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Background Reading on Prob Theory

Most relevant

• The lecture slides

• The course notes PDF file

Least useful

• Simon and Blume

• Most other intermediate math econ books

If you really want something else

• Google for related PDFs

• Takashi Amemiya, Introduction to Statistics and
Econometrics, first 6 chapters
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Random Variables

What is a random variable (RV)?

• Bad definition: A value X that “changes randomly”

• Good definition: a function X from Ω into R

Interpretation: RVs convert sample space outcomes into numerical
outcomes

General idea:

• “nature” picks out ω in Ω

• random variable gives numerical summary X(ω)

Note: Some technical details omitted — see course notes



4/41

Random Variables Expectations Covariance Distributions

ω

R

X(ω)

X(ω′)

ω′

Ω

Figure : A random variable X : Ω→ R
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Example. NZ in final of WC and IND, AUS in semi

IND AUS

AUSNZ

Sample space for winner is

Ω = {AUS, IND, NZ}

My payoffs

X(ω) =


39.95 if ω = AUS

−39.95 if ω = NZ

−39.95 if ω = IND
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Example

Suppose Ω is set of infinite binary sequences

Ω := {(b1, b2, . . .) : bn ∈ {0, 1} for each n}

We can create different random variables mapping Ω→ R:

• Number of “flips” till first “heads”:

X(ω) = X(b1, b2, . . .) = min{n : bn = 1}

• Number of “heads” in first 10 “flips”:

Y(ω) = Y(b1, b2, . . .) =
10

∑
n=1

bn
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Notational Conventions for RVs

First, note that

{X has some property} := {ω ∈ Ω : X(ω) has some property}

Example

{X ≤ 2} := {ω ∈ Ω : X(ω) ≤ 2}

This helps us understand how to evaluate P{X ≤ 2}
P assigns probability to events, so

P{X ≤ 2} = P{ω ∈ Ω : X(ω) ≤ 2}
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Example. Recall the prob space associated with rolling a dice twice:

Ω := {(i, j) : i, j ∈ {1, . . . , 6}} and P(E) := #E/36

If X(ω) = X((i, j)) = i + j, what is P{X ≤ 3}?
We have

{X ≤ 3} := {ω ∈ Ω : X(ω) ≤ 3}

= {(i, j) : i, j ∈ {1, . . . , 6}, i + j ≤ 3}

= {(1, 1), (1, 2), (2, 1)}

∴ P{X ≤ 3} = #{X ≤ 3}
36

=
3
36

=
1
12
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Example

Let P be any probability on some sample space Ω

Given random variable X and scalars a ≤ b, we claim that

P{X ≤ a} ≤ P{X ≤ b}

This holds because

{X ≤ a} := {ω ∈ Ω : X(ω) ≤ a}

⊂ {ω ∈ Ω : X(ω) ≤ b} := {X ≤ b}

Now apply monotonicity: A ⊂ B =⇒ P(A) ≤ P(B)
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Example

As before, let P be any probability and X any RV

Given scalars a ≤ b, we claim that

P{a < X < b} = P{a < X ≤ b} −P{X = b}

Ex. Show that

• {X = b} ⊂ {a < X ≤ b}
• {a < X < b} = {a < X ≤ b} \ {X = b}

(Translate into statments about ω as in previous slide)

Now apply A ⊂ B =⇒ P(B \ A) = P(B)−P(A)
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Pointwise Interpretation

In probability theory we often see statements like

• “Since X ≤ Y, we know that...”, or

• “Letting Z := αX + βY, we have...”

Such statements about RVs should be interpreted pointwise

Thus,

X ≤ Y ⇐⇒ X(ω) ≤ Y(ω), ∀ω ∈ Ω

Z := αX + βY ⇐⇒ Z(ω) = αX(ω) + βY(ω), ∀ω ∈ Ω

X = Y ⇐⇒ X(ω) = Y(ω), ∀ω ∈ Ω

etc.
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Types of Random Variables

There is a hierarchy of random variables, from simple to complex

1. binary random variables — take only two values

2. finite random variables — take only finitely many values

3. general random variables — range can be infinite

RVs of types 1 and 2

• are useful in practice

• are great for building intuition

Type 3 RVs are often technically demanding

But results for cases 1–2 usually carry over to case 3
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A binary random variable is an RV taking values in {0, 1}

Example. Let Ω be the sample space for rolling a dice twice

Ω := {(i, j) : i, j ∈ {1, . . . , 6}}

and let

X(ω) = X((i, j)) =

{
1 if i and j are even

0 otherwise

Example. Let Ω be set of infinite binary sequences and let X be
existence of heads in first 5 flips

X(ω) = X(b1, b2, . . .) =

{
1 if ∃ i ≤ 5 s.t. bi = 1
0 otherwise
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Indicator Functions

