary because f](x1,x2) = 2x1 — x and hence
i) =fi(L)=2-1=1
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Necessary Conditions

In the setting of smooth functions + interior points, stationarity is
a necessary condition for maxima

e maximizer = stationary

e not stationary = not maximizer
When searching for maximizers, this helps us narrow down
candidates

Any maximizer must be either

1. a stationary point, or

2. non-interior (i.e., on the boundary)
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Example. Consider the problem maxycp f(x) where

flx) =x*—3x° —4x® —x +1, D = [-2,4]

Stationary points are solutions to

433 —9x2 —8x—-1=0

One can solve this cubic (you don't need to) to find zeros at

x1 = —0.153, x; =-0.552, x3=2.96

The only possibilities for maxima are these points and —2,4

Evaluating one at a time shows that f(—2) is the largest
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Figure : The function f(x) = x* —3x3 —4x? —x +1
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Figure : The function f and its derivative f’
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Constrained Optimization Review

In a way, all optimization problems are in some sense constrained
e maxxep f(x) constrains us to search within D

But for economists, “constrained” usually means that

1. there's some additional constraint

2. that constraint is typically binding

Examples.

e a consumer maximizing utility over their budget set

e a firm that produces at minimal cost
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When constraints bind, maxima and minima are not usually
stationary

If we're constrained,

e we can't move freely in every direction

e hence we can’t always exploit a non-zero slope

Hence stationarity is not a necessary condition

We have to look for another one

This leads us to tangency conditions
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Key Idea. When f and g are both differentiable functions on D,
every solution to

mayS )

s.t. g(x1,x2) =0
in the interior of D must satisfy

filxy,x2) — g1(x1,x2)

fox1,x2)  ga(x1,x2)

For if not we can shift along the constraint to a better point
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f increasing

Y,

flxy,x2) =ca>c;

X1,X2) = ¢
not optimal flax) !

g(x1,x2) =0

Figure : Tangency necessary for optimality
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f increasing

Y,

flx1,20) = ¢*
this (x1, x2) achieves tangency

8(x1,%2) =0

Figure : Tangency necessary for optimality
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Example. Consider the problem

max f(x1,x2) = x}/z +x/? st B4 =1
X1,X2

and x; >0 fori=1,2

Setting ¢(x1,x2) = x% + x% — 1, the tangency condition becomes
-1/2 -3/2

X X X

1 _ M . 1

—1/2 = 5. —3/2
X, X2 X,

=1 < X1 = X2

Plugging this back into the constraint x% + x% =1 gives

x; =v1/2, x; =V1/2

This is the only solution and the only candidate for maximizer

20/55



0.6
1

Figure : Maximizer at the tangent

= a0 21755



Existence of Optima Review

Not every function has a maximizer / minimizer
Example. Let A be N x N and indefinite
If Q(x) = x’Ax, then Q has neither a max nor min on RN

To see that no maximizer exists, observe that

Jzc RN st. Q(z) =2ZAz >0

(Otherwise A would be nonpositive definite)

No x € RN can maximize Q because it is dominated, for
sufficiently large n, by

Q(nz) = n*z’Az —
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Even functions on bounded domains can fail to have max / min

Example. Consider maximizing f(x) =1/x on D := (0,1)

No maximizer of f exists in D

Indeed, suppose to the contrary that z € D is a maximizer
Then f(z) > f(x) for all x € (0,1)

Since0 <z <1, we have 0 < z/2 < 1, and hence z/2 € D

But
f(z/2) =

Contradiction
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Key Idea. Continuous functions on closed bounded sets have both
maximizers and minimizers

Consider the problem
T 1 t
max = X
X (2) v

T
s.t. thgl and 0<x, t=1,...,T
t=1

This is a planning problem (similar to the one from lecture 21)

Let's show that a maximizer exists
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Step 1: Let's write the constraint set as
D:={xeR": 1x<1, x>0}

