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Transpose

The transpose of A is the matrix A′ defined by

coln(A′) = rown(A)

Examples. If

A :=

 10 40
20 50
30 60

 then A′ =

(
10 20 30
40 50 60

)

If

B :=
(

1 3 5
2 4 6

)
then B′ :=

 1 2
3 4
5 6


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Fact. For conformable matrices A and B, transposition satisfies

1. (A′)′ = A

2. (AB)′ = B′A′

3. (A + B)′ = A′ + B′

4. (cA)′ = cA′ for any constant c

For each square matrix A,

1. det(A′) = det(A)

2. If A is nonsingular then so is A′, and (A′)−1 = (A−1)′
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In [1]: import numpy as np

In [2]: A = np.random.randn(2, 2)

In [3]: np.linalg.inv(A.transpose())

Out[3]:

array([[ 4.52767206, -1.83628665],

[ 0.90504942, 1.5014984 ]])

In [4]: np.linalg.inv(A).transpose()

Out[4]:

array([[ 4.52767206, -1.83628665],

[ 0.90504942, 1.5014984 ]])
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A square matrix A is called symmetric if A′ = A

Equivalent: ank = akn for all n, k

Examples.

A :=
(

10 20
20 50

)
, B :=

 1 2 3
2 0 0
3 0 2



Ex. For any matrix A, show that A′A and AA′ are always

1. well-defined (multiplication makes sense)

2. symmetric
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The trace of a square matrix is defined by

trace

 a11 · · · a1N
...

...
aN1 · · · aNN

 =
N

∑
n=1

ann

Fact. trace(A) = trace(A′)

Fact. If A and B are square matrices and α, β ∈ R, then

trace(αA + βB) = α trace(A) + β trace(B)

Fact. When conformable, trace(AB) = trace(BA)
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A square matrix A is called idempotent if AA = A

Examples.

A :=
(

1 1
0 0

)
, I :=

 1 0 0
0 1 0
0 0 1



The next result is often used in statistics / econometrics:

Fact. If A is idempotent, then rank(A) = trace(A)
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Diagonal Matrices

Consider a square N × N matrix A

The N elements of the form ann are called the principal diagonal


a11 a12 · · · a1N
a21 a22 · · · a2N
...

...
...

aN1 aN2 · · · aNN


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A square matrix D is called diagonal if all entries off the principal
diagonal are zero

D =


d1 0 · · · 0
0 d2 · · · 0
...

...
...

0 0 · · · dN



Often written as

D = diag(d1, . . . , dN)
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Incidentally, the same notation works in Python

In [1]: import numpy as np

In [2]: D = np.diag((2, 4, 6, 8, 10))

In [3]: D

Out[3]:

array([[ 2, 0, 0, 0, 0],

[ 0, 4, 0, 0, 0],

[ 0, 0, 6, 0, 0],

[ 0, 0, 0, 8, 0],

[ 0, 0, 0, 0, 10]])
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Diagonal systems are very easy to solve

Example.

d1 0 0
0 d2 0
0 0 d3

x1
x2
x3

 =

b1
b2
b3


is equivalent to

d1x1 = b1
d2x2 = b2
d3x3 = b3
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Fact. If C = diag(c1, . . . , cN) and D = diag(d1, . . . , dN) then

1. C + D = diag(c1 + d1, . . . , cN + dN)

2. CD = diag(c1d1, . . . , cNdN)

3. Dk = diag(dk
1, . . . , dk

N) for any k ∈ N

4. dn ≥ 0 for all n =⇒ D1/2 exists and equals

diag(
√

d1, . . . ,
√

dN)

5. dn 6= 0 for all n =⇒ D is nonsingular and

D−1 = diag(d−1
1 , . . . , d−1

N )

Proofs: Check 1 and 2 directly, other parts follow
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In [1]: import numpy as np

In [2]: D = np.diag((2, 4, 10, 100))

In [3]: np.linalg.inv(D)

Out[3]:

array([[ 0.5 , 0. , 0. , 0. ],

[ 0. , 0.25, 0. , 0. ],

[ 0. , 0. , 0.1 , 0. ],

[ 0. , 0. , 0. , 0.01]])



14/44

Trace and Transpose Diagonal Matrices Eigenvalues Matrix Norm Neumann Series

A square matrix is called lower triangular if every element strictly
above the principle diagonal is zero

Example.