A useful piece of notation for binary RVs is indicator functions

Type 1: Let Q be a statement, such as “X is greater than 3”

Then the indicator function for Q is

1{Q} :=

{
1 if Q is true

0 otherwise

Example. Bet payoffs from WC example

X(ω) = 39.951{ω = AUS} − 39.951{ω = IND or NZ}



15/41

Random Variables Expectations Covariance Distributions

Type 2: Given C ∈ F , the indicator function for C is the function

1C : Ω→ {0, 1}, 1C(ω) =

{
1 if ω ∈ C
0 otherwise

Ω

1

C

Figure : Visualization when Ω = R
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Fact. Every binary RV is of the form 1C for some C ∈ F

Proof: Fixing C ∈ F , note that 1C is a binary random variable
because

1. 1C is a map from Ω to R — and hence an RV

2. 1C takes values in {0, 1} — and hence binary

To see that every binary RV has this form, let X be any binary
random variable

Define
C := {ω ∈ Ω : X(ω) = 1}

Then X(ω) = 1C(ω) for all ω ∈ Ω (check it)

That is, X = 1C
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Finite Random Variables

A finite random variable is an RV that takes only finitely many
values

• That is, X is finite ⇐⇒ rng(X) is finite

Example. Let

• Ω be set of infinite binary sequences

• X be number of heads in first N flips

That is

X(ω) = X(b1, b2, . . .) =
N

∑
i=1

bi
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Finite RVs can be formed by taking “linear combinations” of
binary RVs

Example. From WC example,

X(ω) = 39.951{ω = AUS} − 39.951{ω = IND or NZ}

Example. X(ω) = s1A(ω) + t1B(ω) with A and B disjoint
means

X(ω) =


s if ω ∈ A
t if ω ∈ B
0 if ω ∈ (A ∪ B)c
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Ω

s

t

A B

X(ω) = s1A(ω) + t1B(ω) when Ω = R
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Fact. Every finite RV can be expressed as a linear combination of
binary RVs

To see this let X be finite with rng(X) = {s1, . . . , sJ}

Letting Aj := {ω ∈ Ω : X(ω) = sj}, X can be expressed as

X(ω) =
J

∑
j=1

sj1Aj(ω)

With the pointwise notational convention, also written as

X =
J

∑
j=1

sj1Aj
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Thus, a general expression for a finite RV is

X =
J

∑
j=1

sj1Aj

With this expression we always assume that

• the sj’s are distinct

• the Aj’s are a partition of Ω

Ex. Using these assumptions, show that

1. X(ω) = sj if and only if ω ∈ Aj

2. {X = sj} = Aj

3. P{X = sj} = P(Aj)
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Example. Recall X = s1A + t1B

Ω

s

t

A B

We actually want the sets to form a partition of Ω

To do this, rewrite as

X = s1A + t1B + 01(A∪B)c
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Expectations

Roughly speaking, for a random variable X, the expectation is

E [X] := the “sum” of all possible values of X,
weighted by their probabilities

• scare quotes because range might be uncountable

Example. Recall WC example

X(ω) = 39.951{ω = AUS} − 39.951{ω = IND or NZ}

From previous lectures numbers I get P{ω = AUS} = 0.39 so

E [X] = 39.95× 0.39− 39.95× (1− 0.39) = −8.79



24/41

Random Variables Expectations Covariance Distributions

Formally, for a finite RV X with range s1, . . . , sJ we define its
expectation E [X] to be

E [X] =
J

∑
j=1

sjP{X = sj}

Fact.

X =
J

∑
j=1

sj1Aj =⇒ E [X] =
J

∑
j=1

sjP(Aj)

Proof: True because Aj = {X = sj}
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Example. Let X = s1A + t1B + 01(A∪B)c

Ω

s

t

A B

Applying the definition gives

E [X] = sP(A) + tP(B) + 0×P{(A ∪ B)c}

= sP(A) + tP(B)
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Expectations of Binary Random Variables

Fact. If A ∈ F then

E [1A] = P(A)

Proof: We can write

1A = 1× 1A + 0× 1Ac

Applying the definition gives

E [1A] = 1×P(A) + 0×P(Ac) = P(A)
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Fact. The expectation of a constant α is α

True meaning:

• α is the constant random variable α1Ω

• E [α] is short for E [α1Ω]

Proof: From the definition we have

E [α] = E [α1Ω] (true meaning)

= αP(Ω) (by def of E )

= α



28/41

Random Variables Expectations Covariance Distributions

Expectations of General RVs

How about the expectation of an RV with infinite range?

The idea: any RV X can be approximated by a sequence of
finite-valued random variables Xn.

