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Introduction

In this lecture we continue to study nonlinear equations

e Which problems have solutions?
e When do we have uniqueness?
e How can we compute solutions?

e How can we apply these ideas?

We will study these problems from the perspective of fixed point
theory

e An important branch of analysis
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Fixed Points

Fixed Points

Let T: S — S where S ¢ RX

e The function T is a “self-mapping” because it maps S to S

o We write Tx instead of T(x) below
A point x* € § is called a fixed point of T if
Tx* = x*
Related to

e optimization because x* solves minyes || Tx — x|

e zeros because x* solves H(x) = 0 for H(x) := Tx — x
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Fixed Points

Example. If f: R — R is the identity f(x) = x, then every x € R
is a fixed point

Example. If f: R — R is defined by f(x) = x+1, then nox € R
is a fixed point

Example. Let f: [0,1] — [0, 1] be defined by
F(x) = 4x(1 - )

Then x = 2 is a fixed point of f because

/(-6
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Fixed Points

Contractions
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Fixed Points

Brouwer’s Fixed Point Theorem

Fact. If S ¢ RK is closed, bounded and convex and T: S — S is
continuous, then T has at least one fixed point in S

Proof for case S = [0, 1]

Let

e T be a continuous function from [0,1] to [0, 1]

o f(x):=x—Tx
Ex. Show that f is continuous on [0,1] and f(0) <0 < f(1)

Result now follows from the Intermediate Value Theorem

General proof: Quite long, omitted
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Figure : Brouwer fixed point theorem in one dimension

7/25



Fixed Points Contractions Equivalent Norms

10p l

- Tx

— 45 degree line

081 -

02+ -

Figure : When continuity fails the theorem does not apply
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Contractions

Contractions

Like the Intermediate Value Theorem, Brouwer's fixed point
theorem can give us existence

But do we have uniqueness?

Uniqueness is important in practice

e “My model predicts this...”
e or this...
e or this...

Also important is finding that fixed point

Let's look at a method that makes strong assumptions but gives us
uniqueness and a way to find the fixed point
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- Fixed Points ~ Contractions  Equivalent Norms
Let SCRKandlet T: S — S

T is called a contraction mapping on S if
dp<1 st

ITx =Tyl < Bllx -yl

forall x,yeS

oAt 10728



Contractions

Example. Let T: R — R be defined by
Tx =ax+b

where a and b are parameters

For any x,y € R we have

|Tx — Ty| = |[ax +b — ay — b|

= |ax — ay|
= la(x —y)]
= |a|[x —y|

Hence |a| <1 == T is a contraction mapping on R
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Contractions

Fact. If T is a contraction mapping on S then T is continuous on S

Proof: Pick

eanyx€eS
e any sequence {x;} with x,, — x
Since T is a contraction on S, we can find a f < 1 with
| Tx, — Tx|| < Bllxn —x|| VneN

Since ||x, — x|| — 0 we see that ||Tx, — Tx|| = 0

Hence Tx,, — Tx, and T is continuous as claimed
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Fixed Points Contractions Equivalent Norms

Banach Contraction Mapping Theorem

Fact. If S is closed and T is a contraction mapping on S then

1. T has a unique fixed point X € S

2. T"x X asn —ocoforanyx € S

Proof of uniqueness: Suppose that x,y € S with
Ix=x and Ty=y

Then
[x =yl = [ITx—=Ty| < Bllx -yl

Since B < 1, it must be that ||[x —y|| =0, and hence x =y
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Contractions

Sketch of existence proof: Fix x € S and let
d:=|Tx — x|
It can be shown that || T"*!x — T"x|| < B"d for all n
d < pd < pg%d < pd

/_/H/_/R/_/R/_/\
X Tx T2x T3x T*x

One can then show that {x,} := {T"x} is Cauchy
The Cauchy property implies convergence to some X € S

It can then be shown that X is a fixed point
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Fixed Points Contractions Equivalent Norms

By the way, why does S need to be closed?