Claim D is closed

Let {x,} be a sequence in D converging to some x € RT

We claim that x € D

Note first that 1'x,, — 1’x
e because x, = x = a'x, — a'x for any a € RT
Since 1'x,, <1 for all n, the same is true for 1'x
e weak inequalities are preserved under limits (see lecture 16)
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It remains to show that x > 0

This also follows from preservation of weak inequalities under limits
Since x,; € D for all n, we have x,, > 0 for all n

Since x = lim,,_, X;;, the same is true for x

In summary, I’x < 1 and x > 0

Hence x € D

We conclude that the limit of any sequence in D also lies in D

Hence D is closed as claimed
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Claim D is bounded

Proof: Recall that D = {x e RT : 1x <1, x > 0}

We need to show that

IMeR st |x||<M, VxeD

This holds with M := +/T because
xeD — 0<x<1,Vt

and hence

T T
Il =Y < | Y1=VvT
t=1 t=1
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To complete the proof of existence, we need to show that
T 1 t
F0) = S0 = 1 (3) Vi
t=1

is continuous on D

We know (lecture 17) that

e /- is a continuous function
e continuous function X scalar = continuous function

e continuous + continuous = continuous

Hence f is a continuous function... and has a maximizer on D
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Aside on Open / Closed Sets

As a rule of thumb,

e if you see strict inequalities, think “open set”
e if you see weak inequalities, think “closed set”

e if you see a mix, think “neither”
Examples.

e (a,b) ={x€R:a< x<b}is open

e B.(a) = {x e RN :|[x—al <€} is open

e [a,b] ={x € R:a < x < b} is closed

e (a,b] ={x € R:a < x < b} is neither

29/55



Uniqueness of Optima Review

Key ldea. For functions defined on a convex set,
e a strictly concave function has at most one maximizer

e a strictly convex function has at most one minimizer

Most of the time, strict concavity / convexity are checked using
derivative conditions

The most important ones are

1. positive definite Hessian == f strictly convex

2. negative definite Hessian = f strictly concave
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Example. Above we showed existence of a maximizer in the
problem

T t
1
max f(x) = ) <2> NED
=1
over D := {XERT : 1’x§1,x20}

Now let's prove uniqueness

This will be established if we can show that

e D is a convex subset of RT

o fx) =Xl (%)t /Xt is strictly concave on D
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Regarding convexity of D, we have already shown (lecture 19) that

e P:={x€RT:x>0} is convex

e Intersections of convex sets are convex
Moreover, D = C N P where

C:={xeRM:1x<1}

Hence it suffices to show that C is convex, or

x,yeECand A€ [0,] = z:=Ax+(1-A)yeC

This follows from 1'x < 1 and 1y < 1, which gives

1Tz=M'x+(1-A)1Ty<A+(1-1)=1
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It remains to show that

is a strictly concave function on D

To see this, note that

P ()2 e
fij = axiaxjf(x) - { (2) Z ]

0 otherwise

Let
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The Hessian matrix of f at x is then

fu(x) - fir(x)

H(x) := : = diag(y1, -

frix) - frr(x)

Hence, for z = (z1,...,z7) # 0 we have

T
Z’H(x)z = Z'ytz% <0
t=1

Hence H(x) is negative definite

~,’YT)

Hence f is strictly concave... and the maximizer is unique
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Linear Algebra / Vector Space Review

We spent a lot of time working with vector space concepts
e span
e independence

e bases

But when we do applications it's almost always with matrices
Why do we need to think about vector spaces?

Answer: Because the concepts are clearer when we strip away
matrix structure, reducing linear operations to their simplest form
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Linear Combinations

RN := the set of N-tuples x = (x1,...,xy) with x, € R
We have two fundamental linear operations that act on vectors

