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Announcements

SELT feedback is live

• Criticism is welcome — constructive preferred

More solved practice questions coming next week
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Linear Models

When studying economic systems we often use linear models

• more correctly, affine models — see below

The advantage of linear systems

• Simple dynamics

The disadvantage of linear systems

• Simple dynamics

Ideal if they can replicate the phenomenon you wish to study

Often used as a building block for more complex models
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A generic (deterministic) linear model on RN takes the form

xt+1 = Axt + b

where

• xt is N × 1, a vector of “state” variables

• A is N × N, b is N × 1, contain parameters

• A dynamical system (RN , g) with g(x) = Ax + b

• Despite the terminology, g is actually affine

When N = 1 this becomes

xt+1 = axt + b
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Example. A simple linear macroeconomic model might look like

πt+1 = a11πt + a12it + a13yt + b1

it+1 = a21πt + a22it + a23yt + b2

yt+1 = a31πt + a32it + a33yt + b3

where

• π is inflation

• i is the interest rate

• y is an “output gap”
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In general we know that for any (S, g) we have xt = gt(x0)

For linear systems we can write this out explicitly:

xt = Axt−1 + b

= A(Axt−2 + b) + b

= A2xt−2 + Ab + b

= A2(Axt−3 + b) + Ab + b

= A3xt−3 + A2b + Ab + b

= · · ·
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More generally,

xt = Ajxt−j + Aj−1b + Aj−2b + · · ·+ Ab + b

Setting j = t

xt = Atx0 + At−1b + At−2b + · · ·+ Ab + b

In short,

gt(x0) = Atx0 +
t−1

∑
i=0

Aib

In the scalar case this is

gt(x0) = atx0 + b
t−1

∑
i=0

ai
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Stability of Linear Models

Let’s consider existence / uniqueness / stability of steady states of
linear systems

In particular we study properties of the dynamical system (RN , g)
with

g(x) = Ax + b

Even existence of a steady state is not guaranteed — consider

xt+1 = xt + 1

It turns out that existence / uniqueness / stability etc. all depend
on the spectral radius of A
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Fact. If ρ(A) < 1, then (RN , g) is globally stable, with unique
steady state

x∗ =
∞

∑
i=0

Aib

Proof: A steady state is a solution to x = Ax + b, or

(I − A)x = b (?)

Recall that ρ(A) < 1 implies ‖Ak‖ < 1 for some k ∈ N

By the Neumann series lemma, (?) has the unique solution

(I − A)−1b =
∞

∑
i=0

Aib



10/40

Linear Models Stochastic Dynamics Linear SDEs Simulations

It remains to show that

xt = Atx0 +
t−1

∑
i=0

Aib →
∞

∑
i=0

Aib =: x∗

By definition, we have ∑t−1
i=0 Aib → ∑∞

i=0 Aib = x∗

Hence if Atx0 → 0, then

xt = Atx0 +
t−1

∑
i=0

Aib → 0 + x∗ = x∗

To see that Atx0 → 0, note (see the rules for matrix norms) that

‖Atx0 − 0‖ = ‖Atx0‖ ≤ ‖At‖ ‖x0‖ → 0
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How exactly do we show that ‖At‖ ‖x0‖ → 0 as t → ∞?

Since ρ(A) < 1, there exists a k ∈ N with ‖Ak‖ < 1

For any t we can write t = nk + j for some j ∈ {0, . . . , k − 1}

Using the submultiplicative property of the matrix norm, we have

‖At‖ = ‖Ank+j‖ = ‖AnkAj‖ ≤ ‖Ank‖ ‖Aj‖

Let L := max0≤j≤k−1 ‖Aj‖

We then have
‖At‖ ≤ L‖Ank‖ ≤ L‖Ak‖n

Now observe that t → ∞ means n → ∞, and ‖Ak‖ < 1
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There’s another way we can show Atx0 → 0 if A is diagonalizable

Recall this means that we can write A = PDP−1 where

D = diag(λ1, . . . , λN), λn = n-th eigenvalue of A

Recall further that At = PDtP−1

That is,

At = P


λt

1 0 · · · 0
0 λt

2 · · · 0
...

