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Random Variables Expectations Covariance Distributions

Background Reading on Prob Theory

Most relevant

e The lecture slides

e The course notes PDF file
Least useful

e Simon and Blume

e Most other intermediate math econ books
If you really want something else

e Google for related PDFs

e Takashi Amemiya, Introduction to Statistics and
Econometrics, first 6 chapters
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Random Variables

Random Variables

What is a random variable (RV)?

e Bad definition: A value X that “changes randomly”

e Good definition: a function X from Q) into R

Interpretation: RVs convert sample space outcomes into numerical
outcomes

General idea:

e ‘“nature” picks out w in Q)

e random variable gives numerical summary X(w)

Note: Some technical details omitted — see course notes
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Random Variables Expectations Covariance Distributions

Figure : A random variable X: QO — R
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Random Variables

Example. NZ in final of WC and IND, AUS in semi

NZ

IND AUS

Sample space for winner is
Q = {AUS,IND,NZ}
My payoffs
3995 if w = AUS

X(w) = { —39.95 if w=NZ
—39.95 if w = IND
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Random Variables

Example

Suppose () is set of infinite binary sequences
Q:={(by,by,...): b, €{0,1} for each n}
We can create different random variables mapping () — R:
e Number of “flips” till first “heads”:
X(w) = X(by,by,...) =min{n: b, =1}

e Number of “heads” in first 10 “flips":
10
Y(w) =Y(by,by,...) =) _ by

n=1
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Random Variables Expectations Covariance Distributions

Notational Conventions for RVs

First, note that

{X has some property} := {w € Q) : X(w) has some property}
Example

(X<2)i={weO: X(w) <2}

This helps us understand how to evaluate P{X < 2}

IP assigns probability to events, so

P{X <2} =P{w € Q: X(w) <2}
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Random Variables

Example. Recall the prob space associated with rolling a dice twice:
Q:={@,j):i,je{l,...,6}} and P(E):=#E/36
If X(w) =X((i,j)) =i+j, whatis P{X < 3}7?
We have
{X<3}:={we O:X(w) <3}
={@,j):i,je{1,...,6}, i+j <3}

={(1,1),(1,2),(2,1)}

#Hx<3 3 1
XSS =% "% 12
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Random Variables

Example

Let IP be any probability on some sample space ()

Given random variable X and scalars a < b, we claim that
P{X <a} <P{X <1}

This holds because

{X<a}={we:X(w)<a}

C{weQ:X(w)<b}:={X<b}
Now apply monotonicity: A C B = P(A) < P(B)
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Random Variables

Example

As before, let IP be any probability and X any RV

Given scalars a < b, we claim that

P{la<X<b} =P{a<X<b}-P{X=0}

Ex. Show that

o {X=b}C{a<X<b}
e {u<X<b={a<X<b}\{X=0b}

(Translate into statments about w as in previous slide)
Now apply AC B = P(B\ A) =P(B) —P(A)
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Random Variables

Pointwise Interpretation

In probability theory we often see statements like

e “Since X <Y, we know that..."”, or
o “Letting Z := aX + BY, we have..."

Such statements about RVs should be interpreted pointwise

Thus,

X<Y <= Xw) <Y(w), YweO
Z:=aX+pY <<= Z(w)=aX(w)+pY(w), Ywe
X=Y <= Xw) =Yw), YweO
etc.
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Random Variables

Types of Random Variables

There is a hierarchy of random variables, from simple to complex

1. binary random variables — take only two values
2. finite random variables — take only finitely many values
3. general random variables — range can be infinite

RVs of types 1 and 2

e are useful in practice

e are great for building intuition

Type 3 RVs are often technically demanding

But results for cases 1-2 usually carry over to case 3
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Random Variables

A binary random variable is an RV taking values in {0,1}

Example. Let () be the sample space for rolling a dice twice

Q:={@Gj):ije{1,...,6}}
and let

.. 1 ifiand j are even
X(w) = X((i,])) = .
0 otherwise
Example. Let () be set of infinite binary sequences and let X be
existence of heads in first 5 flips

X(w) = X(bl,bz,. . ) =

1 if di<5 st. =1
0 otherwise

13/41



Random Variables Expectations Covariance Distributions

Indicator Functions

A useful piece of notation for binary RVs is indicator functions
Type 1: Let Q be a statement, such as “X is greater than 3"