L :=

 1 0 0
2 5 0
3 6 1


A square matrix is called upper triangular if every element strictly
below the principle diagonal is zero

Example.

U :=

 1 2 3
0 5 6
0 0 1


Called triangular if either upper or lower triangular
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Associated linear equations also simple to solve

Example.  4 0 0
2 5 0
3 6 1

 x1
x2
x3

 =

 b1
b2
b3


becomes

4x1 = b1
2x1 + 5x2 = b2

3x1 + 6x2 + x3 = b3

Top equation involves only x1, so can solve for it directly

Plug that value into second equation, solve out for x2, etc.
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Eigenvalues and Eigenvectors

Let A be N × N

In general A maps x to some arbitrary new location Ax

But sometimes x will only be scaled:

Ax = λx for some scalar λ (1)

If (1) holds and x is nonzero, then

1. x is called an eigenvector of A and λ is called an eigenvalue

2. (x, λ) is called an eigenpair

Clearly (x, λ) is an eigenpair of A =⇒ (αx, λ) is an eigenpair of
A for any nonzero α
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Example. Let

A :=
(

1 −1
3 5

)
Then

λ = 2 and x =

(
1
−1

)
form an eigenpair because x 6= 0 and

Ax =

(
1 −1
3 5

)(
1
−1

)
=

(
2
−2

)
= 2

(
1
−1

)
= λx
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Example.

In [3]: import numpy as np

In [4]: A = [[1, 2],

...: [2, 1]]

In [5]: eigvals, eigvecs = np.linalg.eig(A)

In [6]: x = eigvecs[:,0] # Let x = first eigenvector

In [7]: lm = eigvals[0] # Let lm = first eigenvalue

In [8]: np.dot(A, x) # Compute Ax

Out[8]: array([ 2.12132034, 2.12132034])

In [9]: lm * x # Compute lm x

Out[9]: array([ 2.12132034, 2.12132034])
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−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x1x2

Ax1 = λ1x1

Ax2 = λ2x2

Figure : The eigenvectors of A



20/44

Trace and Transpose Diagonal Matrices Eigenvalues Matrix Norm Neumann Series

Consider the matrix

R :=
(

0 −1
1 0

)

Induces counter-clockwise rotation on any point by 90◦

Hence no point x is scaled

Hence there exists no pair λ ∈ R and x 6= 0 such that

Rx = λx

• In other words, no real-valued eigenpairs exist
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−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x

Rx

Figure : The matrix R rotates points by 90◦



22/44

Trace and Transpose Diagonal Matrices Eigenvalues Matrix Norm Neumann Series

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x

Rx

Figure : The matrix R rotates points by 90◦
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But Rx = λx can hold if we allow complex values

Example. (
0 −1
1 0

)(
1
−i

)
=

(
i
1

)
= i

(
1
−i

)
That is,

Rx = λx for λ := i and x :=
(

1
−i

)

Hence (x, λ) is an eigenpair provided we admit complex values

We do, since this is standard
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Fact. For any square matrix A

λ is an eigenvalue of A ⇐⇒ det(A − λI) = 0

Proof: Let A by N × N and let I be the N × N identity

We have

det(A − λI) = 0 ⇐⇒ A − λI is singular

⇐⇒ ∃ x 6= 0 s.t. (A − λI)x = 0

⇐⇒ ∃ x 6= 0 s.t. Ax = λx

⇐⇒ λ is an eigenvalue of A



25/44

Trace and Transpose Diagonal Matrices Eigenvalues Matrix Norm Neumann Series

Example. In the 2 × 2 case,

A =

(
a b
c d

)
=⇒ A − λI =

(
a − λ b

c d − λ

)