...
...

0 0 · · · λt
N

 P−1

Since ρ(A) < 1 we have |λn| < 1 for all n

Hence At → 0
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Example. Let

A =

(
0.6 −0.7
0.6 0.65

)
b =

(
0
0

)

In [1]: import numpy as np

In [2]: from scipy.linalg import eig

In [3]: A = np.asarray([[0.6, -0.7], [0.6, 0.65] ])

In [4]: evals, evecs = eig(A)

In [5]: evals

Out[5]: array([0.625+0.64759169j, 0.625-0.64759169j])

In [6]: np.abs(evals)

Out[6]: array([0.9, 0.9]) # Implies globally stable
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Figure : Convergence towards the origin for xt+1 = Axt
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Stochastic Dynamics

Now it’s time to add shocks to our model

As discussed earlier, the data in econ / finance tends to be “noisy”
relative to models

• humans are hard to model...

Thus, adding shocks / noise to our models brings them closer to
the data

• Prepares us to estimate our models

• Allows us to include patterns observed in the noise
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Martingales

Stochastic models are often pieced together from simpler random
components, such as iid sequences

Another such building block is martingales

A sequence of random vectors {wt}∞
t=1 is called a martingale if,

∀t ≥ 1, E [wt+1 | wt, wt−1, . . . , w1] = wt

For the rest of this lecture we use the abbreviated notation

E t[ · ] := E [ · | wt, wt−1, . . . , w1]

so that the definition of a martingale becomes

E t[wt+1] = wt for all t
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Example. A player’s wealth over a sequence of fair gambles follows
a martingale

In particular, let wt be wealth at time t, where

wt =
t

∑
i=1

ξi, {ξt} is iid with E [ξt] = 0, ∀ t

Then

E t[wt+1] = E t[wt + ξt+1] = E t[wt] +E t[ξt+1]

The martingale property now follows:

• E t[wt] = wt because wt is known at t

• E t[ξt+1] = E [ξt+1] = 0 by independence, zero mean of ξt+1
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A sequence {wt}∞
t=1 is called a martingale difference sequence

(MDS) if
E t[wt+1] = 0

for all t

Example. If {vt} is a martingale then the first difference

wt := vt − vt−1

is a MDS because, for any t,

E t[wt+1] = E t[vt+1 − vt]

= E t[vt+1]−E t[vt] = vt − vt = 0
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Example. Suppose that {wt} is iid with E [wt] = 0

Then {wt} is an MDS

To see this observe that, by independence,

E t[wt+1] = E [wt+1] for all t

The conclusion follows

In fact a MDS is a generalization of the idea of a zero mean iid
sequence

Often used in economics / finance / econometrics

• Nicely represents the idea of “unpredictable” sequence

• A more natural assumption than independence...?
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Fact. If {wt} is a MDS, then E [wt] = 0 for all t

Proof: By the law of iterated expectations,

E [wt] = E [E t−1[wt]] = E [0] = 0

Fact. If {wt} is a martingale difference sequence, then

E [wsw′
t] = 0 whenever s 6= t

We say that ws and wt are orthogonal

Proof: Supposing without loss of generality that s < t, we have

E [wsw′
t] = E [E t−1[wsw′

t]] = E [wsE t−1[w′
t]] = E [0] = 0
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As an aside the term “orthogonal” is often used to indicate lack of
correlation

To see the connection, let’s suppose that {wt} is a scalar MDS

We know from the previous slide that

• E [wt] = 0 and

• E [wswt] = 0 when s 6= t (orthogonality)