Then the indicator function for Q is

1 if Q is true

0 otherwise

1{Q} := {

Example. Bet payoffs from WC example

X(w) = 39.95 1{w = AUS} — 39.951{ww = IND or NZ}
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Random Variables Expectations Covariance Distributions

Type 2: Given C € F, the indicator function for C is the function

1 if
Ie: O {01},  Ie(w)={1 T@SC
0 otherwise
L I —
C @)

Figure : Visualization when ) = R
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Random Variables

Fact. Every binary RV is of the form 1 for some C € F
Proof: Fixing C € F, note that 1¢ is a binary random variable
because

1. 1¢ is a map from Q) to R — and hence an RV
2. 1¢ takes values in {0,1} — and hence binary

To see that every binary RV has this form, let X be any binary
random variable

Define
C={weQ:X(w)=1}

Then X(w) = 1¢(w) for all w € O (check it)
Thatis, X = 1¢
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Random Variables Expectations Covariance Distributions

Finite Random Variables

A finite random variable is an RV that takes only finitely many
values

e Thatis, X is finite <= rng(X) is finite

Example. Let

e () be set of infinite binary sequences
e X be number of heads in first N flips

That is
b;

o

Il
_

X(w) = X (b1, by, ...) =
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Random Variables

Finite RVs can be formed by taking “linear combinations” of
binary RVs

Example. From WC example,

X(w) = 39.95 1{w = AUS} —39.95 1{w = IND or NZ}

Example. X(w) =s1a(w)+t1p(w) with A and B disjoint
means
s fweA

X(w)={t ifweB
0 ifwe (AUB)*
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Random Variables

slp(w) + tlp(w) when QO =R

X(w)

19/41



Random Variables

Fact. Every finite RV can be expressed as a linear combination of
binary RVs

To see this let X be finite with rng(X) = {s1,...,s;}

Letting Aj := {w € O : X(w) = s5;}, X can be expressed as
)
X(w) = ZstLA].(w)
j=1
With the pointwise notational convention, also written as

J
X = ZS]'ILA].
j=1
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Random Variables

Thus, a general expression for a finite RV is

J
X = ZsjﬂAj
j=1

With this expression we always assume that

e the sj’s are distinct

e the Aj's are a partition of ()
Ex. Using these assumptions, show that

1. X(w) =sjif and only if w € A;
3. P{X =s;} = P(4))
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Random Variables Expectations Covariance Distributions

Example. Recall X =sl4 + tlp

We actually want the sets to form a partition of ()

To do this, rewrite as

X = S:[].A + t]].B + O]]-(AUB)f
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Expectations

Expectations

Roughly speaking, for a random variable X, the expectation is

E [X] := the “sum” of all possible values of X,
weighted by their probabilities

e scare quotes because range might be uncountable
Example. Recall WC example
X(w) =39.951{w = AUS} —39.951{w = IND or NZ}
From previous lectures numbers | get P{w = AUS} = 0.39 so
E [X] =39.95 x 0.39 — 39.95 x (1 —0.39) = —8.79
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Expectations

Formally, for a finite RV X with range sq,...,5; we define its
expectation [E [X] to be

J
E [X] = ZSj]P{X = S]}
j=1

Fact. | |
X = ZS]']IA], - E [X] = ZS]]P(A])
j=1 j=1

Proof: True because A; = {X = s;}
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Random Variables Expectations Covariance Distributions

Example. Let X = s14 + t1p + 01 (4up)e

Applying the definition gives
E[X] =sP(A) +tP(B) +0x P{(AUB)‘}

= sP(A) + tP(B)
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Random Variables Expectations Covariance Distributions

Expectations of Binary Random Variables

Fact. If A € F then

E[14] =P(A)

Proof: We can write

Tpo=1Xx14+0xX 14
Applying the definition gives

E[14] =1xP(A)+0xP(AS) = P(A)
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Expectations

Fact. The expectation of a constant a is «

True meaning:

e « is the constant random variable a1
o [ [a] is short for E [alq)]

Proof: From the definition we have
E o] = E [alg] (true meaning)
=alP(Q) (by def of E)

=K
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Expectations

Expectations of General RVs

How about the expectation of an RV with infinite range?

The idea: any RV X can be approximated by a sequence of
finite-valued random variables X,,.

