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Linear Models Stochastic Dynamics Linear SDEs

Announcements

SELT feedback is live

e Criticism is welcome — constructive preferred

More solved practice questions coming next week

Simulations
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Linear Models

Linear Models
When studying economic systems we often use linear models

e more correctly, affine models — see below

The advantage of linear systems
e Simple dynamics

The disadvantage of linear systems
e Simple dynamics

Ideal if they can replicate the phenomenon you wish to study

Often used as a building block for more complex models
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Linear Models

A generic (deterministic) linear model on RN takes the form

xt+1 = Ax; +b

where

e x; is N x 1, a vector of “state” variables
e Ais N X N, bis N x 1, contain parameters
e A dynamical system (RV, g) with g(x) = Ax+b

e Despite the terminology, g is actually affine

When N =1 this becomes

X¢y1 = axs + b
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Linear Models Stochastic Dynamics Linear SDEs Simulations

Example. A simple linear macroeconomic model might look like

Tl41 = A1170 + arniy + a3y + by
i1 = A1 7T + a2iy + axsy: + by

Yi+1 = 317 + aziy + aszy: + b3

where

e 77 is inflation
e i is the interest rate

e Y is an “output gap”
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Linear Models

In general we know that for any (S, ) we have x; = ¢f(xo)

For linear systems we can write this out explicitly:
xx=Ax;_1+b
=A(Ax;_2+b)+b
= A’ +Ab+Db
= A*(Ax;_3+b)+Ab+b

= A%;_3+A’b+Ab+b
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Linear Models

More generally,

x=Ax_j+A " '"b+A b+ -+ Ab+Db

Setting j =t

xt = Alxg+ A""'b+A"?b+.--+Ab+Db

In short,
t—1
gt(xo) = Alxp + Z A'b
i=0
In the scalar case this is
t=1
gt(xo) =alxg+0b Z at
i=0
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Linear Models

Stability of Linear Models

Let's consider existence / uniqueness / stability of steady states of
linear systems

In particular we study properties of the dynamical system (RY,¢)
with
g(x) =Ax+Db

Even existence of a steady state is not guaranteed — consider
X1 =x+1

It turns out that existence / uniqueness / stability etc. all depend
on the spectral radius of A
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Linear Models

Fact. If p(A) < 1, then (RV, g) is globally stable, with unique
steady state

x" = ZAib
i=0
Proof: A steady state is a solution to x = Ax+ b, or
(I-A)x=b (%)
Recall that p(A) < 1 implies ||A¥|| < 1 for some k € N

By the Neumann series lemma, (%) has the unique solution

I-A)"'b=)Y AD
i=0
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Linear Models
It remains to show that

t—1 00
x; = Alxg + ZAlb — ZAZb =: x"
i=0 i=0

By definition, we have Zf;é Ab = Y2 Ab =x*

Hence if Afxg — 0, then
=1
Xt = Atx0+ZAlb —-0+x" =x"
i=0
To see that Afxg — 0, note (see the rules for matrix norms) that

1A"x0 — 0[] = [|A"xo]| < [[A"][ Ixoll — 0
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Linear Models

How exactly do we show that ||Af]| ||xo]] — 0 as t — oo?

Since p(A) < 1, there exists a k € N with ||A¥|| <1
For any t we can write t = nk + j for some j € {0,...,k—1}

Using the submultiplicative property of the matrix norm, we have

IAT]| = A = [|A™AT|| < [|A™] | A/

Let L := maxop<j<k—1 ||A]||

We then have
|Af]] < LI|A™|| < L||AY|"

Now observe that t — co means 1 — oo, and ||AK|| < 1
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Linear Models

There's another way we can show Afxg — 0 if A is diagonalizable

Recall this means that we can write A = PDP~! where

D = diag(Ay,...,AN), An = n-th eigenvalue of A

Recall further that A = PD!P~!

