Real Numbers Neighborhoods Sequences Properties of Limits Infinite Sums

ECON2125/4021/8013

Lecture 16

John Stachurski

Semester 1, 2015

Cauchy Sequences

1/43



Real Numbers Neighborhoods Sequences Properties of Limits Infinite Sums

Analysis on the Line

Recall that R denotes the continuous real line

Can be thought of as Q U T where
e () is the rational numbers

e I is the irrational numbers

Cauchy Sequences
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Real Numbers

Facts

e Between any two real numbers a < b there exists a rational
number

e Between any two real numbers a < b there exists an irrational
number

Thus, the rationals and irrationals are “all mixed together”
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If x € R then |x| := max{x, —x} called its absolute value

=3 =2 =1 . 1 2 3

S -2t -

e —  f(a)=|a|

. : ~3L : T :
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Fact. For any x,y € R, the following statements hold

1. [x| <yifand only if -y <x <y
2. |x| <yifandonly if -y <x <y
3. |x| =0if and only if x =0
x| = Ixlly|

x Ayl < x =+ y]

(G2 N

Last inequality is called the triangle inequality

Ex. Using these rules, show that if x,y,z € R, then

Lo =yl < [x[+1y|
2. x—y|<|x—z|+|z—y| (Hintt x—y=x—z+2z—1y)
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Bounded sets

A C Ris called bounded if 3IM € Rs.t. x| <M, allx € A
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Example. Every finite subset A of R is bounded

Set M := max{|a| :a € A}

Example. N is unbounded

For any M € R there is an n that exceeds it

Example. (a,b) is bounded for any a,b
Each x € (a,b) satisfies |x| < M := max{|a|, |b|}

Ex. Check it
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Neighborhoods
Fact. If A and B are bounded sets then so is A U B

Proof: Let A and B be bounded sets and let C:= AUB
By definition, 3 M4 and Mg with

la| < My, alla € A, |b| < Mg, allbeB
Let M¢ := max{My, Mp} and fix any x € C
xe€C = x€Aorx€eB
x| <My or [x| < Mg
x| < Mc
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e-balls

Given € > 0 and a € R, the e-ball around a is

Be(a):={xeR:|a—x| <e}

Equivalently,

Be(a) ={xeR:a—e<x<a+e}

T~
~

Ex. Check equivalence

Cauchy Sequences
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Neighborhoods

Fact. If x is in every e-ball around a then x =a

Proof:

Suppose to the contrary that
e x is in every e-ball around a and yet x # a

Since x is not 4 we must have |x —a| > 0
Set € := |x —a

Since € > 0, we have x € B¢(a)

This means that [x —a| < €

That is, |x —a| < |x — a| — contradiction
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Neighborhoods

Fact. If a # b, then 3 € > 0 s.t. Be(a) and B(b) are disjoint

Be(ﬂ) Be(b)

~
~
—~
~

Proof: Let a,b € R with a # b
If we set € := |a — b|/2, then Be(a) and Be(D) are disjoint
To see this, suppose to the contrary that 3x € B.(a) N Be(B)
Then |x —a| < |a—b|/2 and |x —b| < |a—1D|/2
But then
la—b| <|la—x|+|x—b <|a—0b|/24 |a—b|/2=|a—Db|

Contradiction
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Sequences

A sequence is a function from N to R

e to each n € IN we associate one x,; € R
Typically written as {x,}5 ; or {x,} or {x1,x2,x3,...}

Examples.
o {x,} ={2,46,...}
o {x,} ={1,1/2,1/4,...}
o {x,}=1{1,-1,1,-1,...}
o {x,}=1{0,00,...}
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Sequence {x,} is called

e bounded if {x1,x7,...} is a bounded set
e monotone increasing if x,,.1 > x;, for all n
e monotone decreasing if x,,.1 < x;, for all n

e monotone if it is either monotone increasing or monotone
decreasing

Examples.

e x, = 1/n is monotone decreasing, bounded
e x, = (—1)" is not monotone but is bounded
e X, = 2n is monotone increasing but not bounded
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Convergence

Let 2 € R and let {x,} be a sequence

Suppose, for any € > 0, we can find an N € N with

Xy € Be(a) foralln > N

Then {x,} is said to converge to a

Convergence to a in symbols,

Ve>0, ANEN st.n >N = x, € Be(a)

“{x,} is eventually in any e-ball around a"
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Infinite Sums