The expectation of X is then defined as
E [X] := lim E [X,,]

n—00

Loosely speaking, we are replacing sums with integrals

The full definition involves measure theory, so we skip it

Later we'll learn how to calculate E [X] in specific situations
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Random Variables Expectations Covariance Distributions

Q

Figure : Approximation of general X with finite X,
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Random Variables Expectations Covariance Distributions

Monotonicity of Expectations

Fact. If X and Y are RVs with X <Y, then E [X] < E[Y]
e Recall that X < Y should be interpreted pointwise

Proof for the case X = 14 and Y = 15:

Observe that 14 <13 — A CB

e To see this pick any w € A

e Since 14(w) < 1p(w) we must have w € B (why?)
Now we apply monotonicity of IP to obtain
B[14] = P(A) < P(B) = B [1y
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Expectations

Linearity of Expectations
Fact. If X and Y are RVs and « and 8 are constants, then

E [aX + BY] = aE [X] + BE [Y]

Proof for the case f = 0 and X finite
We aim to show that E [aX] = alE [X] for X := ij‘:l sl

Let Y := aX we have

) J
Y=aX=u lZsj]lAj] = thsj]l,qj
=1 j=1

]
Y siP(4)) | = aE[X]

EaX]=E[Y] = iocstP(Aj) =
j=1 j=1

31/41



Random Variables Expectations Covariance Distributions

Variance and Covariance

The k-th moment of X is defined as & [ X] for k € N

The variance of X is defined as

var[X] := E[(X — E [X])?]

The standard deviation of X is y/var[X]
e Measure the dispersion of X
The covariance of random variables X and Y is defined as

cov[X, Y] := B [(X - E[X])(Y — E[Y])]

o All of these might or might not exist (be finite)
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Fact. If @ and B are constants and X and Y are random variables,
then

Ex.

Covariance

. var[X] >0

. var[a] =0

var|a + BX] = B?var[X]

. var[aX + BY] = a? var[X] + B? var[Y] + 2aB cov(X, Y]

Check all these facts using the properties of
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Random Variables Expectations Covariance Distributions

Correlation
Let X and Y be RVs with variances (7>2< and (712,

The correlation of X and Y is defined as

corr[X,Y] := cov[X, ¥]
Ox Oy
If corr[X,Y] =0, we say that X and Y are uncorrelated

Fact. Given RVs X and Y, constants &, 8 > 0, we have
1. =1 <corr[X,Y] <1
2. corr[aX, BY] = corr[X, Y]
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Random Variables Expectations Covariance

CDFs

A cumulative distribution function (cdf) on R is a function
F: R — [0,1] that is

e right-continuous

e monotone increasing

e satisfies F(x) - 0 asx — —oo and F(x) — 1 as x — oo

Here

e right continuity means x,, | x implies F(x,) | F(x)

e monotonicity x < x’ implies F(x) < F(x')

Distributions
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Random Variables

Expectations

Covariance

Distributions

Example. The function F(x) = arctan(x)/7+1/2 is a cdf called

the Cauchy cdf

00
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Random Variables Expectations Covariance

Example. Given a < b, the function

E(x) = ’;:Z]l{agx<b}+11{b§x}

is a cdf called the uniform cdf on [g, b]

— a=-50,b=50

08}

061

041

021

Distributions
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Random Variables Expectations Covariance Distributions

Example. The function F(x) = tanh((x — p)/2s)/2+1/2is a
cdf for each y € R and s € (0,0), called the logistic cdf

1.0
— u=10,s=15 //_

08|

06

02
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Random Variables Expectations Covariance Distributions

Distributions

Let

e () be any sample space
e X be any random variable on ()
e P be any probability on ()

Consider the function F: R — [0, 1] defined by
F(x) =P{X < x}

This function is called the distribution function generated by X

We write X ~ F

Summarizes lots of useful information about X
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Distributions

Fact. The distribution function of any random variable is a cdf

Partial proof: Fix X and let F be its distribution
Let's just show that F is increasing

To see this, pick any x < x’

Note that {X < x} C {X < x'}

As a result we have

F(x):=P{X <x} <P{X <x'} = F(¥)

(Further details omitted—see course notes for related exercises)
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Distributions

Here's an example of how F summarizes useful info about X
Fact. If X ~ F and a <D, then P{a < X < b} = F(b) — F(a)

Proof: Recall that

ACB = P(B\ A) = P(B) - P(A)

Also, if a < b, then
o {X<a}C{X<Ub}
e {a <X <b}={X<b}\{X<a}

P{a < X <b} =P{X < b} - P{X < a} = F(b) — F(a)
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