That is,
)\5 o --- 0
t
Al_p 0 )‘2 0 o
o 0 --- )\5\]

Since p(A) < 1 we have |A,| <1 for all n

Hence Af — 0
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Linear Models

Stochastic Dynamics Linear SDEs Simulations

Example. Let
0.6 —-07 0

A= (0.6 0.65) b= (O)
In [1]: import numpy as np
In [2]: from scipy.linalg import eig
In [3]: A = np.asarray([[0.6, -0.7], [0.6, 0.65] 1)
In [4]: evals, evecs = eig(A)
In [5]: evals
Out[5]: array([0.625+0.64759169j, 0.625-0.64759169j1)
In [6]: np.abs(evals)
Out[6]: array([0.9, 0.9]) # Implies globally stable
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Figure : Convergence towards the origin for x;11 = Ax;
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Stochastic Dynamics

Stochastic Dynamics

Now it's time to add shocks to our model

As discussed earlier, the data in econ / finance tends to be “noisy’
relative to models

e humans are hard to model...

Thus, adding shocks / noise to our models brings them closer to
the data

e Prepares us to estimate our models

e Allows us to include patterns observed in the noise
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Stochastic Dynamics

Martingales

Stochastic models are often pieced together from simpler random
components, such as IID sequences

Another such building block is martingales

A sequence of random vectors {w;}:° is called a martingale if,

vt Z 1/ E [wt—‘rl ’ Wi, We_1,.. -rwl] = Wi

For the rest of this lecture we use the abbreviated notation
E¢-]:=E[: | wwWiq,..., Wq]
so that the definition of a martingale becomes

E¢[wii1] = w forall ¢
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Stochastic Dynamics

Example. A player’'s wealth over a sequence of fair gambles follows
a martingale

In particular, let w; be wealth at time ¢, where
t
Wr = ZCi, {&} is D with E [&] =0, V¢
i=1
Then

Et{wi1] = BEi[ws + Gr1] = Efws] + E 4[]

The martingale property now follows:

o E|[w;] = w; because w; is known at ¢

o E[¢t+1] = E[r41] = 0 by independence, zero mean of i1
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Linear Models Stochastic Dynamics Linear SDEs Simulations

A sequence {w;}°, is called a martingale difference sequence
(MDS) if
E[Wii1] =0

for all t
Example. If {v;} is a martingale then the first difference
Wi i=V;— Vi
is a MDS because, for any f,
E{Wii1] = E[vir — vy

= Et[vt—l—l] —Et[Vt] =V —Vy = 0
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Stochastic Dynamics

Example. Suppose that {w;} is 11D with E [w;] = 0
Then {w;} is an MDS

To see this observe that, by independence,
E¢[wi1] = E[wpq] forall ¢

The conclusion follows

In fact a MDS is a generalization of the idea of a zero mean 11D
sequence

Often used in economics / finance / econometrics

o Nicely represents the idea of “unpredictable” sequence

e A more natural assumption than independence...?
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Stochastic Dynamics

Fact. If {w;} is a MDS, then E [w;] = 0 for all ¢

Proof: By the law of iterated expectations,

Ew]=E[E; 1[w]] =E[0] =0
Fact. If {w;} is a martingale difference sequence, then
E [wsw;] =0 whenever s #t
We say that w; and w; are orthogonal

Proof: Supposing without loss of generality that s < ¢, we have

E [wswi] = E[B1[wswi]] = E [wE 1 [wi]] = E[0] =0
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Stochastic Dynamics

As an aside the term “orthogonal” is often used to indicate lack of
correlation

To see the connection, let's suppose that {w;} is a scalar MDS

We know from the previous slide that
o E[w] =0 and

o E [wsw;] = 0 when s # t (orthogonality)

It follows that

cov|ws, wi] = E [(ws — E [ws]) (wy — E [wy])] = E [wsw] =0

Hence orthogonal = zero correlation
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Linear Models Stochastic Dynamics Linear SDEs Simulations
Now consider the linear stochastic difference equation