The sequence {x,} is eventually in this e-ball around a

a+ef

Cauchy Sequences
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...and this one

e o Xy
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Real Numbers

...and this

a+e
a
a—e€

Neighborhoods

Sequences Properties of Limits Infinite Sums Cauchy Sequences

one
e o X,
— a

L]
.
L]
° L]
,,,,,,,, 2',';;..'r.
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...and this one

e o Xy

®900c00000c000000000006
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The point a is called the limit of the sequence, and we write
Xy —a as mn—» o0

or

Iim x,, = a
n—oo

We call {x,} convergent if it converges to some limit in R
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Sequences

Example. {x,} defined by x, =1+ 1/n converges to 1

To prove this must show that Ve > 0, there is an N € N such that
n>N = |x,—1| <e (%)
To show this formally we need to come up with an “algorithm”

1. You give me any € > 0
2. | respond with an N such that (%) holds

In general, as € shrinks, N will have to grow
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Sequences

Here's how to do this for the case 1+ 1/n converges to 1
First pick an arbitrary € > 0

Now we have to come up with an N such that

n>N = |[1+1/n—-1|<e (%)

Let N be the first integer greater than 1/¢

Then

n>N = n>1/e = 1/n<e = [1+1/n—-1|<e

Remark: Any N’ > N would also work
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Sequences

Example. The sequence x,, = 27" converges to 0

Proof: Must show that, Ve > 0, 3N € N such that

n>N = [27"-0| <e (%)

So pick any € > 0, and observe that

\
27"-0l<e <= 27"<e — n>— e
In2

Hence we take N to be the first integer greater than —Ine/In2

Then i
ne
> I
n>N = n> o (%)
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Sequences

What if we want to show that x,, — a fails?

To show convergence fails we need to show the negation of

Ve>0 INeN st. n>N = x, € Be(a)

Negation: there is an € > 0 where we can't find any such N

More specifically, 3€ > 0 such that, which ever N € N we look at,
there's an n > N with x, outside B(a)

One way to say this: There exists a B¢(a) such that x,, ¢ Be(a)
infinitely often
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This is the kind of picture we're thinking of

Infinite Sums

e o Xy

Cauchy Sequences
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Sequences

Example. The sequence x,, = (—1)" does not converge to 1

Proof: This is what we want to show

Je>0 st st x, & Be(1) infinitely often

Since it's a “there exists”, we need to come up with such an €

Let's try € = 0.5, so that

B(1) ={x e R:|x—1| <05} = (0.5,1.5)

If n is odd then x,, = —1, which is not in (0.5,1.5)

Hence {x,} not in B¢(1) infinitely often
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An Equivalence

Let {x,} be a sequence in R and let s € R
Fact. x, — a if and only if |x, —a] — 0

Proof: Compare the definitions:
o x, »>a <= Ve>0, INENst |x,—a|<e
e |x,—al -0 < Ve>0,INENst ||x,—a| -0/ <e

Clearly these statements are equivalent
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Properties of Limits

Fact. Each sequence in R has at most one limit

Proof: Suppose instead that x, — a and x, — b with a # b

Take disjoint e-balls around a and b

Be(u) Be(b)

~
~

—~

~

Since x,, — a and x,, — b,

e AN, st. n>N, = x, € Be(a)
e ANy st. n >N, = x, € Be(b)

But then n > max{N,,N,} = x,, € Bc(a) and x,, € B.(D)

Contradiction of disjoint
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Properties of Limits

Fact. Every convergent sequence is bounded

Proof: Let {x,} be convergent with x,, — a
Fix any € > 0 and choose N s.t. x, € Be(a) when n > N

Regarded as sets,
{xn} C{x1,...,xn-1} UBe(a)
Both of these sets are bounded

e First because finite sets are bounded

e Second because Bc(a) is bounded
Moreover, finite unions of bounded sets are bounded
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Limits vs Algebra

Here are some basic tools for working with limits

Facts If x, — x and y,, — v, then
L xy+y, = x+y

2. XpYn — XY

w

Xn/Yn — x/y when y, and y are # 0

o

cxp Lyyforalln = x <y
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Properties of Limits
Let's check that x, — x and y, — y implies x, + v, — x +y

Proof: Fixe >0
Need to find N € IN such that

n>N = |(xp+yn)—(x+y)| <e (%)

Note that

o [(xn+yn) = (x+y)| < [xn —x[+|yn — Yl
e IN, € N such that n > N, = |x, — x| < €/2

e IN, € Nsuch thatn > N, = |y, —y| <e€/2
Ex. Show N := max{Ny, Ny} satisfies (x)
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Properties of Limits

Let's also check the claim that x, — x, ¥, — v and x,, <y, for
all n € N implies x <y

Proof: Suppose instead that x >y

Take disjoint e-balls B¢(x) and Be(y) around these points

Be(]/) B€(x)

~
N
~
~N—

Exists an n such that x, € Be(x) and y, € Be(y)