An example of failure when S is not closed:

Tx=x/2 and S = (0,00)
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Contractions

Example. Recall: If b € RN and A is N x N with ||A|| < 1 then
x = Ax + b has a unique solution

e this is part of the Neumann series lemma

One proof: Define T: RN — RN by Tx = Ax+b
A fixed point of T <= a solution of x = Ax+ b

For any x and y in RN we have
ITx = Ty|| = || Ax — Ay||
= [[Ax=y)
< [|AflfPx =yl

A contraction on RN with B := ||A||

16/25



Contractions

Comments on lteration

Suppose that

e T is a contraction mapping on closed set S

e X is the unique fixed point

We know that for any x € S we have T"x — X

This means that we can compute the fixed point “iteratively”

1. Pickanyx € S
2. Lety =Tx
3. Set x =y and go to step 2

This generates the sequence x, Tx, T2x, ...
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Application: Job Search Again

Let's apply these ideas to solving the the McCall job search model

We seek a @ that solves the reservation wage equation
K
@ =c(1—pB)+pB ) max{w, ©} px (%)
k=1

Here c >0, B € (0,1) and py, ..., px is a pmf

Note that @ solves (%) if and only if it is a fixed point of
K
Tx =c(1—p)+p Y max{wy, x} px
k=1

Ex. Check it
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Contractions

Claim: The operator T defined by

K

Tx =c(1—B)+p Y max{wy, x} px

k=1

is a contraction mapping on S := [0, )

To check this we'll use two facts:

Fact. If xq,...,xk are any K numbers, then ‘2{;1 xk‘ <YK
e Any extension of the triangle inequality to K numbers

Fact. For any a,x,y in R, |max{a, x} —max{a, y}| < |x —y|
e Draw a picture, check the different possibilities
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Contractions

Proof: For any x,iy € S, we have

K K
Tx —Ty| = |ﬁ Y max{wy, x} pi — B Yy max{w, v} pe
k=1 k=1

=p

K
Y [max {wy, x} — max {wy, y}] pr
k=1
K
< B Y jmax{wy, x} — max {wy, y}| px
k=1

K
<BY |x—ylpr=Blx—y
k=1

Since B < 1, we see that T is indeed a contraction on S

20/25



Fixed Points Contractions Equivalent Norms
Equivalent Norms
Recall that ||x — y|| is a measure of “distance” between x and y
e called the Euclidean distance between x and y

There are other notions of distance that are also useful

This leads us to introduce the family of p-norms

K Vp
x|l := <Z|xk|p> if 1<p<oo
k=1

and

Il 1= max |

If p = 2 then this is the Euclidean norm

21/25



Equivalent Norms

Let p € [1,00] and let {x,,} be a sequence in R¥

We say that x, — x in p-norm if

|xp =x[|[, 0 as n— o0

If p = 2 this is ordinary Euclidean convergence
The next fact generalizes an earlier result about Euclidean distance

Fact. A sequence in RX converges in p-norm <= each
component sequence converges in R

That is, for any p € [1,00] and sequence {x;} we have

[x: —x|[, =0 <= |ewxy —elx| = 0in R for all k
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Equivalent Norms

We give the proof for p < o0 and leave p = oo as an Ex.
Proof:

(=) Suppose first that ||x, —x|[, = 0

Then, fixing any kin 1,...,K, we have

lefoxn — efx| =[x — x| < |xn — x|, = 0

Ex. Confirm the inequality in the last expression
( <= ) Suppose instead that |xk — x¥| — 0 for all k

Then |xk — x¥|P — 0 for all k by continuity of g(x) = x?

zy = |xp — XM 4 [ = 2K S0
%0 — x|, = 22/ =0
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Equivalent Norms

There is an important implication of this result

Fact. For any p € [1,00] and any sequence {x,},

X; — X in p-norm <= X, — X in Euclidean norm

Proof: Fix p € [1,00] and sequence {x,}
We have

Xy — X in p-norm <— every component sequence converges

<= X;; — x in Euclidean norm

24/25



Equivalent Norms

Here's a nice example of why p-norms are important

Fact. The conclusions of the Banach contraction mapping theorem
continue to hold if T is a contraction with respect to any p-norm

Thus, if S is closed and there exists a p € [1,00] and B < 1 with

ITx = Tyllp < Bllx =yl
for all x,y € S, then

1. T has a unique fixed point x € S

2. T"x - X asn —ocoforanyx € S

Implication: When we try to show the contraction property, we can
pick the most convenient p to work with
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