Xt = AXt +b+ CWt+1

We assume that
1. AisNxNandbis Nx1
2. {w;}is M x 1, an MDS with E;[w;w;_ ;] = I for all £
3. Cis an N X M matrix called the volatility matrix
4. xq is given

Note: 2 implies that IE [w;w}| = I for any t because, by the law of
iterated expectations,

E [wiw]] = B[Ei[ww]]] = E[I] = I
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Linear SDEs

Example. A simple linear macroeconomic model might look like

T41 = A1 70 + anpip + a3y + by + crupp
ip41 = A1 7T + A0l + A3y + by + 2041

Yir1 = 3170 + azpiy + aszy + bz + c3wiq

where

7T is inflation

1 is the interest rate

e Y is an “output gap”

u, v and w are shocks
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Linear SDEs

Scalar Models

If we specialize to N = 1 then we get the scalar model

Xp41 = axy + b+ cwpyq (1)

Let's look at some time series simulated on a computer

In each case we

11D

1. assume that {w;} ~ N(0,1)
2. draw {wy,...,wr} using a random number generator
3. fix Xp = 1

4. update x; via (1) until t =T
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Linear Models

Stochastic Dynamics

Linear SDEs Simulations

import numpy as np
import matplotlib.pyplot as plt

100
.5

o o A
o
O = O

W
X
x[0] =1
for t in

x[t+1
plt.plot(
plt.show(

# Length of time series

# Parameter
# Parameter
# Parameter

np.random.randn(T)
np.empty (T)

range(T-1):

# T indep. standard normals
# Allocate memory
# Inttial condition

] =ax*x[t] + b+ c * wlt+1]

x)
)
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Linear Models

Stochastic Dynamics

Linear SDEs

Simulations

Figure : Linear Gaussian time series, xo =1,a=05,b=0,c =1

Q>
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Stochastic Dynamics Linear SDEs
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Figure : A longer time series, same parameters

Simulations
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Simulations

Remarks:

The time series {x;} does not converge to a constant

® Xpp1 = ax; +b+cwiq
e since ¢ # 0, each x; is disturbed by a shock

Neither does it diverge to +00 or —oo
e in this case |a| < 1, which leads to a kind of stability

We investigate these ideas in detail through the lecture

For starters let's see what happens when ¢ gets small
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Figure : xo=1,a=05,b=0,c=0.8

o & = = = Al 29/40
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Figure : xo=1,a=05,b=0,c=04
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Xt

Figure : xo=1,a=05,b=0,c=0.1
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Summary: Lower ¢ means less volatility in the time series

e Hence c is often called the “volatility parameter”

Intuition: As ¢ gets small, the model
Xp41 = axy + b+ CWti1
becomes “more similar” to

Xtr1 = axg +0b

In the latter case, when |a| < 1, this series converges

Simulations
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Simulations

What about if |a| < 1 does not hold?
In this case the time series tends to diverge

A property of some time series

e population (sometimes)
e GDP in developed countries
e value of a portfolio with compounded interest

e inflation during a hyperinflation
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Figure : xo=1,a=11,b=0,c=0.1
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Figure : For comparison: US GDP per capita
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Simulations

For other kinds of time series, no divergence is observed

The assumption |a| < 1 is more reasonable

e returns on assets / portfolios
e GDP growth

e interest, inflation, unemployment rates

This is the “stationary” case

e terminology defined more formally later
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Figure : Growth rates are often stationary
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Simulations

Consider again the stationary case |a| < 1

The particular value a is still important as it governs the level of
persistence

In the extreme case where a = 0, the {x;} process is 11D
Xip1 = ax; + b+ cwp = b+ cwpyq

{x:} = N(b,?)

On the other hand, as |a| gets close to 1, we see

e strong persistence / correlation

e long deviations from “average” values
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|
41 =
2k
0 1
t

Figure : xo=1,a=095,b=0,c=05
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Figure : The same model but with a = 0.75
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