But then x;,; > v,, a contradiction

In words: “Weak inequalities are preserved under limits”
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Properties of Limits

Here's another property of limits, called the “squeeze theorem’

Fact. Let {x,} {y.} and {z,} be sequences in R. If

1Lxy <yp<zyforallme N
2. X, > aand z, = a

then y,, — a also holds

Proof: Pick any € > 0

We can choose an

e N, € N such that n > N, = z, € Be(a)

Ex. Show that n > max{Ny, N;} = y, € Be(a)
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Infinite Sums

Let {x,} be a sequence in R
Then

o0 k
E X, = lim Z Xn
n=1 kﬁwnzl
Thus, Y5 x,, is defined, if it exists, as the limit of {y;} where

k
ykZ: szn
n=1

Other notation:

Y xn, Y X, Y xn, etc.
n

n>1 nelN
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Example. If x, = a" for « € (0,1), then

_ Ak
Zx,,—hm th —limleiazi

—)oon1 k= 1—a 11—«

Example. If x, = (—1)" the limit fails to exist because

if k is even

yk—zxn—

—1 otherwise

Cauchy Sequences
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Infinite Sums

Fact. If {x,} is nonnegative and }_, x,, < oo, then x,, — 0

Proof: Suppose to the contrary that x;, — 0 fails

Then

3 € > 0 such that x,, ¢ B(0) infinitely often
Since x, is nonnegative,

d € > 0 such that x,, exceeds € infinitely often

But then ), x,, cannot be finite — contradiction
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Cauchy Sequences

Cauchy Sequences

Informal def: Cauchy sequences are those where |x, — x,,11| gets
smaller and smaller

~—~—

|0 — X341

Example. Sequences generated by iterative methods for solving
nonlinear equations often have this property

Cauchy sequences “look like” they are converging to something

A key axiom of analysis is that such sequences do converge to
something — details follow
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Cauchy Sequences

A sequence {x,} is called Cauchy if Ve >0, 3 N € N such that
n>Nandj>1 = |x,— x4 <e€ (%)

Example. {x,} defined by x,, = a” where & € (0,1) is Cauchy

Proof: For any n,j we have

X0 — Xpij| = |0 — ™| = a1 — /| < a”
Fixe >0
Ex. Show that n >log(e)/log(a) = a" <€

Hence any integer N > log(e)/ log(a) makes (x) hold
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Cauchy Sequences
Fact. For any sequence, convergent <= Cauchy
Proof of —:
Let {x,} be a sequence converging to some a € R
Fixe >0
We can choose N s.t.

€

n>N — |xn—a|<2

For this N we have n > N and j > 1 implies

€ €
X0 — Xyl §|xn—a|+|xn+]-—a!<§+§:e
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Cauchy Sequences

Proof of <=:

This is basically an axiom in the definition of R

Either

1. We assume it, or
2. We assume something else that's essentially equivalent

We'll go for option 1

Implications:

e There are no “gaps” in the real line

e To check {x,} converges to something we just need to check
Cauchy property
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Cauchy Sequences

Fact. Every bounded monotone sequence in R is convergent

Sketch of proof:
Suffices to show that {x,} is Cauchy
Suppose not

Then no matter how far we go down the sequence we can find
another jump of size € > 0

Since monotone, all the jumps are in the same direction

But then {x,,} not bounded — a contradiction

Full proof: See any text on analysis
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Subsequences

A sequence {x,, } is called a subsequence of {x,} if

1. {xn,} is a subset of {x,}

2. the indices ny are strictly increasing

Example.
{xﬂ} = {xlz X2,X3,X4,X5, .. }
and
{xnk} = {x2,X4,x6,x8,,_}
In this case

{mey = {ny,ma,ms,...} = {2,4,6,...}

Cauchy Sequences

41/43



Cauchy Sequences

More Examples.

1. {1,3,%,...} is a subsequence of {1,3,%,...}
2 {%,%,%,} is a subsequence of {%,%,%,}

- 111
,...} is not a subsequence of {1,3,3,...}

w
~=
N[—=

<
NI—

~
N[—

Fact. Every sequence has a monotone subsequence
Proof: Omitted

Example. The sequence x, = (—1)" has monotone subsequence

{XZ, X4,X6, . - } = {1, 1,1, .. }
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Cauchy Sequences

This leads us to the famous Bolzano—Weierstrass theorem, to
be used later when we discuss optimization

Fact. Every bounded sequence in R has a convergent subsequence

Proof: Let {x,} be a bounded sequence

There exists a monotone subsequence

e which is itself a bounded sequence (why?)

e and hence both monotone and bounded
Every bounded monotone sequence converges

Hence {x,} has a convergent subsequence
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