The expectation of X is then defined as

E [X] := lim
n→∞

E [Xn]

Loosely speaking, we are replacing sums with integrals

The full definition involves measure theory, so we skip it

Later we’ll learn how to calculate E [X] in specific situations
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Ω

Xn

X

Figure : Approximation of general X with finite Xn
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Monotonicity of Expectations

Fact. If X and Y are RVs with X ≤ Y, then E [X] ≤ E [Y]

• Recall that X ≤ Y should be interpreted pointwise

Proof for the case X = 1A and Y = 1B:

Observe that 1A ≤ 1B =⇒ A ⊂ B

• To see this pick any ω ∈ A

• Since 1A(ω) ≤ 1B(ω) we must have ω ∈ B (why?)

Now we apply monotonicity of P to obtain

E [1A] = P(A) ≤ P(B) = E [1B]
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Linearity of Expectations

Fact. If X and Y are RVs and α and β are constants, then

E [αX + βY] = αE [X] + βE [Y]

Proof for the case β = 0 and X finite

We aim to show that E [αX] = αE [X] for X := ∑J
j=1 sj1Aj

Let Y := αX we have

Y = αX = α

[
J

∑
j=1

sj1Aj

]
=

J

∑
j=1

αsj1Aj

∴ E [αX] = E [Y] =
J

∑
j=1

αsjP(Aj) = α

[
J

∑
j=1

sjP(Aj)

]
= αE [X]
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Variance and Covariance

The k-th moment of X is defined as E [ Xk] for k ∈ N
The variance of X is defined as

var[X] := E [(X−E [X])2]

The standard deviation of X is
√

var[X]

• Measure the dispersion of X

The covariance of random variables X and Y is defined as

cov[X, Y] := E [(X−E [X])(Y−E [Y])]

• All of these might or might not exist (be finite)
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Fact. If α and β are constants and X and Y are random variables,
then

1. var[X] ≥ 0

2. var[α] = 0

3. var[α + βX] = β2 var[X]

4. var[αX + βY] = α2 var[X] + β2 var[Y] + 2αβ cov[X, Y]

Ex. Check all these facts using the properties of E
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Correlation

Let X and Y be RVs with variances σ2
X and σ2

Y

The correlation of X and Y is defined as

corr[X, Y] :=
cov[X, Y]

σX σY

If corr[X, Y] = 0, we say that X and Y are uncorrelated

Fact. Given RVs X and Y, constants α, β > 0, we have

1. −1 ≤ corr[X, Y] ≤ 1

2. corr[αX, βY] = corr[X, Y]
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CDFs

A cumulative distribution function (cdf) on R is a function
F : R→ [0, 1] that is

• right-continuous

• monotone increasing

• satisfies F(x)→ 0 as x → −∞ and F(x)→ 1 as x → ∞

Here

• right continuity means xn ↓ x implies F(xn) ↓ F(x)

• monotonicity x ≤ x′ implies F(x) ≤ F(x′)
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Example. The function F(x) = arctan(x)/π + 1/2 is a cdf called
the Cauchy cdf

−10 −5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0
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Example. Given a < b, the function

F(x) =
x− a
b− a

1{a ≤ x < b}+ 1{b ≤ x}

is a cdf called the uniform cdf on [a, b]

−10 −5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

a = −5.0, b = 5.0
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Example. The function F(x) = tanh((x− µ)/2s)/2 + 1/2 is a
cdf for each µ ∈ R and s ∈ (0, ∞), called the logistic cdf

−10 −5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

µ = 1.0, s = 1.5
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Distributions

Let

• Ω be any sample space

• X be any random variable on Ω
• P be any probability on Ω

Consider the function F : R→ [0, 1] defined by

F(x) = P{X ≤ x}

This function is called the distribution function generated by X

We write X ∼ F

Summarizes lots of useful information about X
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Fact. The distribution function of any random variable is a cdf

Partial proof: Fix X and let F be its distribution

Let’s just show that F is increasing

To see this, pick any x ≤ x′

Note that {X ≤ x} ⊂ {X ≤ x′}
As a result we have

F(x) := P{X ≤ x} ≤ P{X ≤ x′} =: F(x′)

(Further details omitted—see course notes for related exercises)
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Here’s an example of how F summarizes useful info about X

Fact. If X ∼ F and a ≤ b, then P{a < X ≤ b} = F(b)− F(a)

Proof: Recall that

A ⊂ B =⇒ P(B \ A) = P(B)−P(A)

Also, if a ≤ b, then

• {X ≤ a} ⊂ {X ≤ b}
• {a < X ≤ b} = {X ≤ b} \ {X ≤ a}

∴ P{a < X ≤ b} = P{X ≤ b} −P{X ≤ a} = F(b)− F(a)
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