∴ det(A − λI) = (a − λ)(d − λ)− bc

= λ2 − (a + d)λ + (ad − bc)

Hence the eigenvalues of A are given by the two roots of

λ2 − (a + d)λ + (ad − bc) = 0

Equivalently,
λ2 − trace(A)λ + det(A) = 0
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Existence of Eigenvalues

Fix N × N matrix A

Fact. There exist complex numbers λ1, . . . , λN such that

det(A − λI) =
N

∏
n=1

(λn − λ)

Each such λi is an eigenvalue of A because

det(A − λiI) =
N

∏
n=1

(λn − λi) = 0

Important: Not all are necessarily distinct — there can be repeats
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Fact. Given N × N matrix A with eigenvalues λ1, . . . , λN we have

1. det(A) = ∏N
n=1 λn

2. trace(A) = ∑N
n=1 λn

3. If A is symmetric, then λn ∈ R for all n

4. If A = diag(d1, . . . , dN), then λn = dn for all n

Hence A is nonsingular ⇐⇒ all eigenvalues are nonzero (why?)

Fact. If A is nonsingular, then

eigenvalues of A−1 = 1/λ1, . . . , 1/λN
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Diagonalization

Square matrix A is said to be similar to square matrix B if

∃ invertible matrix P such that A = PBP−1

x AxA

P−1

B

P
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Fact. If A is similar to B, then At is similar to Bt for all t ∈ N

Proof for case t = 2:

A2 = AA

= PBP−1PBP−1

= PBBP−1

= PB2P−1
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If A is similar to a diagonal matrix, then A is called diagonalizable

Fact. Let A be diagonalizable with A = PDP−1 and let

1. D = diag(λ1, . . . , λN)

2. pn := coln(P)

Then (pn, λn) is an eigenpair of A for each n

Proof: From A = PDP−1 we get AP = PD

Equating n-th column on each side gives

Apn = λnpn

Moreover pn 6= 0 because P is invertible (which facts?)
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Fact. If N × N matrix A has N distinct eigenvalues λ1, . . . , λN,
then A is diagonalizable as A = PDP−1 where

1. D = diag(λ1, . . . , λN)

2. coln(P) is an eigenvector for λn

Example. Let

A :=
(

1 −1
3 5

)
The eigenvalues of A are 2 and 4, while the eigenvectors are

p1 :=
(

1
−1

)
and p2 :=

(
1
−3

)

Hence
A = P diag(2, 4)P−1
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In [1]: import numpy as np

In [2]: from numpy.linalg import inv

In [3]: A = [[1, -1],

...: [3, 5]]

In [4]: D = np.diag((2, 4))

In [5]: P = [[1, 1], # Matrix of eigenvectors

...: [-1, -3]]

In [6]: np.dot(P, np.dot(D, inv(P))) # PDP^{-1} = A?

Out[6]:

array([[ 1., -1.],

[ 3., 5.]])
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The Euclidean Matrix Norm

The concept of norm is very helpful for working with vectors

• provides notions of distance, similarity, convergence

How about an analogous concept for matrices?

Given N × K matrix A, we define

‖A‖ := max
{
‖Ax‖
‖x‖ : x ∈ RK, x 6= 0

}

• LHS is the matrix norm of A
• RHS is ordinary Euclidean vector norms
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In the maximization we can restrict attention to x s.t. ‖x‖ = 1

To see this let

a := max
x 6=0

‖Ax‖
‖x‖ and b := max

‖x‖=1

‖Ax‖
‖x‖ = max

‖x‖=1
‖Ax‖

Evidently a ≥ b because max is over a larger domain

To see the reverse let

• xa be the maximizer over x 6= 0 and let α := 1/‖xa‖
• xb := αxa

Then

b ≥ ‖Axb‖
‖xb‖

=
‖αAxa‖
‖αxa‖

=
α

α

‖Axa‖
‖xa‖

= a
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Ex. Show that for any x we have ‖Ax‖ ≤ ‖A‖‖x‖