1. scalar multiplication

2. vector addition

Consider a collection of vectors X, ..., xx in RN

We can combine these with operations 1 & 2 to produce new
vectors, such as
y = a1X1] + - - - + agXg

e y is a linear combination of xy, ..., xg
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i i 3 -

y=—-07x; — L1lx,
2t ;
1t B
. . . g . . ,
-3 -2 -1 1 2 3
X2 X1
~1F -
2L =
—3L -

Figure : y is a linear combination of x1,x7
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24 ]
y = —1L1Ix; +0.2x;
1t =
3 = 1 i 2 3
X2 X1
1k -
2L -
—3L -
Figure : y is a linear combination of x1,x7
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X2 X1

y =06x;+ 1LIxy  ~2f -

Figure : y is a linear combination of x1,x7

39/55



X2 X1

y = 1.0x1 + 0.4x2
2k =

Figure : y is a linear combination of x1,x7
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The span of X = {x1,...,xg} is the set of linear combinations we
can form using these vectors

That is, span(X) is all vectors y we can create by varying the

scalars in
yIDC1X1—|—"‘—|—£KKXK

Key Idea. You cannot span RN with less than N vectors

For example, consider the case of R3

e The span of one vector is just a one dimensional line

e The span of two vectors is at most a two dimensional plane
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Figure : The span of {x1} alone is a line
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0

Figure : The span of {x1,x2} is a plane

oA a3/58



Hence we need at least three vectors to span R>
However, even 3 vectors won't span R3 if some don’t contribute

For example, suppose

e we already have {x1,x2}
e we now add another vector x3...

e but x3 lies in the span of {xq,x,}

Then no overall contribution will be made

Hence we fail to span R?
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Figure : Linear dependence — the new vector x3 doesn’t contribute
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Key Idea. A set of vectors is linearly independent when they all
contribute to their span

In particular,

Key Idea. For N vectors to span RN they need to be linearly
independent

That is, for N vectors in RN

span{x,...,xy} =RN =

{x1,...,xn} linearly independent
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Any N linearly independent vectors in RN is called a basis of RN

Key Idea. Every y in RN has exactly one representation as a
linear combination of basis vectors

That is, for any basis {x1,..., XN},
1. Every y in RN can be written as a linear combination

y:lX1X1—|—"'+DCNXN

2. The representation is unique
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Application: Finding Linear Combinations

Consider the following two vectors in IR?

1.2 —22
X=\11)7 27211

Given arbitrar in R2, can we always find scalars aq, & such that
Yy M

y = a1X1 “+ arXo

If so, how can | compute them?
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Xo X1

Figure : Can any y € R? be realized as a linear combination of x;,x?
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By the preceding discussion, if {x1,x,} is linearly independent,
then yes

In particular,

{x1,x2} is linearly independent <= {x1,x2} is a basis of R?

In this case,

Vy € R?, 3 unique pair a3, s.t. y = a1X1 + ax2
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How can we check whether {x1,x2} is linearly independent?

Recall: This will be true iff

1.2 -2.2
01 (_11> + oo (_11> =0 = wa1=a,=0

That is,
1.2&1 = 2.20(2
— =0y =0
—1.1a1 = 1.1y

This is true: If both equations on the left hold then

= —ay and w; = (22/1.2)ay

The only possibility is that a1 = ap =0
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Hence {x1, x>} is a basis of R?

In particular, for any given y € IR?, there is a unique pair of scalars
n1, %o such that
y = &1X1 + &2X2

Remaining question: how to compute aq, a?
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Make a matrix with x; and x; as its columns

12 —22
X:= (—1.1 —1.1)

Given y € R? we seek a1, ap such that y = a1xq + asxa

Equivalently, we see a1,y such that
iy 1.2 —2.2 L5
) \-11 -11 i)

How to solve for (a1, a2)?
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Since X is nonsingular (why?), the solution is
w12 =22\ (i
[4%) o —-11 -1.1 Y2

_ 1 ~1.1 22\ (1
T -132-242\ 1.1 12) \1p2
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The general problem: Solve a system of linear equations
Given square matrix X and vector y, can we find « such that

Xa =y

This is the same problem as finding scalars &; such that

y = a1X] + - - - + ANXN, X; = i-th column of X

If {x1,...,xn} linearly independent, they form a basis of RN, and

1. we can always find such scalars (existence)
2. we only find one such set of scalars (uniqueness)

3. they are equal to X~y
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