It follows that

cov[ws, wt] = E [(ws −E [ws])(wt −E [wt])] = E [wswt] = 0

Hence orthogonal =⇒ zero correlation
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Now consider the linear stochastic difference equation

xt+1 = Axt + b + Cwt+1

We assume that

1. A is N × N and b is N × 1

2. {wt} is M × 1, an MDS with E t[wt+1w′
t+1] = I for all t

3. C is an N × M matrix called the volatility matrix

4. x0 is given

Note: 2 implies that E [wtw′
t] = I for any t because, by the law of

iterated expectations,

E [wtw′
t] = E [E t−1[wtw′

t]] = E [I] = I
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Example. A simple linear macroeconomic model might look like

πt+1 = a11πt + a12it + a13yt + b1 + c1ut+1

it+1 = a21πt + a22it + a23yt + b2 + c2vt+1

yt+1 = a31πt + a32it + a33yt + b3 + c3wt+1

where

• π is inflation

• i is the interest rate

• y is an “output gap”

• u, v and w are shocks
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Scalar Models

If we specialize to N = 1 then we get the scalar model

xt+1 = axt + b + cwt+1 (1)

Let’s look at some time series simulated on a computer

In each case we

1. assume that {wt}
iid∼ N(0, 1)

2. draw {w1, . . . , wT} using a random number generator

3. fix x0 = 1

4. update xt via (1) until t = T
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import numpy as np

import matplotlib.pyplot as plt

T = 100 # Length of time series

a = 0.5 # Parameter

c = 1 # Parameter

b = 0 # Parameter

w = np.random.randn(T) # T indep. standard normals

x = np.empty(T) # Allocate memory

x[0] = 1 # Initial condition

for t in range(T-1):

x[t+1] = a * x[t] + b + c * w[t+1]

plt.plot(x)

plt.show()
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Figure : Linear Gaussian time series, x0 = 1, a = 0.5, b = 0, c = 1
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Figure : A longer time series, same parameters
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Remarks:

The time series {xt} does not converge to a constant

• xt+1 = axt + b + cwt+1

• since c 6= 0, each xt is disturbed by a shock

Neither does it diverge to +∞ or −∞

• in this case |a| < 1, which leads to a kind of stability

We investigate these ideas in detail through the lecture

For starters let’s see what happens when c gets small
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Figure : x0 = 1, a = 0.5, b = 0, c = 0.8
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Figure : x0 = 1, a = 0.5, b = 0, c = 0.4
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Figure : x0 = 1, a = 0.5, b = 0, c = 0.1
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Summary: Lower c means less volatility in the time series

• Hence c is often called the “volatility parameter”

Intuition: As c gets small, the model

xt+1 = axt + b + cwt+1

becomes “more similar” to

xt+1 = axt + b

In the latter case, when |a| < 1, this series converges
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What about if |a| < 1 does not hold?

In this case the time series tends to diverge

A property of some time series

• population (sometimes)

• GDP in developed countries

• value of a portfolio with compounded interest

• inflation during a hyperinflation



34/40

Linear Models Stochastic Dynamics Linear SDEs Simulations

0 100

t

0

2000

4000

6000

8000

10000

12000

14000

16000

x t

xt

Figure : x0 = 1, a = 1.1, b = 0, c = 0.1
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Figure : For comparison: US GDP per capita
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For other kinds of time series, no divergence is observed

The assumption |a| < 1 is more reasonable

• returns on assets / portfolios

• GDP growth

• interest, inflation, unemployment rates

This is the “stationary” case

• terminology defined more formally later
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Figure : Growth rates are often stationary
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Consider again the stationary case |a| < 1

The particular value a is still important as it governs the level of
persistence

In the extreme case where a = 0, the {xt} process is iid

xt+1 = axt + b + cwt+1 = b + cwt+1

∴ {xt}
iid∼ N(b, c2)

On the other hand, as |a| gets close to 1, we see

• strong persistence / correlation

• long deviations from “average” values
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Figure : x0 = 1, a = 0.95, b = 0, c = 0.5
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Figure : The same model but with a = 0.75
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