If ‖A‖ < 1 then A is called contractive — it shrinks the norm

x

Ax

radius = 1
radius = ‖A‖
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The matrix norm has similar properties to the Euclidean norm

Fact. For conformable matrices A and B, we have

1. ‖A‖ = 0 if and only if all entries of A are zero

2. ‖αA‖ = |α|‖A‖ for any scalar α

3. ‖A + B‖ ≤ ‖A‖+ ‖B‖

4. ‖AB‖ ≤ ‖A‖‖B‖

The last inequality is called the submultiplicative property of the
matrix norm

For square A it implies that ‖Ak‖ ≤ ‖A‖k for any k ∈ N
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Fact. For the diagonal matrix

D = diag(d1, . . . , dN) =


d1 0 · · · 0
0 d2 · · · 0
...

...
...

0 0 · · · dN


we have

‖D‖ = max
n

|dn|
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Let {Aj} and A be N × K matrices

• If ‖Aj − A‖ → 0 then we say that Aj converges to A

• If ∑J
j=1 Aj converges to some matrix B∞ as J → ∞ we write

∞

∑
j=1

Aj = B∞

In other words,

B∞ =
∞

∑
j=1

Aj ⇐⇒ lim
J→∞

∥∥∥∥∥ J

∑
j=1

Aj − B∞

∥∥∥∥∥ → 0
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Neumann Series

Consider the difference equation xt+1 = Axt + b, where

• xt ∈ RN represents the values of some variables at time t

• A and b form the parameters in the law of motion for xt

Question of interest: is there an x such that

xt = x =⇒ xt+1 = x

In other words, we seek an x ∈ RN that solves the system of
equations

x = Ax + b, where A is N × N and b is N × 1
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We can get some insight from the scalar case x = ax + b

If |a| < 1, then this equation has the solution

x̄ =
b

1 − a
= b

∞

∑
k=0

ak

Does an analogous result hold in the vector case x = Ax + b?

Yes, if we replace condition |a| < 1 with ‖A‖ < 1
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Let b be any vector in RN and A be an N × N matrix

The next result is called the Neumann series lemma

Fact. If ‖Ak‖ < 1 for some k ∈ N, then I − A is invertible and

(I − A)−1 =
∞

∑
j=0

Aj

In this case x = Ax + b has the unique solution

x̄ =
∞

∑
j=0

Ajb
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Sketch of proof that (I − A)−1 = ∑∞
j=0 Aj for case ‖A‖ < 1

We have (I − A)∑∞
j=0 Aj = I because∥∥∥∥∥(I − A)

∞

∑
j=0

Aj − I

∥∥∥∥∥ =

∥∥∥∥∥(I − A) lim
J→∞

J

∑
j=0

Aj − I

∥∥∥∥∥
= lim

J→∞

∥∥∥∥∥(I − A)
J

∑
j=0

Aj − I

∥∥∥∥∥
= lim

J→∞

∥∥∥AJ
∥∥∥

≤ lim
J→∞

‖A‖J = 0
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How to test the hypotheses of the Neumann series lemma?

The spectral radius of square matrix A is

ρ(A) := max{|λ| : λ is an eigenvalue of A}

Here |λ| is the modulus of the possibly complex number λ

Example. If λ = a + ib, then

|λ| = (a2 + b2)1/2

Example. If λ ∈ R, then |λ| is the absolute value
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Fact. If ρ(A) < 1, then ‖Aj‖ < 1 for some j ∈ N

Proof, for diagonalizable A:

We have Aj = PDjP−1 where

D = diag(λ1, . . . , λN) and hence Dj = diag(λj
1, . . . , λ

j
N)

Hence
‖Aj‖ = ‖PDjP−1‖ ≤ ‖P‖‖Dj‖‖P−1‖

In particular, when C := ‖P‖‖P−1‖,

‖Aj‖ ≤ C max
n

|λj
n| = C max

n
|λn|j = Cρ(A)j

This is < 1 for large enough j because ρ(A) < 1
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